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Abstract. We study field equations of the Gelfand-Yaglom type

κj Ψ(x) = 0

where Ψ transforms as a unitary representation of the inhomogeneous Lorentz
group. We construct a complete set of solutions of this equation. This set includes
solutions with spacelike momentum. Our method makes use of the decomposition
of unitary representations of the homogeneous Lorentz group into unitary re-
presentations of the little groups $£7(2) and $£7(1, 1). The covariant operators
Γμ are written as differential operators on homogeneous spaces. For some classes
of equations we calculate the mass spectrum explicitly.

I. Introduction

We study equations of the type

-ίΓμ~~-κ)ψ(x)=0

where κ is a real parameter different from zero, and Ψ transforms as a
finite direct sum of unitary irreducible representations of the homo-
geneous Lorentz group. This means that for any element "α" of the
homogeneous Lorentz group SL(2, C), we have a transformation

Ψ(x)—+Ψ'(x),

such that ψ is a vector in a representation space of SL(2, C) depending
on the argument x and £7α is a unitary operator in this space representing
the element "α". Further we define

(Λax)μ = Λa

v

μxv.

Permanent address: CERN, Geneva.
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Covariance of the equation can be achieved by the requirement

77-1 p jj _ A v p
v a x μ^ a χiaμ-L v '

We assume that the operators Γμ possess a common invariant dense
domain in the representation space.

In the momentum representation

Ψ(x) = (2π)~2 / etwψip) d*p

we can write the equation as

(p"Γμ - κ) Ψ(p) = 0 .

The four momentum φμ appearing in this equation may a priori be
timelike,

(P0)2 ~ (P)2 = μ2 > 0 ,
spacelike,

( p 0 ) 2 - ( p ) 2 = - λ 2 , λ>0,
or lightlike,

(PΎ - (p)3 - o .
Special examples of such field equations have first been investigated

by MAJOBANA [1]. The general theory of Lorentz covariant equations has
been developed by GELFAND and YAGLOM in a series of papers [2]1.
These authors study in particular timelike solutions and neglect the
spacelike solutions, which has been pointed out by BARGMANN [3]. The
aim of this article is to discuss spacelike and timelike representations
simultaneously and display a general framework which enables us to
obtain a complete set of solutions.

To illustrate what we mean by "complete set" in this context, let me
recall what the Plancherel theorem for a Lie group says. I t asserts the
completeness and orthogonality of all matrix elements of a certain
subset of unitary irreducible representations of the group in the Hubert
space of square integrable functions on the group. In addition, the theo-
rem defines a measure in this subset of representations, which tells us
how to sum up (in the discrete or continuous sense) the contributions of
different representations. This is the Plancherel measure.

The Plancherel theorem for the inhomogeneous Lorentz group has
been established recently [4]. Any solution Ψ(x) represents a certain
function on the inhomogeneous Lorentz group. If it is sufficiently regular
it can be decomposed into components belonging to irreducible unitary
representations of the inhomogeneous Lorentz group relying on the com-
pleteness and orthogonality of the functions specified in the Plancherel
theorem. These components have definite mass and spin. I t turns out

1 A short review of the results can be found in Ref. [3], an exhaustive dis-
cussion in the textbook, Ref [5].
22 Commun. math. Phys., Vol. 6
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that in the case when the unitary representation Ua of SL(2, C) is a
finite direct sum of irreducible representations, a finite number of
functions

M2 = M2{J)

exists which relate the mass M and the spin J of the components appear-
ing in a solution. The parts M2 > 0 of these functions are known since
the work of GELFAND and YAGLOM [2], Our solutions cover also the
domain of negative values M2.

We do not want to study here which regularity properties a solution
must possess to be decomposable and how this decomposition converges.
Consequently we regard the definition of a "complete set of solutions"
only as a technical term: We consider all plane wave solutions

such that Ψ belongs to any irreducible representation of the little group
corresponding to p which is contained in the reduction of the unitary
representation of the group SL(2, C).

In practice we proceed as follows. If the momentum is timelike we
may bring the equation to the form

(Γoμ-x)Ψ(μ) = O9 μ^O.

We solve this eigenvalue equation for Γo which yields an eigenvector
Ψ(μ) for any point μ of the spectrum of the self-adjoint operator κΓ^1.
The spectrum of this operator is discrete, the eigenvectors are normaliz-
able. Any point p on the timelike orbit

{p : (pθ)2 _ (p)2 = μ2? signpo = s i g n ^

can be reached from the rest system by a pure Lorentz transformation
a(p)ζSL(2,C),

a(p) -p a(p)ϊ = μ .
We may define Ψ(p) by

Ψ(p)=UaMΨ(μ).

To find the spectrum of Γo we use the fact that Γo commutes with
Uu, where u is any element of the timelike little group $£7(2). Schur's
lemma implies that Γo reduces to blocks. If Ψ is decomposed in com-
ponents Ψό,

j

ψ. — P.ψ

where P3 is the projection operator on the subspace which carries all
representations of SU(2) to the spin j , we may express Schur's lemma as

i i
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The projection P3 is a well known operation [5]. The Peter and Weyl
theorem [6] for the group SU(2), which is the version of the Plancherel
theorem for bicompact groups, states explicitly how to construct this
operator.

We can proceed similarly in the case of spacelike solutions. We can
reduce the field equation to

(Γzλ - κ) Ψ(λ) = 0

such that λ appears as the eigenvalue of the operator κΓ^1, which is
again self-adjoint. The spectrum of this operator contains always a
continuum with corresponding non-normalizable eigenvectors. To find
the spectrum of Γ3 we must decompose the unitary representations of
8L(2, C) into irreducible unitary representations of SU(l, 1). We do
this for the principal series of SL(2, C) with the help of the Plancherel
theorem for the group SU(l, 1) [7, 8].

We note that the mass square operator M2 can be defined by
2 - Γ0~

2, in the timelike,
if2 =

[— κ2 * /Y~2> m the spacelike case .
Finally there are the solutions on the lightcone. In principle these

solutions present no further difficulties. The techniques used to find the
timelike and spacelike solutions can be generalized to yield also the
solutions on the lightcone. Since zero appears as an accumulation point
of both the positive and negative part of the M2-spectrum (see Section V),
the solutions on the lightcone are of no particular interest. Therefore we
do not go into the detailed construction of these solutions but state their
main properties :

α) the point zero has the same multiplicity as the spacelike part of
the M2-spectrum just below zero,

β) half of the solutions lie on the future, the other on the past half-
cone,

γ) all solutions belong to representations with continuous spin, their
spins are equal.

The latter property is a consequence of the fact that the Plancherel
theorem for the little group £7(1) x T2 involves only representations
with "continuous spin". To illustrate our assertions we construct the
solutions on the lightcone for a simple example of a field equation
(Section V, subsection 2).

We present the material as follows. In section II we quote funda-
mental results of GELFAND and NAIMARK on the unitary representations
of SL(2, C) [5]. The decomposition into irreducible representations of
$£7(2) establishes the so-called canonical basis in the space of the
8L(2, C) representation. Finally we mention some results of GELFAND

and YAGLOM [2].
22*
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In section I I I we express the covariant operators Γμ as differential
operators on homogeneous spaces. Applying these operators to the
elements of the canonical basis, we find the matrices (JΓQ)^ which yields
some of GELFAND'S and YAGLOM'S results for the positive part of the
Jf2-spectrurn.

In section IV we decompose unitary representations of the principal
series of SL(2, C) into unitary irreducible representations of 817(1, 1).
This yields a new basis, the canonical pseudo-basis (some basis vectors
are non-normalizable).

In section V we apply the differential operators of section I II to
the pseudo-basis and complete the mass spectrum.

Our treatment of the matrices Γμ as differential operators uses
unpublished material from Dr. J. WESS. After the completion of this
work we learned of a recent publication [9] in which the decomposition
of unitary representations of $ £7(1, 1) is achieved with the same method
which we develop in Section IV.

II. Unitary Representations of SL(2, G) [5]

1. Functions on Homogeneous Spaces

In this section we present standard methods and results which
enable us to simplify and shorten the discussion of section IV.

We consider the group K of triangular matrices h of the form

where λ, μ are complex numbers. Points in the homogeneous space

8L{2,C)jK

can be characterized in different fashions; in general we may use any
element oί $L(2, C) in the rest class which represents the point considered.
One way to do this is choosing triangular matrices z of the form

i , i , ^ complex .

This is possible only for almost all points of 8L(2, C)jK, because any
element " α " of SL(2, C) can be written

a = k z

only if α2 2 φ 0.
Unitary matrices u,

ίuλl u12\
\ o i o i l
\"'21 "'22/

are another possibility. However, in the decomposition

a = k - u
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we may replace u by γ u where γ is diagonal and unitary

The element u is therefore not unique. A third possibility will be intro-
duced in Section IV.

Unitary representations of SL(29 C) can be realized in Hubert spaces
of functions over 8L(2, C)jK. For simplicity we consider only the
principal series, the supplementary series can be handled similarly [5].
In the Hubert space 5£%{Z) of square integrable functions f(z)9

/ \f(z)\2 dz < oo, z — x + iy, dz — dx dy

we define the representation Ua as

Uaj(z) = <x(za)j(z')
with

oc(ct) = 1$ lw~ *̂̂ ~ ί̂x ~ίw

and
α71z -f α9 1z a = Jc - z , z' — •

Any pair (m, ρ) where m is integer and ρ is real defines a unitary irre-
ducible representation Ua of the principal series. We call it 8(m, ρ). Two
representations 8(711, ρ), 8(nι', ρ') are equivalent if and only if

m' = m, ρr -= ρ or m' = —m, ρ = — ρ .

Instead of these parameters we shall make use of another pair:

m

T

c = -fi -|- signm ,

which characterizes a representation uniquely. λVe use the further
notation

a — signm .

Let us introduce functions φ(u) satisfying the subsidiary condition

φ(γu) = eίmωφ(u)

where γ is diagonal and unitary as defined above. By

/ I99 Wl2 dμ(u) < σo

we define a Hubert space ^2

m(U). The elements z and u are related by

0 λ) \u21 u2[
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which yields

^21 * ^ 0 9

with an arbitrary phase α>. We can then map =Sf2(2) on JtPfH(U) by

With the parameterization of u (see appendix, subsection 2)

5*1 '—~* "~~ 19 ? Cvoo "— ^ 1 1 ί

we obtain

θχ — CO , Θ2= OJ — ψ> ψ = SbTgZ ,

The invariant measure on SU(2) is

d t d θ d θ

This implies immediately

f\φ(u)

For the representation Ua in Jδf̂  (j/^ w e

where
ua = k u' .

^. TΛe Canonical Basis

In the Hubert space ^2(U) of square integrable functions g?(w) on

$£7(2) we may use all the matrix elements D\v(u) of all unitary repre-

sentations j = 0, -«-, 1,. . . as a basis. This is a special case of the theorem

of Peter and Weyl [6]. We use that form of D\v(u) which is defined in
the appendix, subsection 2.
With the ''Fourier coefficients"

the series
oo -\-j

Σ (2j+l) Σ K[v{ψ)D[v{u)
ί-o.i,i.... q>v = ~i

converges in the mean against φ(u).
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Our space J£fn(U) is a subspace of ££*{TJ). The subsidiary condition
on φ{u) yields

= f φ{γu)D{p{γu)dμ(u)

We conclude: either K\v — 0 or q = -^- . The space J£fn(U) can therefore

be spanned by the normalized, orthogonal vectors

The phase 4t!e>

Ji) _ TT

has been introduced to bring the matrix elements of the generators into
convenient form (see appendix, subsection 4). The basis-vectors ψv (u)
form the canonical basis (this notation goes back to NAIMARK [5]).

It is obvious that the basis vectors belonging to a fixed spin j span
a (2j -f- 1)-dimensional subspace of ^2

m(U) which carries an irreducible
representation of SU(2). We have thus established the following result:

In the decomposition of a unitary representation 8(m, ρ) of 8L(2, C)
into unitary irreducible representations of $£7(2), a spin j appears if and
only if

j = jQ -j- non-negative integer

and it appears just once.
Let us now give the corresponding basis in

With the results and definitions of appendix, subsections 1 and 2 we
obtain

Γ Ĵ is the principal function denned in appendix, subsection 1.

3. The Covariant Matrices Γμ

The representation Ua satisfying

77-1 p TT __ / Λ \v p
ua λ μ u a ~ VLa)μ1 v



320 W. RtiHL:

can in general not be chosen irreducible but consists of different irre-
ducible parts, which are coupled by the operators Γμ. GELFAND and
YAGLOM [5] were able to derive the fundamental theorem:

Two representations U^\ U^ can be coupled together by Γμ if and only
if one of the following two conditions is satisfied:

α) |m(χ) - mW\ = 2, ρi1) = ρ<2),

β) mV^mV), ρ(i) - ρ<2) = ±2i.
The theorem applies to all unitary and non-unitary representations of
SL(2, G). If both representations belong to principal series, ρ is real
and only case α) applies.

If the equation

is also required to be covariant under parity reflections, this may also
result in an enlargement of the representation Ua to be used. In general,
a parity reflection maps the representation S(m,ρ) on S(m, — ρ). If
these representations are inequivalent, they must be taken together to
allow a parity operation. We shall neglect this sort of complication in the
sequel.

III. Covariant Operators as Differential Operators in <£2 (Z)

1. The Problem

We study operators T, defined on a dense domain in the space of the
unitary representation Sijn^ ρx) of the principal series, with values in
the space of the unitary representation 8(m2, ρ2) of the principal series.
We require that T transforms as a finite-dimensional non-unitary
representation of SL(2, C):

C / i 2 ' " 1 T { z ) t / ω = ( a 1 2 z + a^f ( a ^ z + « 2 2 ) " T ( z ) ,

λ, μ are non-negative integers2, z' is as usual

z

~~ a12tz + α22

T(z) is a polynomial in z of degree λ and in z of degree μ.
We are going to show that if

λ + μ is even,

T (z) is a differential operator of order -^ (λ + μ) acting in the space

j£P2(X) [x are triangular matrices] which carries both representations
S(m1} ρx) and $(m2, ρ2). If λ + μ is even, T (z) transforms as a Lorentz

2 The connection with the familiar spins (jl9 j2) is:
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tensor. The operators Γμ are a special case hereof. In their case

and

Γμ = γTr(σμΓ)gμμ,

w h e r e i n t e r m s of t h e 2 x 2 m a t r i x Γ

Γ(z) = +Γn - zΓ12 - zΓΆ + \z\*Γ2i.

Another case of particular interest are the generators of SL(2, C) be-
longing to λ — 2, μ = 0 and λ = 0, μ — 2. Their differential operator
form can be found by more direct methods, it is given in appendix,
subsection 4.

2. The Differential Operators

In the case λ ^ μ we get, provided

m1 = m, m2 = m -\- 2 μ

ρi = ρ 2 = 6 >

1 \z)m-+m + 2μ — \x ~~ z) \x ~ z) 2 2 2 X

in the case λ ^ μ we get, provided

m1 = m + 2 λ, m2 = m ,

X

Taking products of two such differential operators yields further co
variant operators. In the case λ = μ = 1 we obtain:

|3

These expressions lead to

m-ye+ 2) = -i [(y

+ 2) = -i [- (y m - y ρ

I\ (m + 2 -> ra) = - i [(y

TO) = - ί [ - ( y m -h i e ) +

y m + y 8 ) ϊ + ( l - \x\*
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As a first example we study a representation with [1]

ρ = 0, ra = + 1 .

This is a case where Ua can be taken irreducible, the representation

ρ = 0, m= -I

is equivalent to it. According to the two possible choices of m we can
build two different canonical basis:

(x, - x)

or

(x,-x).

We define a unitary operator by

Then we define Γμ as the differential operators introduced above multi-
plied with V. This makes Γo diagonal on the basis Pv{xY+)- We make use
of the series expansions for the principal function I and obtain

(ft, = /κ*)(+>)

1 )2 - fίΓ1}

We shall continue the discussion of this example and others in
section V. We emphasize that our differential operators satisfy the
condition

Qi = £2 y

which was required by the theorem of GELΓAND and YAGLOM if applied to
the principal series. The explicit form of the operators JΓ0 and Γ3 as
matrices in the canonical basis in the particular example considered
above coincides with the analogous expressions of GELFAND and YAGLOM
(see [5], page 421).
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We mention finally that Γ3 can be obtained from Γo by means of the
commutator

Fs is one of the generators of 8L(2, C) and is given in both differential
operator and matrix form in appendix, subsection 4.

3. Proof of the Differential Operator Forms

Though we need in principle only prove that the forms of the co-
variant operators T(z) given above satisfy the correct covariance re-
quirements, a derivation of these forms is of fundamental interest since
it can show us where the origin of restrictions like

lmi ~~ m 2 | — 2 ' min(λ, μ) ,

Qi = £2
lies.

We mention that in a case when T(z) transforms as a unitary re-
presentation S(m, ρ) of the principal series, we can define T(z) as an
integral operator in J^?2(Z2),

F{z) = (A, T(z)f) = / Z ( z , Zl, z2) Λ(%) f(z2) dZl dz2

where K is unique up to a constant [10]. If / and h are of bicompact
support in z and possess derivatives of arbitrary order, the integral can
be shown to exist in the sense of absolute convergence.

We can try to generalize this construction of T (z) in order to include
also spinorial transformation behaviour of T (z). The kernel K can for-
mally be determined by solving some functional equations (see the dis-
cussion in Ref. [11]). It is again unique up to a factor. The question
whether the integral converges is, however, not trivial.

In fact we can show that the convergence behaviour lies outside, yet
on the boundary of the domain of conditional convergence. Infinitesimal
changes in the parameters ρ allow us to approach the integral from inside
the domain of convergence. The integral tends to infinity. But dividing
through an appropriate function of the Casimir invariant leaves us a
correctly transforming, finite, "renormalized" integral. I t possesses the
form

F(z) = / Sfo) P (z, zv -~ , z\, -^-

where P is a polynomial of s, z, zl9 z1} -̂ — , -^

The kernel K is

K(z, z2, zj = (zt - ϋ a ) - ^ (Z l - z)-*> (z2 -
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with

A = Y (λ -r λ± — λz) + 1 > B = Y (μ + μλ — μ2)

A = \ (- λ -j- λx + λ2) + 1, B ^ -

~ (^ + μ, + μ2) - 1 ,

and
» I i 1

Since λ, μ satisfy λ + μ > 0, the functions

are bounded and integrable. They possess Fourier transforms

ΦZ(W) = (2π)-1 / Φ2(2l) e
iB*to*> dZl ,

We assume now that
B-A>0,

then the integral

J ^

exists, provided Re A < + 1 , and yields

π- 22-Λ ~B e~iJk{B"A) - Γ{- A + 1) [Γ{B)]-1 wB-1 wΛ~x.

This allows us to express F (z) by

- π 2*-A-Be 2 ^ ; Γ(-J[ + 1) * [Γ(B)]-1 :

x / Ψz(w) ιυB~1wA-ιΦz{ιv) dw .

If we want T (z) to become a differential operator, we must satisfy the
conditions

B — 1 > 0, integer ,

4̂— 1 ;> 0, integer .

Since Re A < + 1 was postulated above we have two contradictory
requirements. With small changes in the ρ's we can, however, reach the
point A ~ 1. The divergent expression Γ(— A + 1) is factored out and
can be eliminated by the renormalization. This means we define a new
function

F(z) = fΨz(ιv) ιvB~1Φz{w) div
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and put A = + 1 everywhere. This implies

λ •= γ ( % — m 2 ) , μ =^ — -K- ( m i — ^ 2 ) + * n •>

n^B-l=\-{λ + μ) ,

ρi = ρ2 •
Since

lim \wn \Φz(tv)\ = 0 ,
M; —> 00

lim j ^ ] n |5ζ(w)| = 0

the integral i^(s) is finite. Using the Plancherel formula we obtain

v-/ — J ti{X) [x — ^) [x — z) x

X ί-~2i-γr) (x — z)~Λl (x - z)~~Bl f(x) dx .

If Bλ is not a negative integer or zero,

must be non-negative, in order that T (z) becomes a polynomial in
(x — z). Therefore we have a final condition:

μ ^ λ .

If A — B ^ 0, Λve need only replace

^4's by i?'s, x by ic, z by 2

and vice versa. In that case we get a final condition

λ > μ .

Inserting the values for A's and B's leads to the operators given in sub-
section 2.

IV. The Canonical Pseudo-Basis

1. Points of the Space 8L{2, C)IK Described by Elements of Sϋ(l, I)

As in section I I we consider the subgroup K of triangular matrices Jc,

λ-1 μ\

and consider the restclasses
8L(2,C)IK.

In some of the restclasses we can find an element v ζ SU(l, 1), in almost
all of the remaining restclasses there are elements of the type ε v,
vζSϋ(l,l),

(0 i\
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In fact, almost all elements a ζ SL(2, C) can be decomposed as

a = k v
or as

a = k - ε - v .

Thus we can characterize points in the homogeneous space by points
of two groups $£7(1, 1)+ and SU(l, 1)_. As earlier v and ε t> are not
uniquely determined. In fact any γv (or εγv) is in the same restclass
with v (or ε - v), when γ is defined as

0

Obviously is yε = ey"1.
We construct a Hubert space 3r)m of pairs of square integrable

functions
φ = {̂ +? ^-}

such that

\\ψ\\2 = Π\ψ+(v)\2 + \φ-(vψ]dμ(v) .

φ± (v) has to satisfy the subsidiary conditions:

φ+(γv) = e+ ί w ωφ+(v) ,

ψ-(γv) = e~imωφ_(v) .

The Hubert space §TO is the direct orthogonal sum
§ m = ^ ί ( F ) Θ ^ 2 _ ) r e ( F ) )

where J£fn(V) is made up of functions φ+(v) and JSP?_m(F) of functions

Let us find now the connection between the parameters z and
v, ε v.

In the case z = z(v) we have

A 0\ = /λ-i
\« 1/ \0

with the solution

λ= \λ\

= ei

This implies

In the case z = z(εv) we find from
a o\ = /λ-i M /o i\ ίvn v12\
\z l) \ 0 A/ \i 0/ \»21 υj '
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In this case z satisfies
z{εv)\ > 1 .

In both cases ω is an arbitrary phase.
Writing

f(z) = f(z) θ ( l - \ z \ ) + f(z) θ ( \ z \ - l )

Λve obtain a decomposition of S£% (Z)

We map ^\(Z) on Jδf2

w(F) and £?2_(Z) on J£?2_m(F) by the relation

(υ) = Jφ) f(z) θ(l-

We can easily show that this mapping is in accord with the subsidiary
conditions imposed on φ±(v).

We introduce the parameters for v:

vn = a* eidι, v12 - (s - 1)2 eίd* ,

1 < s<oo, 0^ Θ1,θ2<2π.

We normalize the invariant measure by

dμ(v) = -j-y ds dθ1dθ2

The parameters s, θl9 θ2 are related with z, ω bγ the following formulae.
If

s = (1 - 'I ) > "i= ω, u2 = ω — ψ} ψ = arga;

dμ(v) = -ψ-ζ |A|~4 dzdω ,
and if |z| > 1:

5 = |^|2 (\z\2- I ) - 1 , θ j ^ - ω + ^ - y , 02

dμ(v) = -g—i~ *|λ|~4 cί̂  (ί

Since in both cases

α(v) = (cc{εv) =) μ|~w~^ + 2

we obtain

With the notation



328 W . R U H L :

we may finally write
<χ(ετva)

V a Ψn \V) = T^7
0C[6 V

where

2. T&e Canonical Pseudo-Basis in ξ>m

A Hilbert space J£2(V) of square integrable functions on $£7(1, 1)
possesses a pseudo-basis which consists of the matrix elements C%q(v) of
unitary representations χ of $£7(1, 1) where χ is in the set:

χ{ξ,η), 0 < f < o o , η = 0,γ;

χ(k,±)9 A = l , ~ , 2 , . . .

(see the explicit construction of Cξq(v) for these cases in appendix, sub-
section 3). In both cases we shall use the notation of

J^—Y+iξ in χ{ξ,η),

J=~k in χ(h,±).

With the Fourier coefficients

K(φ)x

pq=f ψ(v)C^q(v)dμ(v)

the Planeherel theorem for 8 U(l, 1) takes the form [7, 8]:

no
+ OO

/

0
r ί 1

+ C(ξ,\
Q

oo

+ Z1 C(k)

+ 22
The right hand side converges in the mean square sense. The weights are

C(k) = 2 k - l ,
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Both spaces J^ 2

m (F) and ^ 2 _ W ( F ) are subspaces in ^ 2 ( F ) . The
subsidiary conditions yield

K(φζ)
x

vq=fφζ(v)C*q(v)dμ(υ)

which implies
K(φζ)*PQ.

m

This reduces the basis of J£2(V) to the basis of J£2

±m(V) and we get

φζ(v) = fC(ξ,0)dξ Σ! Kίψfltf C<*$ (v) +

Σ '

if m is even and a similar expression if m is odd. We recall that

= signm, , signq = ζ - σ .

The sum over k is finite, this is due to the fact that in C^^ both \q\
and \p\ are not smaller than k.

In J^f2

w(F) we define the pseudo-basis by

Ύ'q

), 0 < ί

(t;), * = 1 , 2 , 3 , . . .
for even m ,

for odd m .

Together with a corresponding pseudo-basis in J£2__m(V) these vectors
define the canonical basis in ξ)m. The basis vectors of the discrete series
are normalized to one.

It is obvious that each JS?2£W (F) is invariant with respect to S U (1, 1)
transformations, each Cχ

m (v) for fixed χ spans a space for an irre-
ΎΛ

ducible unitary representation of SU(l9 1). The decomposition of ξ)m

into «jSP2

m(F)Θ o£?2_w(F) removes the degeneracy in the continuous
series.
23 Commun. math. Phys., Vol. 6
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3. The Canonical Pseudo-Basis in

We make use of the relation between / (z) and φζ (v) to find the pseudo-
basis in J£2(Z). We obtain basis vectors f$ζ(Z) which can be expressed
by the principal function Ipq(z, z) (see appendix, subsection 1) as follows:

* ί - ' - 1 J i (z,z) θ(l - \z\),

- lfί-7-1^ (z, z) • 0(|z| - 1) ,

Λvhere

), J

where in the last two cases

J = -k, signp = ±σ .

4. The Change of Basis in ££* (Z)

The transition from the canonical basis to the canonical pseudo-
basis and vice versa can be performed by means of coefficients

which are defined as
'»-n p q)

They satisfy certain orthogonality relations which can be read off the
orthogonality relations for the elements of the basis and pseudo-basis. We
give an example:

Σ ' 'Σ Σ Cm,Q( il^m.ρΓ

Here δγγ> means:

§χχ, = Jθ, ϋ χ and χ belong to different series,

\C~i(ξ,η)δ(ξ-ξ')δηη> if χ=χ(ξ,η),

[δkk> δoo>, if X = χ(k,σ), % = X(k', σf) .
Since these coefficients are of no further use we avoid the evaluation of
the complicated integrals.
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V. Mass Spectra

1. The Reduced Γ Matrices

We denote the Hubert space which contains ψ and carries the
representation Ua by ί). We assume throughout that § is a finite direct
sum, e.g. of the type

Each 8 labels an irreducible unitary representation of 8L{2, C) in the
space J£2(ZS). Let the projection operator on the $17(2) invariant sub-
space of spin j in ^f2(Zs) be denoted Pj{8). We define two other pro-
jection operators

= Σ θ P ί ( S ) .

We introduce the transition operators which map the spin space j of
&2(Z) on the spin space j of ^2(ZSz) by

Since PόΓ0 = ΓΌP3J JΓ0 reduces to blocks (Γ0)j

(•* o)i ~ ^ i * o ^ i '

Λ = Σ ® (Γ0)i •

Each block (Γo)3 can be decomposed further by

By this formal procedure we get a matrix β%ίSz9 the reduced (Γ0)j
matrix (in the WIGNEH-ECKART sense), which is independent of p. This
reduced matrix is finite dimensional and hermitean, it has eigenvalues
M(j) belonging to eigenvectors a?s(M).

Now we build vectors Ψΐ(M) in §, such that

If p varies from —j to -\-j, M(j) over all eigenvalues of βj and j over all
possible values, we get a set of vectors {ψ£(M)} which are complete and
orthogonal in §. Applying Ua(v) to them we get a complete set of time-
like solutions.

Apart from the complications due to the continuous series we can
apply the same procedure to Γ3 and the 8U(l, 1) invariant spaces
23* Commun. math. Phys. } Vol. 6
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ξ>χ>ζ into which § can be decomposed. We get again a finite hermitean
matrix β^\ζ

Si and eigenvalues λ(χ, ζ).
The computation of the β matrices and their eigenvalues is the last

problem to be tackled.

2. Two Simple Cases

It turns out that the case of irreducible representations Ua is
particularly simple. In that case β are numbers. In section III we
started the discussion of one such example, viz.

m = ± 1, ρ — 0 .
Another case,

m = 0, ρ = ±i ,

belongs to the supplementary series. Both yield identical matrix elements
of Γo and Γz

3 in the canonical basis (see section III and Ref. [5] page 421):

Γ*pp=- Y { w + χ ) 2 - V
It is remarkable that Γ3 can be diagonalized immediately without

explicit use of the pseudo-basis. This is of particular interest, since by the
same method we find also the solutions on the lightcone. We proceed as
follows.

The matrix Γ3 depends only on \p\. We denote

n = j - \p\ ,

and for fixed p

This yields

[(n + 1) (n + 2\p\ + l)$ ψn+1 + 2 μ ψ n + [n(n + 2\p\)$ ψn^ = 0,

with the eigenvalue μ of Γ3.
The Hubert space I2 of sequences {ψn},

oo

llvlla = 27 lv«l2 < °».
n = 0

is isomorphic to the Hubert space J^ of entire functions with the norm

K is a cylinder function with imaginary argument (Ref. [12]) equ. 8. 407).
3 The matrix elements are identical concerning the dependence on j and p, the

permitted values of j and φ differ, however, in both cases.
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The isomorphism between I2 and 3F can be established by

g(z) = Σ Γ"z<n -
π = 0 [n\(n + 2|p|)!]2

This yields (see Ref. [12] equ. 6. 561. 16)

In the space J^ the eigenvalue equation for Γz takes the form of the
confluent hypergeometric equation

z • g"(z) + (2\φ\ + 1) g'(z) + (z + 2 μ) g(z) = 0 .

There is one entire solution for any μ, — oo < μ < -\-oo,

χ / ( l + ί ) l l ' i - 1 ' t - * ( l - ί ) I P l + < ' 1 " * ^ t ^ .
- 1

Φ is Rummer's series (Ref. [12], equ. 9. 210. 1), B is Euler's beta function
(Ref. [12], equs. 8. 38) and the equality of the two expressions is asserted
in Ref. [12] equ. 9. 211. 1.

The integral representation of g(z) is particularly convenient to
expand g(z) in powers of z and to obtain ψn(μ). We can show that this
yields ψn (μ) with the asymptotic property

lim rfi \ψn{μ)\ == constant φ 0
n—>co

oo

so that Il8f = 2;iv»(!κ)l2 = °°
n = 0

The spectrum of ΓB contains no proper eigenvalue!

The Casimir operator Q of SU(1, 1),

Q — F ^F__ + H3 — ΈL\, (JF ± , H3 as denned in appendix, subsection 4).

yields

Qψn(μ) = (μ2 +-4) ψn(μ) = -

or

J = ~i+iξ, ξ=\μ\.

Each J is twofold degenerate. If we understand J to run over

J = j0 + non-negative integer

simultaneously, we may write the mass formula

valid for all J.
23a Cominun. math. Phys., Vol. (
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The sign of the energy in the timelike solutions is fixed and equal to
signκ. The spectrum is drawn in Fig. 1.

.2

I*
7 -

- 7 -

Θ

Θ

Let us consider now the solutions on the light cone M2 — 0, in which
case the normal forms of the field equations can be defined as

The two signs correspond to the future and the past half-cone,

sign energy = i signκ .

Just as above we can translate this equation into a differential equation
operating on 3F and solve it. We obtain the entire solution

g±(z) = ez{±z)-WJ2l

(0,+ )

f ί-2

J is a Bessel function, for the integral representation see Ref. [12],
equ. 8.412.2.
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If p runs over all possible values, the elements g+{z) (respectively
<7_(z)) span an infinite dimensional space which carries an irreducible
representation of the little group £7(1) x JΓ2, a so-called "continuous
spin" representation. The point M2 = 0 of the mass spectrum is twofold
degenerate, one solution corresponds to the future cone, the other to the
past cone. Concerning the degeneracy and the dimension of the represen-
tation of the little group, the solutions M2 = 0 resemble the spacelike
rather than the timelike solutions. This is true in general.

3. The Class S{m + 1, ρ) Θ S(m - 1, ρ), m 4= 0

We consider now a big class of reducible representations consisting
of the two irreducible components S(m -f 1, ρ) and S(m — 1, ρ). The
parameter ρ is arbitrary real, but should be taken equal zero if parity
covariance is required. The reduced /^-matrices β are 2 x 2 matrices.

With the two differential operators Γo defined in section I II we obtain:

where

With the tivo differential operators /^ applied to the pseudo-basis we get:

βm'+l,m-l — ~r

βUe>-o) = _ β(k,o)
rni ή- l,m—1 Pm+l^ί^ί —1

The mass formula can in all cases be written

where J takes the values:
J = jo + positive half integer,

J is twofold degenerate, there is a positive and a negative timelike
solution,

J = ~ ~2 + iS> 0 < ξ < oo,

J is fourfold degenerate, all eigenvalues M2 are improper,
J -= —?'o -+- positive half integer, J ^ — 1,
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J is fourfold degenerate, there are two solutions of the positive and
two solutions of the negative branch of the discrete series of 8 U (1,1).

The case jQ = -^-is depicted in Fig. 2.

ΛΓ

- - 7

--2

Fig. 2. ̂  = £(4,0),

4. Conclusion

Representations with three or more irreducible components yield
i¥2-spectra which are superpositions of spectra of the type found above.
They show the following typical properties:

α) The positive part is discrete and bounded from above with an
accumulation point at M2 = 0.
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β) The negative part consists always of a continuum which starts
at M2" = 0 and in some cases of an additional finite set of proper eigen-
values.
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VI. Appendix: A Canonical Form for the Matrices
which Represent Elements of S 17(2) or S 17(1,1)

1, The Principal Function

We define a function

lgp(Z9 Z) = ~2^

0

for any complex J and parameters p, q which are simultaneously integer
or half integer. In the case where p + J is integer, z and z may be con-
sidered as independent variables. If p -f- J is complex, wp+J has a cut
from w = 0 to w = σo. If z is considered as the complex conjugate of
z, ιvv+J. w~v+J is a continuous function along the path of integration
even for \z\ = \z\ > 1.

We call this function IJ

p the principal function, since many other
functions can be regarded as special cases of it. We find the following
properties:

I t can be expanded into a series:

p ^ qy \z\9 \z\<l:

V<q, z\,\z\<i:

p~q>0, \z\,\z\>\:
CO

jJ (z z\ _ y

JJ U z) _ y (+P +Ά(—V
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The principal function can also be expressed by Gaussian type hyper-
geometric functions:

^ ) zP~~\Fi(-J + P> ~ J ~ <l\ V ~ q + 1 **),

2. Wigner's Function Diqp(u)

A unitary representation of the group S U (2) to the spin j can be
realized in a space of polynomials of order 2j of the variable z by

= (u1
K 1

12z + u22)*
1 2 22/

In this space we take as a basis the functions
Z3+P

1/0 + vV- (? — vV>
With the formal scalar product

we define

We introduce the parameters

0 ^ f ^ 1, 0 ^ Θ 1 , θ 2 < 2 π .
This yields

where
2π

0
1

x p2" - (12 (1 ψe+iΰγ-v

"̂ is integer or half integer, ?' ± p is integer, z and z are regarded as
independent variables. In terms of hypergeometric functions (poly-
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nomials) we get:

We note that the phase normalization used here is identical with the
Condon-Shortley convention. From the integral representation for
d?qv (t) we find immediately the important relations

The normalized invariant measure on the group $£7(2) is

dμ(u) = -£-γdt dθ1dθ2 .

3. Bargmann's Function C*p(v) [7]

In the case of the group $27(1, 1) we may proceed in the same
fashion.

3.1. The continuous series χ = χ(ξ, η), 0 < ξ < σo, η = 0, -^

λVe define a Hubert space of square integrable functions J^? 2 ^) by

ί
= \f(w)> w =

ί 2π )
\f(w)> w = e*v, f \f(wψdφ < oo .
I J

In this space we realize a representation of the series χ(ξ, rj) by

Tvf (w) = (v12w + v22)
ιξ + η~2 {v^iv-1 + £ 2 2 Γ ^ 2 / p i

v12w

We define a canonical basis in =^?2(^1) by

- o o < m < + o o , m integer .
For the element

\ ° e V
Λve find

rp j — ei(m-η)φf
-*• v 1 m J m '

Therefore Λve introduce new labels by

p = m ~ η
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and get

where J — — -~- + iξ.

With the parameters

vn = θ^e ι β l, v22 = vn,

v12 - (5 - l)"2eίθa

; v21 = v12,

1 ^ 5 < c o , 0 ^ 01,02<2π ,
we get

and

0

- I)*[(5 - I)* e+*° + S%]-P+J dΰ

From this form we get the relation

I 3
3.2. The discrete series χ(Jc, ±), k=γ,l,γ,... .
Let us define the Hubert space $)£ by

/ analytic for \ιυ\ < 1 ,

/ continuous for \w\ < 1 ,

(i-H2)2 f c-2l/WI24
\w\ < 1

We define the canonical basis by

fm(w) = iVw wm, m > 0, integer ,

The representation χ(k, + ) can be realized on this space by

TJ{ιv) = (vnw + v22)~2k

so that
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With the new label
φ = ra + h

we find

w q p \ w )

Λvith
2π

x [(s -

The series ;̂ (&5 —) can be realized by putting

~(l,-p\

Cqp \S) — C~q,-p\S)

The invariant measure on $£7(1, 1) can be normalized to

dμ(v) = -j-γ ds dθ1dθ2 .

4. The Generators of SL(2, C) in the Canonical Basis

nfinitesimal elements

by operators Hk, Fk such that

1 i
The infinitesimal elements ~κ-ak, ~^-σk of 8L{2, C) are represented

& k

εk, ηk real .

In J?2(Z) they can be written as the following differential operator
forms

H± - //2 ± iH2, F±=-F1± iF2,

2

iz^ί-~(λ+ μ)
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H± and H3 generate SU(2), F± and H3 generate SU (1,1). The canonical

basis {pv} satisfies

HJP = Vίi ,

1 [(2j + 1) (2/+ 2)]i ή

where Gj+1 is (see Ref. [5], page 117)

^ό~ j I 4f — 1

For the other matrix elements of the generators in the canonical basis

we refer to the same source, Ref. [5], page 117. In our phase convention

we have to insert, however,

References

1. MAJORANA, E.: NUOVO Cimento 9, 335 (1932).
2. GELFAND, I. M., i A. M. YAGLOM: Zh. Eksperim. i Teor. Γiz. 18, 703,1096 (1948).
3. BARGMANN, V.: Math. Rev. 10, 583, 584 (1949).
4. RIDEAU, G.: Comm. Math. Phys. 3, 218 (1966).
o. NAIMARK, M. A.: Linear representations of the Lorentz group. Oxford: Perga-

mon Press 1964.
6. — Normed rings. § 29. Groningen: Noordhoff 1959.
7. BARGMANN, V. A.: Ann. Math. 48, 568 (1947).
8. HARISH-CHAOTRA: Proc. Nat. Acad. Sci. U.S. 38, 337 (1952).
9. SCIARRΓNΌ, A., and M. TOLLER : Universita di Roma, Nota interna, October 1966.

10. NAIMARK, M. A.: Am. Math. Soc. TransL, Series 2 36, 101 (1964).
11. RΐJHL, W.: Nuovo Cimento 44, 659 (1966).
12. RYZHIK, I. M., and 1. S. GRADSHTEYN: Tables of integrals, series and products.

New York: Academic Press 1965.




