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Abstract. The Gell-Mann formula for analytically continuing group representa-
tions is worked out explicitly for more cases than in previous work, and extended
to certain pseudo-Rlemannian symmetric spaces. The method of finding the
asymptotic behavior of matrix elements of group representations introduced in
Part V is developed in more detail and it is shown how it leads to new mathematical
problems in the theory of dynamical systems and Hubert space theory.

I. Introduction

We continue work on the order of ideas introduced in the earlier
papers of this series [4]. The main types discussed here are: Further
development of the Gell-Mann formula [3], and development of the
theory of asymptotic behavior of matrix elements of group representa-
tions.

II. The Gell-Mann Formula in Terms of the Enveloping Algebra

Suppose that K is a Lie algebra, with a basis Zt(l 5g i,j9 . . ., ̂  n\
summation convention) such that :

Suppose P is an abelian Lie algebra, with a basis Xa (1 sg α, 6, . . . ̂  m).
Suppose that G' = K + P is a Lie algebra with P an ideal, i. e.,

lZt,ΣJ = ciatΣt.
Form the elements :

of Ϊ7(G'), the universal enveloping algebra of G' (Δ is the second order
Casimir operator of K). In [3] we have investigated the condition that
[X*, XI] be expressible in terms of the Z's, where G is realized as a Lie
algebra of skew-Hermitian operators on a Hubert space H. Here, we
will present a representation-independent version of this calculation,
aiming to find conditions that [X*, X%] be expressible within the en-
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veloping algebra of G' in terms of the Z's and the Casimir operator of G'.
(Such a calculation has been done in [4] for the case K = /SO (2, J?),
P' 2-dimensional, i. e., G' = Lie algebra of the group of rigid motions of
the plane.)

Let us proceed to the calculation. A is of the form gi3- Zii%$. For
X ζ P, X° = [A, X] = fi(X) Zt + ga(X) Xb, where each ft(X) is a linear
polynomial in the X's, and each ga is a real number.

For Z ζ K, we have

[Z, X»] = [Δ, [Z, X]] = /,([£, X]) Z, + ga([Z, X]) Xa

= [Z, /<(*)] Z, + ft(X) [Z, Z,] + ga(X) [Z, Xa]

= [Z, ft(X)] Z, + ft(X) cif(Z) Z, + ga(X) c a b ( Z ) Xb ,

where ci:i(Z) and c a b ( Z ) are defined by:

[Z, Xa] = cat(Z) Xt .

Thus, Z -> (c^ (Z)) and (cab(Z)) define matrix representations of K, that
are, in fact, just the matrix representations corresponding to AdK acting
in K and P, respectively. Comparing these two calculations gives the
relations :

[Z, /,(*)] + cti(Z) f((X) = f,([Z, X]) (2.1)

g t ( [ Z , X ] ) = g a ( X ) c a t ( Z ) (2.2)

for XζP,ZζK.
Put:

Σ' = f i ( X ) Z i for X£ΐ.

For X, Y ζ P,

[X', Y'] = ft (X) Zi f, ( Y) Z, - /< ( Γ) Zi f, (X) Z,

= ft (X) f, ( Y) Z4 Z, -ft(7) f, (X) Z, Z, +

+ ft(X) [Z{, fs(Y)] Z, -ft(T) [Z,,

= f i ( X ) f j ( Y ) [ Z i , Z j ] +

[Zί; 7]) - ckί(Z{) tk(

Set this equal to :

f j ( X , Y ) X ί (2.3)
with

fs(X, Y) = h(X) MM, Y]) - h(Y)

Y) fk(X) - f{(X) /t
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Also, we have :

[Z, X'] = [Z, X}1 for Z ζ K, X ζ P .
Hence,

[[Z, X ] ' , Γ'] + [X', [Z, Γ]']

= [Z, ft (X, 7)]Z,+ /, (X, Y) [Z, Z,} , or

-\)

Let us make explicit that ft is a second-degree polynomial :

[X', Y'] = Aab

where (Xa) (1 ̂  α, 6, ^ m) is a basis for P.
Then, Aabj(X, Y) can be supposed symmetric in the indices α, 6, and

skew- symmetric in X and T". Suppose

Δ' = gatXaXt

is a Casimir operator of G, i. e.,

[K,ZΓ] = 0

If there are constants (cabϊ) such that:

[Z;,Zί] = J 'c β M Z 4 , (2.5)

then we have a relation of the following form :

[w w\=0 "Zi (2 6)

Thus, at the expense of addition to U (G) elements that are more general
than polynomial ' 'functions" of the elements of G, we have constructed
a new Lie algebra whose basis is (Zi} X'al\

 fΔ').
The existence of the (cabi) and (gab) can be approached in two ways:

Either they can be constructed explicitly in the needed special cases,
or one can attempt to prove by using basic principles that conditions 2.4
imply conditions in the tensor (Aabj(XGί Xd)) that in turn imply it must
be of the form 2.5. The latter approach involves a generalization of
KONSTANT'S results [7] on the decomposition of the universal enveloping
algebra under the action of a linear group, and will not be attempted in
this paper. Note, however, that 2.6 implies that the Gell-Mann formula
holds for representations of G', a topic we have analyzed in [3], at least
for representations in which the operators of P are "diagonalizable".
Thus, the conditions presented in [3] can be regarded as necessary
conditions that a Gell-Mann formula of type 2.6 hold in the enveloping
algebra.

We now turn to computing some examples.
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III. The Gell-Mann Formula for Rotation Groups

Let K = S0(n, R), P = Rn, with the representation of K on P just
the "vector" representation of S0(n, R). We shall show that the Gell-
Mann formula holds within the enveloping algebra of G' = K -+- P, in the
sense described in Section II. We will not use the technique described in
Section II, but another that has interesting geometric consequences.

Regard K as a Lie algebra of differential operators on Rn: Z ί j f 1 ̂  1,
j, . . . ̂  n summation convention in force, are the generators of K, with

ZH = xι dj - xi di -

(Notation: xi the Euclidean coordinates on Rn, dό = -~ — j .

P is realized as the vector space generated by the a?f.
J = Z i j Z i j is the second degree Casimir operator of S0(n, R).
Following the Gell-Mann formula prescription, we construct the

operators :
Xk=[Zίj,xk]Zij (3.1)

xkX) (3.2)

with the following notations :

ί 2 = *, xi} X^Xidi. (3.3)
Now,

X ( x k ) = [ X , x k ] = xk

[X>dk] = -9*
[X, r2] = 2r2

[93, r
2] = 2s, .

Hence,
[Z,, r2] = 2(2r2 xk - 2r* xk) = 0 (3.4)

Thus,

~ \?j, Zs] = 2x} dk - δjk X-xk 3j

-2(r*δjk-xjxk)X-

= 2r2 όjk X } k - k

- 2r2 δjk X + 2XjXkX+ 2xk r
2 d} - 2xk x} X

(3.5)
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Let & = K + Rw, the Lie algebra of the group of rigid motions of Rn.
Although we have calculated in terms of a realization of 17(0') by dif-
ferential operators on Rn, the results are also true in £7((J), since the
realization of Ϊ7(G') by differential operators on En is faithful. 3.4 is then
interpreted as a Gell-Mann formula giving the Lie algebra of S0(n, 1)
in terms of elements of £7(G') : In fact,

v

which show that the Z3 k and -~ together generate the Lie algebra of

S0(n, 1).
3.4 has an interesting geometric interpretation. Interpret Xk as a first

order differential operator, i. e., as a vector field on Rn. 3.4 then says that
this vector field is tangent to the surfaces

r2 = constant ,

i. e., to the spheres in Bn. Of course, the Zij are also tangent to these
spheres; the Zis and Xk when restricted to each such sphere generate a
transformation group, whose Lie algebra is isomorphic with S0(n, I).
One knows that S0(n, 1) is just the group of conformal transformations
(of the metric constant curvature) on the sphere. Now, the group gene-
rated by the Zij acts as a group of isometries of this metric. It is reason-
able, then, to suspect that the one-parameter group generated by each X$
on the spheres 3.6 is a group of conformal transformations. In fact, we
will now prove that this is so, using methods of differential geometry [6].

We must calculate the Lie derivative

= 2d(Xk(xi))dxί

dxj- δkί — dxk kf — xk dx^) dxt

dXj dxk — dxk #z dxi — xk dxi dxj) .

On the hypersurface 3.6,

X; dxj = 0, hence with this relation ,

Xk(dxi dx^ — —4:Xk(dxi dx{) ,

which shows that Xk is an infinitesimal conformal transformation on the
sphere 3.6.

Thus we see that there is a close relation between the Gell-Mann
formula for S0(n, 1) and the geometric fact that the group acts as a
group of conformal transformations on the plane.
15 Commun. math. Phys., Vol. 6
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IV. Deformation of the Gell-Mann Enveloping Algebraic Relations

Let us return to the general setting for the Gell-Mann formula, i. e.,
G' = K' -f P' is the semidirect sum of a Lie algebra K and an abelian Lie
algebra P. Let Zu, 1 ̂  u, v, . . ., g m, be a basis for K, Xi9 (1 ̂  1,,
. . . ̂  n) for a basis for P. Let

Z?=[Zβ, *<]£„. (4.1)

In [5] we pointed out the following fact : If G' is realized as a Lie algebra
of operators on a vector space H, if the Zμ and X$ given by 4.1 span a Lie
algebra of operators, then the following operators also span the same Lie
algebra, i. e., the Gell-Mann formula enables us to analytically continue
representations :

Xi-ίZ^ΣΛZv + λXt. (4.2)

Now, we would like to inquire what this relation may mean in terms of the
enveloping algebra interpretation of the Gell-Mann formula given in
Section II. In fact, interpret 4.2 as a formula in the enveloping algebra

Z7(G') Suppose that:
Δ'Zij (4.3)

where Δ' is an element of the center of U(G'), and2ί3 are elements of K.

Then,

[XI Xf] = [X? + λ Xf, X? + λ X,]

But,

which is clearly symmetric in i and j (since [K, P] C P> and [P, P] = 0),
i.e.,

&},*}] = Δ'Zif, hence:

We can now prove another useful fact about the Gell-Mann formula.
Let us compute :

Aκ = ZijZiί. (4.5)
Let
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Assume that :
= 0 . (4.7)

= -* (Zί ZJ - Xf Z$) (ZJ JEf - Xj Zί)

+ Xf X* X\ X\ + Xf [XI Xf] Zi)

± 2Z} [Xf, Z}] Xf = ̂ -X* ZH Xj

» (4 8)

Suppose now that P admits a positive definite quadratic form that is
invariant under A dK. Suppose that the Xf were originally chosen to be
an orthonormal basis with respect to the quadratic form. Then, it is
readily verified that Δκ is a Casimir operator of K, i. e., is invariant
under A d~K. Hence, so is the right-hand side of 4.8. But, this involves
operators of GΛ (Grλ is the algebra generated by the Zu and JΓf/J/2Fj. This
is a nontrivial relation.

V. Relations between the Casimir Operators
for the S O (n, R) Gell-Mann Formula

Return to the situation considered in Section III, i. e., K = S0(n, R),
P = JB», Xt = xk,

Xi^rtdK-XjcX + λx*.
Thus, we know from Section IV that :

For each value of A, let us compute the Casimir operator of the S0(n, 1)-
algebra generated by Zi}9 Xfyr, as a function of λ and r.

= r2 dk r
2 dk - r* dk xk X + λ r2 dk xk -

— xk X r2 dk + xk X xk X — λ xk X xk

X + r2 Z2 - λ r* - λ r* X +

= (2r2 - n r* + λ r* - 2r2 + r2 - λ r2 + λ r2 - λ r2) X + r4 Δ -
- r2 Z2 + xk r

2 dk +
+ (_r2 -v r2) Z2 + n λ r2 + r2(λ2 - λ)

= rM - r2 Z2 + (2 - n) r* X + n λ r* + r2(A2 - λ) ,
15*
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hence :

= ~~ = r* A - X* + [(2 - n) X + (n λ + A2 - λ)

Now, Δλ

κ — ΔE is the Casimir operator of the S0(n, l)-algebra generated
by the Ziί9 X\lτ. Hence, we have:

Theorem 5.1. The second degree Casimir operator of the representation
of S0(n, 1) defined by the Gell-Mann formula has the value:

λ(n-l + λ ) .

Finally, notice that there is a curious resemblance between this theory
and that of the group-theoretic treatment of the hydrogen atom, by
means of the Runge-Lenz vector [2],

VI. Complexification of the Gell-Mann Formula

Most of our work up to now has been concerned with semidirect
product algebras G' = K + P, with [P, P] = 0 and with K a compact Lie
algebra. Suppose we consider an algebra of the form :

G° = K° + P° , with [P°, P°] = 0 , and such that

(a) K and K° have the same complexification, i. e., K + i K is iso-
morphic with K° + i K°.

(b) P° + i P° is isomorphic to P + i P, and the isomorphism is
compatible with (a).

Suppose the Gell-Mann formula holds within the enveloping algebra
of G' : Does it hold within G° ? For example, we have proved in the last
section that the enveloping- algebra Gell-Mann formula holds for
K = SO (4, J2), P - vector representation. Choose KQ = 80(9, 1). G° is
then the Poincare Lie algebra. A Gell-Mann formula for this would give
in a way of relating the de-Sitter Lie algebra to the Poincare Lie algebra1.

Suppose that zJ° is a Casimir operator of K°, and that, for XQ £ P°, we
form:

X°f = [AQ,X°].

Suppose AQ/ is a Casimir operator of K°. Suppose T° : P° x P° -> KQ is a
skew-symmetric bilinear mapping that commutes with the action of
AdKQ. Form:

[XQ', 7°'] - Z10/ T»(X<>, 7°) for Z°, Γ° £ P° . (6.1)

Notice that it vanishes if and only if its complexification vanishes. Thus,
if Δ is a Casimir operator of K; if T : P x P -> K is a skew-symmetric

1 Such a relation has been discovered by K. HWA, and one of the aims of this
section is to show how this relation follows from the general theory.
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bilinear mapping commuting with A dK; if Δr is a Casimir operator of G',
such that :

(1) X' = [Δ, X ] , [X', Y'] = Δ' T(X, Y) for X, Yζ P,
(2) Δ = ΔQ, T = TQ, Δ'* = Δ' under the isomorphism of the com-

plexification of K° and K, T° and T,
then 6.1 does in fact vanish also, i. e., the Gell-Mann formula holds within
the enveloping algebra.

There is, however, a new feature when K° is not a compact Lie algebra.
The Casimir operator ΔQf of G° can have values of any sign in different
representations. Thus, 6.1 is zero, we have

= ± T°(XQ, 7°) .v '
Thus, dependung on the representation chosen for G°, we can realize two
different Lie algebras. [For example, as is well-known, the Poincare
algebra can be approximated by 80(3, 2) and 80(4:, I).]

VII. Group Representations that are Linear in the Deformation Parameter

As we have indicated in [4], Part V (following NIJENHUIS and
RICHABDSON [8]), there is a relation between deformations of group and
Lie algebra deformations. Such relations are important, for example, in
problems concerning the integral representation and asymptotic behavior
of matrix elements of group representations. In [4], Part V, these rela-
tions were worked out in detail for the simplest example, SL(2, R). In
this section we present several further general remark, preparing the
way for applications to representations satisfying the Gell-Mann formula
in the following section. Let G be a Lie algebra, ρ a representation of G by
linear transformations on a vector space. H Let V be the space of linear
operators : H -> H, and let Φ be the following representation of G in V :

Φ(X) (A) = [ρ(X), A] for A ζ V, X ζ G .

Suppose ρλ is a one-parameter family of such representations, reducing to
the given one at λ = 0, of the form :

ρλ(X) = ρ(X) + λω(X), (7.1)

where ω is a linear mapping G -> F, i. e., a 1-cochain in O1(Φ). We know
that ω must satisfy the two conditions :

(a) dω = 0.
(b) [ω(X, ω(Y}] = 0 for X, Yζ G.
Theorem 7.1. Suppose X is a fixed element of G, and A is an element

of V such that :
ω(X), (7.2)

0. (7.3)
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The operator

Bλ — exp(λ A), exists, i. e., through the usual

power series expansion. Then,

B* ρλ(X) = ρ(X) B* . (7.4)

Proof: If the usual power sense expansion for Bλ holds, then

This proves 7.4.
Note that Bλ is an intertwining operator between ρλ (X) and ρ (X). The

physical interpretation of Bλ is then that it is the "$-matrix" relating
ρ(X) to ρχ(X). For if ρλ(X) and ρ(X) were Hamilton operators on the
Hubert space H that were the Hamiltonians of physical systems, then
7.4 is the characteristic property of the "$-matrix".

Note also that 7.4 implies (at least formally) that

B»βxp(fρA(X)) = βxp(ίρ(Z))#. (7.5)

This relation was our starting point in [4], Part V, and we saw there how it
could be used (in the case G = SL(2, E)) to derive results about the
asymptotic behavior of the matrix elements of its representations.

Now, we turn to consideration of a class of representations for which
one can find this intertwining operator Bλ explicitly. However, we must
change our emphasis from algebra to geometry.

VIII. Continuations and Cocycles Determined by Tensor Fields

In this and the following sections, we will need the theory of differen-
tiable manifolds and transformation groups, for which we refer to [1]
and [6].

Let M be a manifold, with F(M) its ring of real-valued, C°° functions.
(All manifolds, maps, tensor fields, etc. will be of diίferentiability class (7°°
unless mentioned otherwise.)

A vector field, X} is a derivation of the ring F(M), i. e., a linear map
f'-*.X(f) such that

for 9

V(M) denotes the set of vector fields. It is a Lie algebra, under the Jacobi
bracket operation :

If jPis a tensor-field on M, X ζ V(M), X(T) denotes the Lie-derivative of
T by X, a tensor-field of the same algebraic type as ω. For example, if T
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is an r-folά covariant tensor field, i. e., an F(M) multilinear map

(X1,...,Xr)-^T(X1,...,Xr), ζF(M), for Xlt . . ., XrζV(M) ,

X(T) (Xlt . . ., Xr) = X(T(XV . . ., Xr)) - T([X, XJ, Xa, ...,Xr) ----

- T(XV . . ., [X, X r ] ) .

Lie derivative acts as a derivation on tensor-products of tensor fields.

7a) = Z(ZV) toT^+T

Suppose that G is a Lie algebra of vector fields on M , and T is a
tensor-field such that :

X(T) = ω(X) T for each X ζ G .

ω(X) is to be an element of F(M).
Now, for X, YζG,

= Z(ω(F)) T + ω(7) ω(X) T - Y(ω(X)) T - ω(X) ω(Y) T

= Z(ω(Γ)) T - Y(ω(X)) T, or

Z(ω(Γ)) - Γ(ω(Z)) - ω([Z, F]) = 0 . (8.1)

Let F be the space of linear mapping: F(Jf)-> F(Λί). For each
A ζ V ( M ), Z £ £, define Φ (Z) (^L ) as the commutator [ X , A ] : f - + X A ( f )
— A X ( f ) . Interpret each ω(X) as an element of F:

/->ω(Z)/.

Then, ω can be interpreted as 1-cochain of G with coefficients on F, i. e.,
an element of C^Φ). 8.1 then says that this is a cocycle, since:

Since further [ω(X), ω(F)] = 0, we know from our earlier work that
defining

ρλ(X) = X + λω(X) for XζG

gives a one-parameter family of representations of G by operators on
F(M).

Let us see how ω changes when T us changed in the following way :

T' = / T, for a function f ζ F ( M ) .
Then,

X(T') = ω'(X) T

f ω ( X ) T , o r

, or

ω'(Z)=Z(log/) + ω(Z). (8.2)

Thus, if log/ ζ F(M), ω' differs from ω by a coboundary.
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Suppose that X is a fixed element of G, and we want to satisfy the
hypotheses of Theorem 7.1, i. e., we want to find an A ζ V such that:

We can satisfy the second of these conditions by demanding that A result
from multiplication by a fixed function gx. Then, the first condition
requires that :

X(9x) = ω(X). (8.3)

Suppose, in local coordinates (xv . . ., xn) for M , X = A1 9/9 xl -f * * +
+ An did xn. Then, gx is a solution of the differential equation :

Let us examine the case where T is a differential form of the same
degree as the dimension of M9 i. e., a volume-element differential form
for AT.

Suppose local coordinates (xv . . ., xn) chosen so that:

T = dxi Λ Λ d#n ,
and

x = Aldidχl + + An a/a #n .
Then,

X(T) = X^) Λ d#2 Λ Λ dxn + dxt Λ X(dx2) Λ Λ dxn +

+ ίίαjj Λ Λ X(ί?a;n)

( d-^l , , ^^n \ T Λ Λ 7-^Γ+ +-^Γ)^Λ Λ^' or

β,(Z)-4£+. . .+ *£.. (8.4)

Solving 8.3 means solving

One case where the solution can be written down can be immediately
suggested. Suppose A1 is a function A1(x1) of x± alone, A^(x^), etc. Then,
g can be taken as :

g - logAl + logA2 + + logΛ . (8.6)

IX. Calculation of the Intertwining Operator Bλ

for Certain Representations

Let G be a non-compact, connected semisimple Lie group with finite
center, K be its maximal compact sunbroup, G = K + P its Cartan
decomposition, i. e.,

[K,P]cP, [P,P]CK.



Group Representations. VI 217

Let X0 be an element of P. Then, Ad-3Γ0 has real eigenvalues and is
completely reducible [2]. Let H(Z0) be the subspace of G spanned by the
eigenvectors of AάX0 with non-negative eigenvalues. H(-X"0) is a sub-
algebra of G: Let H(X0) be the connected subgroup of G generated by
H(X0). Let M' be the coset space G/H, and let p0 be the coset of the
identity elements. Let N~(Z0) be the subalgebra of G spanned by the
eigenvectors of AάXQ for negative eigenvalues. Thus G, as a vector space,
is the direct sum Έί(X0) + N~(X0). Let N"(Z0) be the connected sub-
group of G generated by the subalgebra N~(X0). Let M be the orbit
N~ ( XQ) p0. It is known that it is an open subset of M , and the com-
plement of M in M' is a set of measure zero. (Typically, it is these spaces
M that are used by GELFAND and NEUMARK to construct representations
of the classical groups [2].) Now, G acts a as global transformation
group on M' = G/H. Hence, the Lie algebra G acts on F(M') as a sub-
algebra of V(M'):

X(f)(p) = π
for

Since M is an open subset of M', G also acts as a Lie algebra of vector
fields on M, i. e., G can be identified with a subalgebra of V(M).

In this section we will use a volume element-differential form dx on M
that is invariant under N~(X0). Using this, we will, following the pattern
described in the last section, define ω(Z), for X ζ (J, as the function in
F(M) such that:

X(dx) = ω(X) dx for X ζ G ,
and define

A ω(Z)/ for f ζ F ( Λ f ) , Σζβ .

Notice then that :

Given X ζ G, our problem is to find the intertwining operator Bλ such
that:

We shall first deal with the following case :
X belongs to A, a maximal abelian subalgebra of P which contains X0

also.

Now, the elements of Ad A can be simultaneously diagonalized, and
have real eigenvalues. Let σ1? . . ., σn be the non-zero, real- valued forms on
A resulting from this diagonalization. (The σl9 . . ., σn are not necessarily
distinct as linear forms on A.) For each σ^, 1 ̂  i ^ n, there are elements
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Wi, W-iζG such that:

[XίWi] = σi(X)WJ

[Z, W.i] = -σi(X)Wi for XζA

For each i, there is a decomposition :

with Z4 ζ K, Γ, ζ P, S(ZΛ Zt) + -l,B(7i, 7<) = 1,

i for

[J3(, . .) is the Killing form on G: it is negative definite on K, positive
definite on P.]

Suppose the ordering of the σ's is chosen so that: σv . . ., σm are
the forms that are non-zero on X0, while σm+1(X0) = 0 = σn(X0).
Then, N~(JΓ0) is spanned by JF_1? . . ., W-m. Hence the bracket [W-{ X
X W-j] is, if non-zero, an eigenvector of Ad A. We see that N~(Z0) is a

nilpotent subalgebra of G. M then admits a coordinate system (0%, . . ., xm)
such that :

-J exp(ί2 Tf_2) . . . exp(ίm W,m) - Po) = ί,

for 1 ίg i <£ m .

In terms of this coordinate system for Jf, the vector field on M generated
by an element X ζ A takes the form

- . (9.1)

The volume element-differential form dx on M that is invariant under
N~ (X0) takes the form :

dx = dx± Λ (##2 Λ Λ c?α;m .

Hence, if ω ( X) is defined by 8.4, we have :

We see that everything is set up so that 8.6 applies :

X(g) = ω(X), where g = log((- 1)"1 σt(Z) . . . σm(X) x, . . . xm] .

This, combined with our previous remarks, proves the following
Theorem 9.1. For X ζ A, the following intertwining operator links

ρλ(X)andρ0(X):

ρ,(X)(σ1(X)x1...σm(X)xmyf

= (σϊ(Z) x, . . . σm(X) xmγ Qo(X) (/) for f ζ F(M) .
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The important qualitative point to keep in mind is that the coordinate
system (xl9 . . ., xm) valid in Mf is that for which the vector fields of A
take the form 9.1.

So far, we have used one property of the space M, namely that the
orbit N~~ (X°) p is as open, dense subset which admits a coordinate
system having nice properties.

Now, this method of writing down the operators is not the most
convenient for the purposes of physics: One wants the decomposition
under K to be more explicit. This can be remedied by using a volume
element that is invariant under K . In fact, one knows that K acts
transitively on M. Let dp be a volume element-differential form for M
that is invariant under the action of K. Suppose :

X(dp) = ωf (X)dp for X ζ G .
Then,

λ ω ' X for

defines another deformation of the representation ρ0. Let us calculate ρ'λ in
terms of ρλ : Suppose that

dp=zhdx, where hζF(M').
Then, for X ζ (J

= ω'(X)dp

= X(logh) dp -f ω(X) dp, or

ω'(X) =X(logh) + ω(X), hence:

ρ'λ(X) =ρλ(X) + λX(logh).

The key fact is that X (log A), as an operator, commutes with the inter-
twining operator between ρ^(X) and ρ0(X). Thus, we have:

(σ1(X)x1...σm(X)xm)-*ρ'lί(X)(t)

= (σι(X) xj. . . . σm(X) xmγλ(X(f) + λ X(logh) ) for / ζ F(M') .

Also,
hλ(X+λX(logh)K)-λ = X (9.3)

hence,

ρ'(X) = (σ,(Z) Xl . . . σm(X) xmγ ρ,(Z) (a,(X) . . . xm^

= (βί(X) . . . xmγ (ρ0(Z) + A X (log*)) (MX) . . . *„,)-*

= (ffl (Z) ̂  . . . xm hγ (ρ, (X)) (σi (Z) ̂  . . . *„ A)-* . (9.4)

This is the most useful form of the indentity for the application to
group representation theory. Let F(M', C) be the complex- valued,
0TO functions on M', i. e., F(M' C) = F(M') + iF(M'). Let us make
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F(Mr , C) into an (incomplete) Hubert space by adopting the following
inner product :

M'

for

Consider F(M, C) = F(M) + iF(M) as a subspace of .F(Jf' , (7), i. e.}

F(M, C) consists of those C°° functions that can be extended smoothly
from M' to M . Since the complement of Jf ' in M is (relative to the
measure defined by dp) a set of measure zero, F(M, C) is (relative to the
Hubert space topology) dense in F(M', C), and

fψ(P)*ψ'(P)dp for ψ,ψ'£F(M,C).
M

Thus, for XζG}ψyψ
fζ F(M, C),

(ρ'λ(X) ψ\ψ'y = f (X(ψ)* + λ* ω'(Z) y*) V' dp
M

= / (-ψ* X(ψ') - <ψ* ψ' ω'(X) + λ* ω'(X) <ψ* ψf) dp
M

We see that: ρ'λ(G), acting the domain F(M, C), is skew-Hermitian if
and only if

λ* + λ=l, or (9.5)

λ is the form 1/2 + ί b, with real b.
We are now in position to show how to calculate the asymptotic

behavior of matrix elements :

<y |ρA (exp (t X))ψfy as t -> oo .

X. Asymptotic Behavior of Matrix Elements

Suppose the group G acts on a manifold M1 as a transformation group.
Let Qλ be a representation of G by operators in ad (incomplete) Hubert
space H. Suppose, in fact, that H is just F(M' , (7), the space of complex-
valued, C°° functions on M' , with the inner product given by:

M

where dp is a volume element-differential form on M' . Suppose QO(X) is
just the action ψ -> X(ψ) of X ζ 6r by derivations of JF^Jlf , (7), describing
the infinitesimal action of the one-parameter group t -> exp (t X) on Jf .

Let X be a fixed element of G. Suppose Tιx is a function on If (possibly
with singularities lying on submanifolds of M' ) such that:

ρΛ(*)fy) = λiρ0(Z)(W) (10.1)
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In terms of 9.4, Ίιx can be identified with

σl(Z)xl...σm(X)xmh.
Then,

= Ai exp(ί

Now, for ψζH, pζ M',

where p -> exp (£ JΓ) £> is the given action of the one-parameter sub-
group t -> exp (ί X) on M .

Thus, for y, y' £ #,

M?)λ A(exp(-f X) 2>)-Λ ψ'(exp(-tX) p) dp .
M

As we have seen in [4], P t F, for the case $ = SL(29 R), there are
two immediate interesting asymptotic problems :

(a) Asymptotic behavior as t -> oo, with λ held fixed.

(b) Asymptotic behavior as λ goes to infinity. (For example, for the
case G = SL(2, R), Km α(*/λ, λ) exists).

Λ— ><x> ^

In turn, 10.1 shows that these are reduced to various geometric
questions concerning the asymptotic behavior of the orbits exp (— t X) p
as t -> oo hence are closely related to the problems of the modern theory
of dynamical systems. We will deal with these problems in full technical
details in a paper that will be published in a mathematics journal. We
will present here various heuristic remarks.

The general problem we face can be described as follows : Suppose M '
is a space with a measure dp, such that the total measure of M' is finite.
Suppose t -> g(t), defined for t ^ 0, a sa one-parameter semigroup acting
on M '. Suppose /x and /2 are measurable functions on M'. Does there exist
a number a such that :

Urn ta f /j(p) f2(g(t) p) dp exists ?
-

For example, suppose fv /2 are bounded, continuous functions on M ',
space such that continuous functions are measurable. Suppose the
following condition is satisfied :

There is a point p' ζ M ' such that

lim g (t) p = p' for all p ζ M' (10.2)
ί-»00

except possibly for a set of points of zero measure.
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Then, the sequence of functions,

*
with

converges as t -> oo to the function

/< (!>) = A (?) /•(!»')»

with the convergence taking place for all but a set of measure zero of
points p. Thus, by the Lesbesgue bounded convergence theorem,

11131 / MP) dp = / ft(p) dp, or
ί->oo M, M,

= h(Pf) f h(P) dp .
Let us now consider a more general such problem. Suppose that 10.2

continues to be satisfied, and the problem is to find the limit as t -> oo of :

M'

as before. However, we do not assume that f%(p) is everywhere continuous,
but assume that it has poles. For example, suppose it has a pole at p = p'.
To have no trouble with the convergence of the integral, let us suppose
that:

g(t) p' = p' for all f ^ O , and p^ f^p) f2(g(t) p) (10.3)

is continuous in a neighborhood of p', i. e., fι(p) has a zero at p' suf-
ficiently strong to cancel out the pole at /2(p')

Now, our assumtion 10.2 is that, for al. p except possibly for a set of
measure zero, lim g(t) p — p'.

ί->00

Let us assume that

f2(g(t) p) ~ ceat as t-+oo.

Then, using the Lebesgue bounded convergence theorem as before,
we see that:

e-at f fι(p)f*(fl(t)p)dp-+c f f1(p)dp at f - » o o .
M' M'

This, then, is a sketch of our "geometric" method for finding the
asymptotic behavior of matrix elements of certain types of group
representations .

XI. An Abstract Approach to the Problem of Asymptotic Behavior
of Matrix Elements of Representations

There is an abstract pattern to the preceding work that is worth
discussing separately. Suppose G is a Lie group, realized or a group of
operators on a Hubert space H. Let t->g(t) be a one-parameter sub-
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group of 6r, and let ψ be an element of H. Let t -> c (t) be a curve in (7,
the complex numbers. Suppose that ψ is an element of H. Suppose that :

•̂  <»•«
approaches ψ^ via weak convergences as c -> oo. (Recall this means that :

^^i^=W\^ foreach *€*•)
We will symbolize this relation as follows :

g(t)(ψ)~c(t)Ψa>. (11.2)

We will understand that H is not necessarily a complete Hubert space :
In fact, much of the same set of ideas can be applied to the case where H
is a general set of topological vector space, and the elements ψf are taken
from a given family of complex-valued continuous linear functions on H.

Our main concern in this section will be to consider (as far as possible
without making further specific assumptions) what one can say about
the action of the elements of G on limiting element ψ^ .

First, suppose that g is an element of G. Let g* be the adjoint trans-
formation of g, L e.,

{g* ψ'lψy = (ψ'\g ψ} for ψ, ψf ζ H .
We will, in fact, suppose that g* is defined on H also. (This is why we
want H to be non- complete.) Then:

= lim <tf\gg(t) y> e(ί). (H 3)

We can read off immediately the following facts :
Theorem 11.1. If g commutes with each g(t), then

Suppose now that g = g(s) for some real s.
Then:

<¥>>«> = urn <tf\g(t + s)

ί c(ί) c(ί-β) '
Suppose that :

lim-ϊ^LΓ=6(«). - (11.4)
ί->oo C(ί — 5)

Then, we have :
Theorem 11.2. 7/11.4 is satisfied, then

flrWVoo- 6(0 Voo (11.6)

i e , ψoo is an eigenvector for each g(t).
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Now, suppose X is the infinitesimal generator for the one -parameter
group 0r(£), i. e.,

Suppose Y is an operator on H such that :

[X, Y] = σY. (11.6)
Then:

Adexp(ί X ) ( y ) = eσt Y, or

exp(ί X) Y Qxp(-tX) = eσt 7, or

g ( t )
Then,

Suppose :
h(s) = exp(s 7) .

Then,
(11.7)

We will, in fact, use 11.7 the "global" form of 11.6. Then, using 11.3,
we have :

<yΊA(β) y«> = lim <vΊ »(•)?(«)»> =lim <vΊ ?(«)*(«-««)»> βί c(ί) ί c(ί)
Now,

0(0 Λ(e-σ ί5) ̂  - g(t) ψ = flr(0 (^(e-σί s) ψ - <φ) .

Theorem 11.3. Suppose that
(a) σ > 0.

(b) The representation of G by operators on H is continuous.
(c) The operators g (£)/c (t) on H have a common bound B. Thent

A(«) ψoo = ψoo for all s .
Proof:
Hypotheses (a) and (b) tell us that :

\\h(e~σt s) ip — ψ\\ -> 0 as ί->oo.
Hence,

(0 V\\

In particular, we see that it converges strongly to zero as t -> oo, hence
also converges weakly to zero.

We know that lim <y/ 1 ̂ ^"^W exists, hence, by the above
t c(t)

argument, it equals
,,,

ψoo — ψoo> since h(s) ψ^ — ψ^ is perpendicular to all of H.
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This simple argument enables us to say that ψ^ is left fixed by a

whole subgroup of G determined by X. Let N+ (X) be the subalgebra of O

spanned by the eigenvector of AάX for positive eigenvalues. Let N+(X)

be the connected subgroup of G. It is nilpotent, hence every element is a

product of exponentials of the Ad Jf-eigen vector generators of N+(JC),

hence, using Theorem 11.3, we have:
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