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Abstract. Local one-particle approximations are constructed for matrix elements
of two local field operators. If one of the fields is a locally conserved current the
approximation is extended in such a way that both locality and current conserva-
tion are valid in the approximation.

I. Introduction

The most basic difficulty in any theoretical treatment of elementary
particle physics is the fact that we have to deal with an infinite number
of inter correlated functions.

In relativistic quantum field theory such intercorrelations are in-
duced by the infinite set of possible intermediate particle states in matrix
elements of field operators. As a first approximation, one can try to take
only the discrete one-particle states out of this infinite set and drop all
the continuous states as intermediate states. Such an approximation
would only be reasonable if all the general properties of the theory are
not destroyed by this approximation. In relativistic quantum field
theory, it is locality which causes some trouble in this respect.

Because locality is destroyed by the simple one-particle approxima-
tion for the commutator matrix element

<p| [A0(x), B0fo)] |p> ~ <p| Aϋ(x) |1> <1| B0(y) |p> -

FUBΓNI and FUKLAN [1] got an unwanted p-dependence of the cor-
responding equal time expression and were forced to take a limit p -> oo
or p -> 0 to get a consistent result.

In the general frame of relativistic quantum field theory [2], [3]
"local one-particle approximations" were first constructed by SYMANZIK
[4], [5] for retarded functions and by ZIMMEKMANN [6], [7] for time
ordered functions. S THEATER [8] and STOBA [9] have investigated the
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same problem for the mixed or generalized retarded functions. Starting
from the work of SYMANZIK we have explicitly constructed in an earlier
paper [10] the corresponding approximation for the four point Wightman
function.

If there is a locally conserved current }u(x) in the theory:

(χ) |Φ> = <ψ\ d*jμ(χ) |Φ> = o (i)
any reasonable approximations must be made in such a \vay, that this
equation is also valid in it. Even if the current is not conserved the first
part of equation (1) must hold in an approximation for the matrix
elements. For if one wants to study any effects caused by breaking of a
current conservation, one must not mix the breaking of current conser-
vation of the theory with similar effects induced by the approximation.

In the present paper, we construct a local one-particle approximation
for the matrix elements of two local field operators, in which the left
part of equation (1) holds, if one of the fields is a current.

II. Local One-Particle Approximation

As already stated in the introduction, our "axiomatic" frame will
be local quantum field theory [2], [3] that is, the objects of investigation
will be matrix elements of field operators {A* (x) Br* (x)} with the usual
properties :

Poincare covariance
(A) Locality

Spectrum condition
Completeness

Notation : In the following A* (x) denotes always a boson field (scalar or
vector) with internal symmetry index α and Byί (x) a local field which is
associated with the ί-tld particle of the theory with mass mi and a set of
internal quantum numbers γi = {yίι? . . . , γίr}

<y,,p,m,|B;«(0)|0> = 0 for i*j. (2)

The corresponding asymptotic fields are denoted by ΈVi(x)ex. Then
γί means the anti-particle to γt. All interacting fields are assumed to be
local relative to each other. T(x) is the translation operator and \Ψ$) is
a state of four momentum p.

T(α) \Ψpy = e^x\Ψ^) px = :pWχ(V — $x. (3)

Last but not least F™ denotes the open region ±^(0) > 0, p2 > m2 in
Minkowski space and F^ its closure.
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We will proceed in three steps. First, we will treat the simple case

of only one scalar particle of mass mi in the theory. Then it will be easy

to generalize the result first to the case of several particles of equal or

unequal masses and in the last step to particles of spin s φ 0.

a) The Case of One Single Mass mi

Introducing a complete set of intermediate states between the two

field operators, one gets the following structure of the matrix element

(Ψv\ A*(x) A&(y) |Φα) in four-momentum space:

(2π)-8 f% fe, p, q, kjt = : (2π)-3 <Ψkι\ A (p) A> (q) |Φ,(>

= δ(p -f kj δ(q-kt) <Ψkl\ A«(0) |0> <0| A£(0) |Φ,4> +

-h δ (k, + p + q + kt) {δ+ (pi - ml) <ψtι A« (0) mt, Pl> X (4)

+ do(s) δ+(pl-s) <Ψkι\ A;(0)|ί, Pl> <Pl, s\

From this equation it follows that the support of FχP(lc) is contained in

the closed set Γf defined by :

{0} , w = 1, 2, s (5)

0} . (6)

It is well known [2], [3] how to subtract from F^^k) in a local mariner

the contribution from the intermediate vacuum state by introducing the

so-called truncated matrix elements

\T . ffa. β (7* L L ]/> \
4J. — uv v 1' 2' ^3' /ί/4/

The truncated matrix elements are covariant, local and do not contain

any vacuum singularity except the ό-function for over-all four-momen-

tum conservation.

The support of ί^(&)^ is given by:

Γf = k : Σ K = 0, Σ kr 6 ̂  ^ ̂  1, 2, 3J . (8)
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Now we go one step further and subtract from ]?*& (k}t and at the same
time from FχP(k)τ in a similar way the contribution from the inter-
mediate one-particle state, i.e. the second term in equation (4). In other
words, we wish to define a new matrixelement FχP (k}1.1 by subtracting
from Fx@ (k)T expressions of the form

/ d*p <Ψkι\ K(p) A' (ka) |Φtt> (9)

such that F°cβ(k)1.1 is Poincare covariant, local and has furthermore the
μv \ 'τ '

following support property:

The support of )!1 in momentum space is contained in Γ1.1 :

. (10)

This condition means that we remove from F^^k)1.1 the discrete one-
particle singularity in the variable /^ + kz.

A matrix element F^(k)^ which has all the properties we demand
is given by:

$«t (k}1.1 - : F«P (k) τ — F«P (k)1

μv\ >ί μt>\ >t μv\ Ί

where ffxβ

v(k)ΐ is defined by:

^, p, q, k,)1. = : f &u δ+ (u* -

A ( p ) |mί; u, γίy {γi, u,

) x

Aξ(q)

\mt, u,

<ϊ>Γ

tl

u,

l B" (

| A;(p)

Aξ(q)

A«μ(p) B«(- (12)

) |Φtl> +

*'(«) |Φtj> +

Aζ(q) \Φkt) +
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In equation (12) we have introduced the following notations:

Δ (u) - : (mf — u*) Δ (u) (m\ — u2); A(u) = 2πiε (— M<°>) δ (u2 — mf)

Δret(u)=: (m? ~ u2) Aret(u) (m? — u2) Aret(u) = — — / s > 0
av l av l av vn>i — (u±ιε)^

RWlkfi = : — -7 f d^x&ye^ + W x (13)

(14)

Before we show that F*P (k)1.1 has all the properties we demand, let us
make a remark on how one can derive formula (12) in some logical
manner. Starting from the work of SYMANZIK [4], [5] on retarded
functions, we had constructed in [10] an expression similar to (12) for
the Wightman-function W(xlt #2>

 x& X&Y If we drop in this expression
all terms which are local in the variables xl — x2 and x3 — α:4 we come
immediately to equation (12).

The proof of the demanded properties runs in the same way as that
for the Wightman-function [10]. Therefore we can restrict ourselves to
some remarks.

Because every term in (12) has the support ΓT we have p $ V™{ and
q ^ ymi for 0 < (^ + ^))2 < 4m?. In the allowed region all terms in
equation (12) vanish except the first, which is cancelled by the cor-
responding term from Fx^(k)^ in equation (11).

The third, fourth and tenth term in equation (12) are separately
local. If we break up the commutators which occur in the expression for
FΛβ

v(k^ x, y, &4)i — F^0ί(klί y, x, k^ϊ into retarded and advanced parts
and use the well known relation Aav(p) — Δret(p) = A ( p ) , then the first,
second and fifth term in equation (12) and the commuted ones are all
cancelled. We are left with a sum of retarded and advanced functions
which vanish for space-like separations of x and y.

In the following the expression (12) will be called "local one-particle
approximation" for the truncated matrix element jPjζ(&)f.

As we have seen before, the third, fourth and tenth term in equation
(12) are separately local. If we had dropped them, we would not have
destroyed the locality and the support properties of flfflfo)!1. On the
other hand in certain cases these terms correspond to the peripheral
model, if one calculates from (12) the amplitude for the process &4 + q ->
-> hi + p. Therefore we will not drop them.
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b) The Case of Several Scalar Particles

If there are several particles in the theory with masses 0 < ml ̂
<g m2 g ^ mN and a set of internal quantum numbers

y< = {*,>•••>*,} (i = ι , . . . , - s r )
then equation (4) reads :

(2π)-^e(&ι, P, <?, fca) = : (2π)-3 <^ A«(p) A>(g) \Φ£

= δ(k1 + p) δ(q-ka) <nj A«(0) |

x <Ψkι\ A« (0) |mί; Pl,

(,s) θ(s-Mγι)δ+(pl- s) x (15)

x <«PΓ

iJ A«(0) |β, Pl, yί> <7i, Pl, β A{(0) |Φ

+ Σ fdρ(8)θ(a-MΛ)δ+(l%-a)x
α'Φ Vί

(i =!,...,#)

X <^J A« (0) ^3 Pl, α'> <α', Pl, .| A£(0) |Φ,

^ - : p + k± .

Here M α denotes the threshold mass of the intermediate continuous
states with internal quantum numbers α = {αl5 . . ., αr}. If in each
channel with the internal quantum numbers yi there is a gap between
the one-particle mass mi and the threshold Mγ. then one can construct
in the same manner as in case a) a one-particle approximation for the
truncated matrix element by :

^W — ίί^Wf (16)
i = l

where F^v(k}l is given by equation (12).

The matrix element

frμt(kγ*=:frμe(Kf-fr£(lcγ (17)

does not contain contributions from the N one -particle intermediate
states, i.e. the equation (10) is valid for it for every m^ (i = 1, 2, . . . , N).

c) The Case of Particles with Spin s

We use the (2s+ 1) -component spinor formulation for the fields in
the notation of THEIS [11]. To generalize equation (12) to this case, we
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have only to make the following insertions :

\av

ί ΐ j lm' p? γ^ (γ> p' m' ~ζ Σ_ s f
The spinor fields B^(#) transform under the proper homogeneous
Lorentz transformation A according to

BS (x) -^ D^ (/I-1) Bfr (Ax) (19)

where D(s'°> is the (25 -f 1) -dimensional, irreducible representation of the
proper homogeneous Lorentz group.

(20)
L"1 p = (m, 0) .

The free fields are given by:

B£ (P)ex = Σ & (Po) DS',Sί (L.) MP. «8)« +

+ θ (-po) (-I)8-1 Dfel^ (L-1) bp(-p, 53)e*x}

where the creation and annihilation operators by(p, <s3)*x, by(p, s3)ex

obey the usual commutation and anticommutation relations.

III. Current Conservation

As already stated in the introduction, for a reasonable one-particle
approximation, one has to demand the following property, if one of the
fields is a conserved or even a non- conserved current ]μ(x) :

> y, Ί>2)1

where both <ϊ |̂ j«(x) AP(y) \ΦP^ and < t̂ d"ft(x) A"(y) |ΦΛ>f are
defined by equation (12). Because in this equation there occur retarded
matrix elements, we get for the difference of the right and left hand side
of (22) :

(23)

x (D, + mf) <0| B«(z) A/»(y) |Φpί> +

+ {Ψpι\ B»(«) |ΦP!> (D, + m?) x

x
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Now we must try to re -define the one -particle approximation by adding
to equation (12) a local solution of the differential equation:

tyf«v<(Pi,x,y,P*Y

= <ΨP1\ d"i*μ(x) A?(y) IΦ^l-d^

Furthermore, this solution must not destroy the four-momentum space
properties (9), (10) of the matrix element βcίβγi(kl9 k2, k3, k^l1 which is
defined in analogy to (11) by:

B«β* (kyι = : f«μβ (k}T - F«e (k){ - ff * (k)*

or (25)

In other words fxβγi must itself satisfy the spectrum conditions (9), (10)
and locality. From equation (23) it is easy to see that the right hand side
of the differential equation (24) has all these properties. Furthermore,
because of locality, the support of the three brackets in (23) is concen-
trated in the point z — x = 0. Therefore, they are given by a finite sum
of δ -functions and their derivatives [12], [13].

r

<VK\

ldWa® AP(y) |0>

-x)+ (28)

For later use we define g*βγί(x)_ by the expression which we get if we
commute in (28) the field operator with the retarded commutator.

The coefficients gr in these equations depend on special dynamical
assumptions. From our general frame we only know:

1. gr(x)+-gr(x)_ = 0 for a;2 < 0

2. supp.fif r(g)φ S Ff>

where Ma is the lowest mass with

> Φ θ . (29)

Inserting equations (26) — (28) into (23) and (24) respectively, performing
the 2-integrations, using translation invariance and decomposing f*fv
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according to (23) into a sum of three parts:

X

e(l) = l, e(2) = -l, β(3) = 0

we finally arrive at the three differential equations :

-y, Pa)r = ̂  γi (ft, * -

65

(30)

(31)

The inhomogeneous parts of these equations are given by :

*ϊ?»(ft *, A) = : (θ JΓ (1) A* (- 1)

Aft"(ft, *. ft) = {̂ , J!' (1) A' (- ί) |°
Aft1* (ft, *, ft) = : (%2 - (Pi - ?2)

2) ̂  B«(0) |ΦPΪ> x

x i tft-ft)"^'"'^-^
f

where we have introduced the currents J^ (x) by the definition :

W = = ̂  ffΓίίU, Πβ<
r)(Dβ

(1> + m|) B»(x) .

(32)

(33)

(34)

If we define the distributions 1^2 by the right hand sides of the equa-
tions (32), (33) with J£ and $ commuted and tf^J inserted for g^^
respectively, then accorduig to our previous statements in this chapter
we have the following properties :

1. Locality

^n

βγ(P^ x, Pa) = : ̂  (ft, x, V*) - A^-y(ft, *, P*) (35)

- 0 for x2 < 0 .
2. Spectrum condition

for q) or = : 0 (36)

where Mn± are the threshold masses between the field operators in
equation (32).

M3+ = M3_ = M,+ = Jfj_ . (37)

Now we define the distribution Hx^γ(k)1 introduced by

(38)
5 Commun. math. Phys., Vol. 5
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where Fκβ(k)ϊ and fxβγι(ky are given by equation (12) and the solution
of the boundary value problem (30), (31), (35) — (36) respectively, as the
"one- par tide approximation" for the truncated matrix elements of a
current and a field.

All we have to do is to solve the differential equation (31) for /α^y(&)7

with the boundary conditions (35) — (36). The difficulty in doing this
arises from the fact that these boundary conditions are defined partially
in α -space and partially in g-space. If one solves the equations (31), (35)
in #-space then it is very hard to see what the condition (36) mean for
this solution and vice versa.

One can avoid this difficulty by means of integral representations,
which automatically contain the boundary conditions (35) and (36). For
one can insert these representations into the differential equation (31)
and solve the corresponding equation for the kernels of these representa-
tions.

Such representations are well known [14], [15], [16] for commuta-
tors K « P v ( k ) = : f * β

+

γ ( k ) - - f « ? _ γ ( k ) . In the next chapter, we will first
solve our boundary value problem for the commutator by means of the
unique Jost-Lehmann-representation [14] — [16] for the case of a
symmetric spectrum (Mn+ = Mn_). In principle one can solve the non-
symmetric case in the same manner, but the calculations are very in-
volved. Because for many applications it is sufficient to work with the
nonunique Dyson-representation [15] [16] (several kernels belong to the
same matrix element), we will restrict ourselves to this representation
for the case of a nonsymmetric spectrum.

Having in mind this non-uniqueness, wve may now go back to the
matrix elements /*^y. The Dyson representation for the commutator
reads :

κ?/y (PI, q> Pz)n =

where the support of γ is contained in :

Γl=: l(u, s) : (-*- p3_n ±u)ζ V+, jΛ ^ max [θ,
(40)

By virtue of this support property, we can decompose (39) into its
positive and negative frequency parts :

, 9, Van = / &U ds 0 (qW - ««>>) X

δ ((q - it)2 - s) vί ̂  (Pi, u, s, pjn

/ d*u ds

x δ((q — uγ — s) iftPvfa, u, s, pz)n .
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IV. Solution of the Boundary Value Problem

We will only treat the case of scalar particles, because the generaliza-
tion to particles with spin is trivial.

a) The Case of a Symmetric Spectrum (Mn + = Mn_ — Mn)

The differential equation (31) reads for the commutator

τCuβγ = jaβγ _ jaβγ
ΛV Jμ-jr J μ —

in momentum space :

(g" - αg) K«0" (ft, q, p2)n = ihtf* (ft, q, p2) . (43)

To take into account locality and the support property (36) in four-
momentum space, we use for both sides of (43) a Jost-Lehmann-represen-
tation [14] — [16] in the rest frame of l/^p3-n (pQ = 0)

K«Λ(ft, q, P2)n - ε(g<0)) / d*ιι ds <5((g«»)2 - (q - u)2 - s) x
(44)

x [Φ*^(ft, u, s, p2)n + <Z<°>K/y(Pι> u, ^, ft,)n]

t%βv(Pι>q>Pz) - ε ( q ( Q } ) f d*ndsδ((qW)*— (q — u)2 — 5) x

, u, 5,

According to (36) the support of the Of-covariant spectral-functions is
contained in:

Γ')L = {(u, s ) : u < y pf_n, |/7 > max [θ,

(46)

Because the variables p3 , oc, β, γ, n are superfluous in the folio wing-
calculations, we will drop them.

If we insert the equations (44), (45) into (43), we are led to the cal-
culations of the following two expressions :

F (q) = q / d3u ds δ((q^)2 — (q — u)2 — s} ψ (u, s)
(47)

d*n ds δ((q^)* - (q - u)2 — s) ψ(\L, s) . '

Taking into account the ό -functions and the identity

S>(π)β')

^ '

= f cPu ds (5W ((g(°))2 — (q — u)2 — θ) γ (u, s)
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we obtain by partial integrations:

~F(q) = I cZ3u ds (5((g(°>)2—(q — u)2 — s)

[
s

1 Γ ' 17
2 J

00

FQ(q) = I d3n ds d((q^)2 — (q — u)2 — s) x

[
s 1

— id '(( — '\Λ 6} ( ' } \
4 J

00 J

Insertion of (44), (45) into (43), decomposition of the resulting
equation into symmetric and antisymmetric parts with respect to inver-
sion of g(°>, use of the equations (49), (50) and differentiation with respect
to θ finally gives the following set of coupled differential equations
between the spectral functions:

82 r/ ' "^°s '- - AJL (u S) +_1ZJ (u s\

i a i

)] (51)

Φ0 (u, s) = α<°) ψQ (u, s) -I- i φ2 (u, s) +

I r Ί >rr (52)
-I- (u — a)y(u, s)—p- I ds yuψ(uίs).

- 00

From these two equations, we need only solve the first one. If \ve make
the ansatz

Φ(u, a) + α<°> ψ (u, s) = - d β ' Vu y0(u, s) + 77 (u, s) (53)
— oo

where Π is a new 0£ -co variant spectral function, we obtain the four
dimensional divergence -equation :

j- \(s - (α<°>)2) Vβ(u, β) - »(% (u, s) + α<°> ^2(u, s)) -
L 1 1 (54)

- (u - a) 77 (u, β)J + y Fu [77 (u, 5) + (u - a) Ψo (u, β)] = 0

with the classical solution

(s - (««»)*) y>0(u, β) - (u - a) If (u, «) -

— it?! (u, s) + α(°>972(u, s)] = FU3 (u, s)

77 (u, s) + (u — a) y0 (u, β) = — 2 3 (u, s) + Z (w, s) (55)
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3 and Z are arbitrary tempered distributions with support ΓJL, which
transform under rotation like vectors (so-called "Hertz" vectors).

Solving these equations for Π and ψ0 we obtain:

Φ(u, s) = — α<°) ψ (u, s) — (u — a) y0(u, s) —

--
— oo

u, «') ~ 2 ^ 3 (u, 5) + Z (u,

y»0(u, β) = [5 + (u - a)2 - (αW)2]-1 i [^(u, s) + α<°> ̂ (u, s)] +

<S(> + (u-a)»- (57)

is an arbitrary 0+ -invariant, tempered distribution on the regular
surface s + (u — a)2— (α<0))2 = 0, which vanishes on this surface out-
side the set Γjx,1

If we insert the equations (52) and (56), (57) into (44) and remove the
s -integrations by means of equation (49), we find as the solution of the
boundary value problem (35), (36) and (43) in the rest frame of p%-n:

ds <5(g«»2- (q-u)2-s) x

, u, s, p2)n + fe<°) +

x γζβγ(pl9 u,θ, p2)n + (q - an)

ds δ^γ _ (q _ u)2 — s) x

x (q + aΛ-2u)v^(ft,u,*,p^ (59)

-2 - 3 ^ y (ft, U, 5, p2)n + Z«^(ft, U, 5, p

where ^0 is given by equation (57) and ^ is arbitary like 3 and Z.
Now we have the result :For any 0£ -covariant tempered distributions

3, Z, ψ and E with support contained in ΓJL a solution of our boundary
value problem is given by the equations (57) — (59).

b ) The Case of a Nonsymmetric Spectrum

This case can be treated in exactly the same manner as case a).
Therefore we can drop the details and restrict ourselves to some remarks.

To take into account the boundary conditions (35) and (36), we use
the Dyson representation [15], [16] and drop again the superfluous
variables :

Kμ (q)n - f &u ds s (2° - u») δ((q - u)* - s} ψμ (u, s)n (60)

)n = fd*udsε(q° — UQ) δ((q — uY — s) φ(u,s)n .
1 Strictly it is the extension in the sense of SCHWARTZ [12] of a distribution

on this surface.



70 A. H. VOLKEL:

The support ΓD of the spectral functions is given by equation (40).

If we insert (60) into (43) and use the relation:

qμf d*u as ε(g(°> — w<°>) δ((q — u)2 — 5) ψμ(u, s)

w<°>) δ((q — u)z — s) x (61)

X vμ-

s

+ ^d$ fds'Ψll(u,s')

then we come to a five-dimensional divergence equation, from which we

obtain the final solution :

x (qμ+(a*)άΦ"βy(Pι,u,s,pί)a-2ultΦ"l>v(p1,u,8,Pjn- (62)

~2 [ί$*μ

βγ(pi' «. s> pJ» + Kβv fa u> s> ?*)»]}
with Φ defined by:

Φ (u, s)n = (s — (u — α)2)-1 {* φ (u, s)n +

+ 2 [(« - anγ ~ + j θ;] 3, (u, s)n + (63)

θ;Z,,(W;S) = 0. (64)

gμ and ZP are arbitrary, co variant, tempered distributions with support

ΓD (Zv divergence-free). E(u) is again an arbitrary invariant tempered

distribution2 on the surface s — (u — α)2 = 0, which vanishes on this

surface outside the set ΓD. As in the case a) we have the result: For any

Lorentz-covariant tempered distributions Qv, Zv and E with support con-

tained in ΓD a solution of our boundary value problem is given by the

equations (62) — (64).

V. Final Remarks

The local one-particle approximation Fvμ(kl9 k2) k3) k^)1 we have

constructed in section II contains besides the mass-shell singularities

in fcj + k2 some of the mass- shell singularities in the variables /^ + k3 and

&2 -f &3. For instance the poles in these variables are given by the seventh,

ninth and tenth term in equation (12). By the following arguments we

2 See Footnote 1.
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can conclude that these poles are completely removed from the difference
F11 = : Fτ — F1. In [10] we had constructed a local one-particle approxi-
mation W1 (%ι, #2, #3, #4) for the four-point Wightman-function such
that the corresponding difference does not contain any singularities in
these variables (discussion after theorem IV). As already stated in
section II, we derive our expression (12) from W1 by dropping all terms
which are local in the variables xλ — x2 or x3 — #4. But all these terms do
not contain a pole neither in the variable k^ + &3 nor in k2 -f- &3. Because
the same statement is true for the inhomogeneous part of the differential
equation (31) we can (at least for a variety of state vectors Φki and Ψkι)
use this fact to restrict the class of solutions of the boundary value
problem (31), (35) — (36), which we have obtained in section IV. Because
the inhomogeneous part of (31) does not contain these poles, we have the
condition :

[(F - ??ι?) fd*nds %<°>2 - (q - u)2 - s} φs (ft, u, s, p2)n]^ = m* = 0 (65)

for
i = 1 , . . . , N and k = (p1 — p2)

or

— -̂---γe(«)p« [ε(l) = 1, ε(2) = -l, e(3) = 0].

Now it seems plausible to demand that the distributions ψn\ 3, Z do not
behave worse than the given inhomogeneous part φ^ with respect to
their singular structure on the one-particle mass-shells, i.e. equation (65)
should be valid for them. Because of the denominator s -f (u — a)2 — α<°)2

in equation (57) it can happen that the left hand side of (60) is unequal
to zero for ψ0. For instance <^-(ft, u, s, ;p2)ι must for certain values of
pl9 p2 contain <5-f unctions in u and s, which produce the δ- singularity
on the mass-shell in the corresponding matrix element (0| [Jiift + kj,
A(&2) |Φp2} These ό-ίunctions then induce via the denominator in (57)

poles at the one-particle mass-shells in the commutator K^^, q, p2)Γ

Therefore in these cases the equation (65) for ψQ leads to proper
restrictions for the distributions ψ, Q, Z and E(u). Unfortunately we
were unable to construct the general solutions of these conditions. We
could only prove the existence of solutions for the case of the poles at
(Pi — P^ — mί (i = 1,2, . , N). This follows immediately from the
fact, that these poles do not depend on the variable q.

The same conclusions are true in the case of the Dyson-representation.
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