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Abstract, In a previous paper the author, using a method of successive approxi-
mations, verified by means of the Einstein-Maxwell equations of general relativity
the well-known result that outgoing electromagnetic radiation from a source
conveys energy, so that the source loses gravitational mass corresponding to this
energy. The purpose of this work is to show a similar result for the general case of
any mixture of outgoing and incoming radiation.

1. Introduetion

From everyday use of electromagnetic waves it is evident that they
carry energy. Any source that emits them must lose energy. In a previous
paper (ROTENBERG, 1966) this was verified via a method of approxima-
tion applied to the Einstein-Maxwell equations

Ry =—8nk,, (1.1)
for free space, by investigating radiation from a simple source — an
electric dipole oscillating smoothly for a finite period. It was shown that
the source suffers a permanent reduction of gravitational mass equal to
the total energy of radiation emitted. The result referred to outgoing
waves only; the present work sets out to show a similar result for any
mixture of outgoing and incoming waves, having as the source (and
receiver) the electric dipole just mentioned.

The electric dipole is explained more clearly in section 2, and in
sections 3 and 4 the metric and method of approximation are described.
The solution (obtained in section 5 for the dipole) of the wave equation
for the electromagnetic 4-potential is needed in section 6 to calculate the
electromagnetic energy tensor and the total flux of energy of electro-
magnetic waves from the source. Finally, the main result, that the
source undergoes a secular variation in mass equal and opposite to the
total flux of energy of electromagnetic radiation, is established in section 7.
The more complicated calculations occur in two appendices, followed by a
third appendix containing a notation connected with mixed, outgoing and
incoming, radiation and used frequently in this paper.

* This work is included in a thesis submitted by the author (1964) to the
University of London for the degree of Ph.D.
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2. The Source
‘We shall consider an electric dipole which consists of two particles 4
and B of equal, negligible mass —;—m and carrying equal and opposite

charges +e; the particles are made to vibrate symmetrically along the
axis Oz (of a rectangular Cartesian coordinate system) about their mid-
point O, the origin. Let us specify the positions of 4 and B at time ¢ by

4=10,0,(®], B=1[0,0,—C(n], (2.1)

where () is any given bounded function of ¢ which is (i) constant out-
side the finite interval ¢ < ¢ < ¢,, (ii) single valued and has unique
derivatives of all orders in the interval #, < ¢ < ¢,: thus the system is
supposed to vibrate smoothly and only between times ¢, and f,. We
assume that the arbitrary motion of the charged particles, described by
£ (#), is caused by a mechanical device (such as a spring) of negligible mass,
insulated from the charges (so that e = const.) and confined within a
finite region near 0. Uniform motion of the charges is ruled out.

Finally, the oscillation of the two particles of the dipole may be
regarded as partly the cause of the outgoing waves and partly the effect
of the incoming waves: thus the system acts as a ‘source and receiver’ of
the waves.

3. The Metric

For the source introduced in section 2 (which is axially symmetric
about Oz) we shall, following Boxxor (1959), employ the axi-symmetric
metric

ds? =—Adr?—r*(Bd0? + sin?0C d¢?) + D di?: (3.1)

(r, 0, §) are the spherical polar coordinates of the field-point P and
A4, B, C, D are functions of r, 0, t. This metric is the diagonalized form
of the more general axi-symmetric metric

ds? =—Adr*—1r*(Bd0?+ sin?0C d¢?) +
+Ddi2 +2rEdrdf +2F drdt + 2rG db dt, (3.2)
E, F, @ also being functions of r, 0, ¢.

4. The Method of Approximation

In section 6, the formula for the electromagnetic energy tensor Z,,
for the dipole of section 2 turns out to be a double-parameter expansion

of the form
o =] (ps)
Bpp=23 X eaB(x) (4.1)
p=2 §=2
in terms of the constants e and a. The parameter e is the charge of the

particle 4 of the dipole as in section 2; the parameter a, having the
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dimensions of length, is defined by
L) =af(d), (4.2)
where [ (¢) is given by equations (2.1) and f(¢) is dimensionless. We shall,

therefore, suppose that the metric tensor can similarly be expanded:
(00)

Jix = Gik + 22 Zze?asgzk(xl) (43)
= 8§ =

due consideration being given to the fact that 8?,6 refers to flat space-
time.

The method of approximation to be employed here involves the
expansions (4.1) and (4.3) for the E,; and g;,. Inserting these expansions
in the field equations (1.1) and equating the coefficients of e?as, we get
what is to be called the (ps) approximation, namely, a set of second-
order differential equations of the form

(8 (ps) (ps)
¢lm(gzk) YI ( zk) + const. X Ezk (4 4)

(ps)
In these, the @lm are linear in g,k (and their derivatives); the ¥;,, are

nonlinear in glk (9= p—2,r < s—2) (and their derivatives) known from
(22)
previous approximations. Thus, apart from the expressions in &, ,, the (22)

approximation contains only terms linear in f}f}c (and their derivatives);
(p8)
the nonlinear expressions ¥;,, in equations (4.4) do not appear in the

approximation. It is in the solution of this (22) approximation that there
first appears a term representing a permanent change of gravitational
mass of the source equal and opposite to the total flow of energy of
electromagnetic waves from the source (section 7). So our aim is to get an
appropriate solution of the (22) approximation, which is achieved in
section 7.

The solution of the (ps) approximation, the (ps) solution, is the
fé’:k which satisfy equations (4.4).

To conclude this section we form expansions for the coefficients of
the metric (3.1): in virtue of equations (4.3) they are

(ps)

—gm=4 _1+2 Zeﬂ“sA
—gsp =128 =r? (1 + ZO? g’ ei"as(ﬁ)),
P (4.5)
—(s5 = r28in20C = 1% sin?0 (1 + 3 X el’asO) s
p=2 §=2
Jua=D =1+ Z"," fepasg:
§=2

(ps) (p3) (p3) (ps)

2
A, B, C, D being functions of 7, 0, ¢.
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5. Solution of the Potential Wave Equation

For the derivation of a formula for the energy tensor E;; — and, in
(22)

particular, for E;; required in the setting up of the (22) approximation —
it is necessary to calculate the electromagnetic 4-potential ¢,.

Consider first any isolated electrically charged distribution. It is
shown in EppiNaron (1924, § 74) that ¢, satisfies the equation?!

gab¢i;ab= 475(Ji‘—R{'c¢k) > (6.1)
J; being the 4-current, if we impose the condition
¢i;i = 0 . (52)

For weak fields, ¢,, R¥ are small, so that, to the first approximation,
equation (5.1) reduces to
9 bs g0 = 4md ;. (5.3)

In Galilean coordinates equations (5.3) and (5.2) are the familiar wave
and gauge equations

€k¢i,kk = 4-7ZJ¢ N (5.4)
e, =0, (5.5)
where ¢, = —1,—1,—1, +1, terms of small magnitude of order higher

than the first being neglected; equations (5.4) and (5.5) are thus the
linearized forms of equations (5.1) and (5.2) in Galilean coordinates.

The Kirchhoff solution of equations (5.4) and (5.5), for the general case
in which the sources of the field simultaneously emit and absorb radiation,
is

¢ = a<,1<5j+ ﬁgz (x+p=1), (5.6)

where
(F)
¢i=flr*_lJi({Z', g, Z,t:F'r*)dv, eiJi’iZO. (5.7)
v

The notation in this form of solution is as follows: In equation (5.6),
) +)
¢; and ¢, represent respectively the retarded-potential and advanced-

potential solutions of equations (5.4) and (5.5) and correspond to the
radiation emitted from, and absorbed by, the sources of the field; o, 8
are non-negative constants, which will be referred to as the strengths of
the emitted and absorbed radiation, respectively. In the first of equations
(5.7) the integration is taken over any fixed space volume ¥V containing
all the sources of the field and r* is the distance of the point P (&, 7, ),

! In this paper a Latin index runs from 1 to 4, a Greek one from 1 to 3; the
summation convention applies to both types of index. A semicolon subscript
denotes covariant differentiation, a comma subscript indicates partial differentia-
tion.



Change of Mass by Radiation 27

contained by the space element dv = d& d§ dZ of integration, from the
field-point P (x, y, ) of interest; the second of equations (5.7), deducible
from equations (5.4) and (5.5), simply expresses the law of conservation
of J,.

Before applying the solution (5.6) and (5.7) to the dipole of section 2
it will be convenient to re-express the solution so that r occurs in place
of r*, r being the fized distance O P. On applying the result to the source
and introducing the notation (4.2) we obtain the following (multipole)
expansion for the solution of equations (5.4) and (5.5) in terms of ea®
(s=1,2,3,...) (see appendix I); only the leading term of each non-
vanishing ¢, is written out explicitly:

1= ‘}52 =0, _
¢y =—2ear 1f’ + O(ea?), (5.8)
By = 2ea cosl(r-1f" + r-2f) 4+ O(ea?),
valid for r > max.|l|, where the notation (III.1) of appendix III has
been used for f(¢).

6. The Electromagnetic Energy Tensor and the Flux of Energy

For the dipole the components of the 4-potential in spherical polar
coordinates are, on account of equations (5.8),
L = —2ear-1cosOf + O(ea?),

¢y = 2easinff’ + O(ea?),

¢3 =0, . _

¢y = 2ea cosO(r-1f" + r=2f) 4 O(ea?)
The components of the electromagnetic force tensor for any source are
given by the formula

(6.1)

Fir=s,1— b4 (6.2)
for the dipole, the values of the non-zero covariant components in spherical
polar coordinates turn out to be

Fiy=—F, = 2easinf(f"” + r-1f') + O(ea?),
F,y = —F, = 4ea cosO (r-2f" + r—3f) + O(ea?), (6.3)
Fopy=—Fy=2easin(f"’ + r-1f’ + 1r-2f) + O(ea?),
and the non-vanishing contravariant components are given in terms of
the covariant ones as?
I = —F% = r=2F, + O(ea?),
Pt = 48 = —F, + O(ea?), . (6.4)
= —F%2 = —r-2F, + O(ea?

2 Henceforth, the notation O(e?a®) indicates a double power series in e and a
consisting of terms of orders e?a’(r = s) and e?a’(q¢ > p,r = 0).
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The formula for any source for the components of the electromagnetic
energy tensor is

B = —FiaFy, + 5 L FF,, . (6.5)

From equations (6.5), (6.3) and (6.4) we find for the non-vanishing ¥, in
spherical polar coordinates the following expressions for our special source:
By = 2¢2a2[r262(F72 4 [3) 4 2052 (P 4 ') +

(R4 [+ 2ff) — 402 —

— (458 @r5ff" + 5[] + O(e2a?) , (6.6)

2By, = 2ea 2 (] — %) 4 2032 () — ') +

s (F2— 12— 2f") + 4c2f 2 +

+ (4—58%) (2r3ff" + r=8f2)] + O(e%a?) , (6.7)
r-2s~2 By = 2eta? [r-2s2(f 2 — ) — 2032 (F 7 —f ]) +

s ([ — [ 2]7) + dedf %) +

+ (4—3s?) (29’“5)‘]‘ + 7r78f2)] + O(e2ad) , (6.8)

By = 20a [ (772 4 79 + 208+ ) -
+ 7—4{82(?24‘- ]ffz_{_ 2]7]7/') + 462f'2}—!—

4+ (4—3s%) (2r 5 ff 4+ r=5f2)] + O(e2a®) (6.9)
r1B,, = —8e2asc[r=3f f' + r-4(fF" + ['2) +
+ 205 + 8] 4 O(e2a?) (6.10)
By = —4ea2 [ ]+ 2+ 1)) +
+ o J ] T T+ O (6.11)
1By, = 8ctatsc[r3f [+ (G ) +
+ 1751 + O(e2a?) (6.12

where s = sin0, ¢ = cos0.

We now calculate the total flux of energy of electromagnetic radiation
from the dipole across a sphere S with centre O and radius R: on account of
equations (6.11) and (4.3) it is given by

Py = fdt/EM s

— 0

=§?w_maﬁfwaaw+OWﬂ+0ww>W+ﬁ=uwﬁ>
t

The total energy flowing out of an infinite sphere, centre O, is therefore

B gy [ 51O (i fm). (019
t,
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This, for the general case a == 5, does not vanish since " (&) == 0, uniform
motion of the charges having been ruled out. Hence, provided the waves
are not stationary one expects a permanent variation in mass of the
oscillating dipole, of an amount minus the value (6.14), to show up in the
(22) approximation to the metric3. This is confirmed in the next section.

7. The Solution of the (22) Approximation. Change of Mass of the Source
The (22) approximation is equation (4.4) with p = s =2 and with

22)
Y, m = 0; explicitly, for the metric (3.1) it becomes equations (II.1) to
(22) (22) (22)

(IL.7) of appendix IT in which the quantities P, @, ..., N on the right
are given by

(22) (22)

P =—16nk,,, @2 ©2)

(22) (22) L= —167ZE12 s
Q=—16mr2H,y,, (22) (22)

©22) (22) M= —IGﬂEM s (7'1)
R=—16nr-2s72E,,, @ ©@2)

22) 22) N = —167TE24 s

S =—16nk,,,

and equations (6.6) to (6.12).
The complete solution of the (ps) approximation is given by equa-

tions (II 8) to (I1.11). It contains six functions of integration (1107” (r, 0),

(»9) (ps) (ps)

o(r, 0) ( ), v (0,1), T(0,¢), y, (r t), only one of which, x (r t), to be
given a non-zero value in order to satisfy the two requirements laid down
in the paragraph containing equatlon (IL.13) of appendix II. The key to

this solution is the value of A satlsfymg the inhomogeneous wave
equation (II.8), which is inserted here for convenient reference:

(ps) def (p8) (p3) (ps)

= (4y + 21~ 1A1) + 2(A22 + A, cotl) —
8) 8) (v8)

— PG+ D ar— (L + r“lL)——j(lan AT

(ps) (17 ) (»s) (ps) (P s)
— (1 + )+ [ (0'11 +rte)df— (g +rty) . (7.2)
Obtammg an approprlate exact solution of the (22) approximation is
extremely difficult: to avoid prohibitive calculations we shall derive a
suitable approximate one satisfying the (22) approximation up to terms
of order r—3, i.e. a solution such that its insertion back into the (22) field

3 From the expansion (4.3) it is clear that in Galilean coordinates the com-
ponents t}, of the energy pseudo-tensor are of order e*a*. This should be sufficient
to indicate that the energy of gravitational radiation accompanying electro-
magnetic radiation from the dipole is of order e*a* and so may be overlooked, as
the components B}, of the electromagnetic energy tensor for the dipole are of order
e*a? only.
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equations leads to the cancellation of terms up to order #—3. The reason for
this step is as follows:

Suppose that the occurrence of electromagnetic waves is accompanied
by a secular variation in the mass of the source. Then the form of the
Schwarzschild solution shows that for large r the coefficient of 7~in the
metric for the dipole after the end of its oscillation should differ from that
before the beginning. It is therefore the ! terms in the solution of the
(22) approximation that we are interested in, and they do not produce
terms of order exceeding 72 on the left of equations (IL.1) to (IL.7)
(p=s=2). Hence we assume that it is sufficient to obtain a suitable
approximate solution of the (22) approximation (IL.1) to (IL.7) (p = s = 2)
satisfying the latter up to terms of order r—3. In any case this will ensure
that up to the (22) approximation the total flux of ‘phoney’ matter across
a large sphere with centre O and radius R (got by using the material energy
tensor 7';;) is of order R—2, i.e. zero across an infinite sphere. Thus the
approximate solution and the corresponding exact solution of the (22)
approximation should give the same numerical result as far as the total
variation in mass of the source is concerned (cf. BoNwogr, 1959, § 11 for
the case of gravitational waves).

In accordance with the above we need values for the quantities (7.1)
only up to terms in 7—3: from the formulae (6.6) to (6.12) they are

P= = —82m(r2(7"2 + ) + 23(F 1 + [7)],
Q= —F —s2mst 2 — [ — 2 — 0
L= 198asc[r2fF" + r3GF" + 2], . @3

(22) . . P
M =64ms?[r2f"f" + =3(f f" + "],
22)

N = —128zsc[r2f'f" + r=3(ff" + f' )]

It will save a great amount of work if the expressions (7.3) are each
broken up into two parts, as below:

(22) (22) (22)
P=P+ P, etc., (7.4)
1 2
where
(22) 22) (22)
=8S=M=0,

1 1

(22) (22) o =) L 4]

Q= —R=6dmst(r2 7] =237 "),

@2 ! (7.5)

L= —128asc[r>F " + =" + T 1,
22)

N = 128ms0(—2F " —r27"),
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(22) 22)
P =8 =—64ms2(r-2] " + 2037 ")
(22) (22)

9=1=0.
‘ZLZ)_ 1287sc[r-2F/ 1" + 3(FF" + FF91, - (7.6)

(22)
M = 647s?(r=> Fpr 28y,
(22)

N = —128zsc[r—2 f P r3(Ff ey f )
Here, the notatlons (II1.2) and (I11.3), as applied to f, are assumed. The

above treatment for (}5), 5,) .. .,(21\27) automatically leads to a similar
splitting of equations (I1.1) to (I1.7) (p = s = 2) (which are linear in the
féi’k and their derivatives) into two sets of equations (I) and (II), having
for the right-hand sides the expressions (7.5) and (7.6), respectively.

Our object now is to obtain suitable approximate solutions of equa-

tions (I) and (II) satisfying them up to order r—3. To avoid possible

confusion we shall distinguish the corresponding gf)k, occurring on the
left of equations (I) and (II), by designating them as g,k and g,k, respec-
tively.

The key equation (7.2) (p = s = 2) will now consist of two parts: by

making use of the formulae (7.5) and (7.6) these become, up to order r—3,
@)

04 = 128718 Ve f b (7.7)
(22) A (22) (22)

[1124 = 64mr-3s2(—2 f f g Y)—(x1+71y); (7.8)
in equation (7.8) the notation (II1.7) has been used to introduce the
symbol f”, where Y (&) is defined by

Y'(§) = X(&)=1"%() . (7.9)

In obtaining equation (7.7) we put all the arbitrary functions 213), %, ((;?

equal to zero, whereas in obtaining equation (7.8) we retained x ’ for use
later to preclude singularities from appearing along Oz (except at O).
For a solution of equation (7.7) it is found necessary to proceed as far

22)
as the term of order—3in the calculation of 4, if the corresponding complete

solution of equations (I) is to satisfy the latter up to order r—3.4 For
equation (7.8), however, the situation is somewhat different. It turns
out that, to obtain a solution of equations (IT) satlsfymg them up to

order r—3, it is sufficient to solve equation (7.8) for A only to order
22) (22) (22)

r~1. In the expressions for 2B, g}, 12), found with the aid of equations (I1.9)

¢ This solution of equations (I) will itself contain only terms of order r—2 or
higher, as we shall soon find (see the solution (7.11)), and will accordingly be neg-
lected in due course.
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to (IL.11), terms of order 7—2 and r—3 must, nevertheless, be retained,

@
except those arising from similar terms in f21 , which will have been ignored

in any case. Combining the two solutions of equations (I) and (IT) obtained
to the degree of approximation required above, one will have a solution
satisfying the (22) approximation up to order r—3.

It is easily verified that

(22)

A = —32xr3s? ff (7.10)
satisfies equation (7.7) up to order r—3, and from this and equations
(I1.9) to (II.11) the remaining non-zero f(;?,c can readily be obtained. The
corresponding complete solution of equai;ions (I) is as follows (after some
partial integration):

1 e L
g 4=

<51,

1 (22) 1 [_,.]’
e e T +2 =77),

%%m_ e (_r_gff e 3ff ) . (7.11)

<)

1 @ . 4 _
m?“82< o 2’f"4[f’f]' dr)

For verifying that this solution satisfies equations (I) up to order
22)
r—3 it is necessary to differentiate the integral in the expression for l]),

with respect to ¢, through the sign of integration. This is in order, since
this integral is uniformly convergent for all ¢, if >0, as is readily seen
by the Weierstrass M -test for integrals.

All the terms in the above solution of equations (I) are of order
r=" (n = 2) and will therefore represent no permanent change of order
r—1 in the metric. Hence, our main concern is to obtain a solution of
equations (II) to the required degree of approximation, starting with the
wave equation (7.8).

A solution of equation (7.8) can be built up from solutions of equa-
tions of the form

O® = r-35(0) 7§, OD=r350)7 . (7.12)
It is easily verifiable that the functions
2 o~
®—r180) 7", ®=r180)7F (7.13)
are respectively (exact) solutlons of equations (7.12) if
o o 3
Sy + Sycoth=s (x=1,2). (7.14)

Unfortunately, it is not in general possible to obtain solutions of equa-
tions (7.14) which are non-singular for 0 < 0 < x. This difficulty can be

overcome, however, by means of the arbitrary function (Zg?(r, t), specially



Change of Mass by Radiation 33

retained in equation (7.8) for this purpose. Consider then the equations

OP = r-35(0) 77" — (3o + 7‘1(29?),} (7.15)

(22)

, Of= r-350) Y — (%1 + %)
and choose (x (r, £) such that

G+ LY = k3PP kg3 Y (7.16)
in the first and second wave equation, respectively. Employing again the
functions (7.13) in equatlons (7.15) g1ves

822 + S coth = s — k, (x=1,2) (7.17)
instead of equations (7.14), and suitable values for the constants %; and
ky can be found so that equations (7.17) possess non-singular solutions for
00=am.

By this method we can obtain a solution of equation (7.8) (see below),
non-singular in 0 with (2;? (r, t) satisfying

@2 (22) 8¢, 435

s (Ta+ 7t x>=r—3(——‘ff +57). (7.18)
(22) (22) (22)
For the remaining non-zero gz » the values of B O D can now be

calculated up to order r—2 by means of equations (II. 9) to (II 11). It must
be emphasized at this stage that the function %?, satisfying equation
22,

22)
(7.18), occurs again in the formula (II.11) for 12? With the remaining

functions of integration put equal to zero, a complete solution of equations
(IT) is found in the above manner to be (after several partial integrations
are carried out)

1 2 2 <20 &
§;é=r“%?ff —57),
l ©22) 1

s B=st |yl —g T4

r T
+ r‘3(ff)’ + r‘lfr—lf’ dr + r-lfr*z(f’f)’ dr) i
@) . .
% g=s <—~7_1(f 7 + 57 1Y—HT"2]‘ fr—r3f+
o r (7.19)
+%r"1fr—1f’ dr+%r—1f r*?’?'dr) ,
1 @ o = . 200 ,
s D=5 +—’_1Y—§7‘282f e+

-I—%fr"l)?dr—r(%-—%sz)fr—zfdr—

feo)
r

r
— %f r'3(f’f)’ dr + 4r02f r-4(}’f)’ dr,

oo

3 Commun. math. Phys., Vol. 5
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where the notation (II1.5) has been employed for the introduction of
X, X (&) being defined by the second equality of (7.9). In the veri-
fication that this solution satisfies equations (II) up to order r—3 it is
necessary to differentiate various integrals with respect to ¢ through the
sign of integration. This is allowed on account of the fact that those
integrals are uniformly convergent for finite { when r > 0, as can be
shown immediately by the Weierstrass M-test.

Combining the two solutions (7.11) and (7.19) of equations (I) and
(IL), respectively, we obtain, as a suitable solution of the (22) approxi-
mation satisfying the latter up to terms of order -3,

L Lo ief
mAz—?T S Y—I—RA,
,
1 (22) 1 ~ A
'3?7;.8282(“?7’ IY-I'T lfT 1Yd7')+RB,
,
1 @ 1 s 1 ~ (7.20)
m@:sz(ﬁr 1y +gr 1fr 1Ydr) + Rg,
1 e» 9 11«,} 4 . M 2 1, ; o 7
WD:?T -I—'g*‘/‘f Xdr——r(—§~—?s)fr Xd?'TRD.
Here, Ry, . . ., Rp (which, incidentally, together include all the terms of

the solution (7.11) of equations (I)) consist entirely of terms each of which
is either of order »—2 or higher for all ¢, or of order »—1 and tends to zero
as £ —> 4-o00; s0 Ry, ... do not contribute to any permanent change of
order —1 in the metric.

This solution (7.20) is difficult to interpret physically. However, the
coordinate transformation

T*
r=r*—32me2a? [(%—%s*z)fn‘lf(n, %) dn +
7*

A+ r* (%_%3*2)f77_2f/(77’ t*)dn} ,

0 = 0% + 32me2as*c* X
(7.21)

% ¥
1 3 1 3
X [gr*‘lfn“lY(mt*)dn+§f?7‘2f’(n, t*)dn},

¢ = ¢*,

32m
3

b= t*

ezaz[ﬁr*, t*) + r*fn‘l X(n, t*)dn],
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where s* = sin0*, ¢* = cos6* and the notations (II1.5) and (II1.7) apply
to X (&) and Y (&) of (7.9), brings it to one that can be physically
interpreted as we shall soon find. The transformed (22) solution is

1 @ 1 @
~gon 1= 3, 4
,
2 s (1 1
2P (3——2—82”17—1}?(17, t)ydy— R, ,

1 5 22 1 @

1 —_
gy =g, B= 6‘82f77‘1X(n, t)dn—Rg,

1 @2 1 @ 1
— g 1T gy =gy~ O =— st [ 2 X (n, ) dy — Re,
,
1 e» 1 e 2 5 4 =
s in—mz D=5 T+ 5 [ Xm.ndy+
® r
1 -
+§782f77‘2X(17, t)ydn + Rp, (7.22)
1 ©2) 1 (22’
S T, b 6’0[77"11? (m,8) dn ,
1 e 1 @ &
Bon T T Z_'_‘Sz/’?_lX £y dn +

O

1 jey 1 O
327" YuT g

r T
1 3 1 3
:-—sc[gfn“lX(n,t)dn + Fr/n—zX(n,t)dn],

the asterisks being omitted; the previous approximations are unaffected.
During the transformation it is necessary to differentiate some of the
integrals in equations (7.21) with respect to ¢ through the sign of inte-
gration. This is permissible, since the Weierstrass M-test can be used to
show that these integrals are uniformly convergent for finite ¢, if » > 0.
Involving the same method of differentiation is the verification that
the solution (7.22) satisfies up to order r—3 the (22) approximation for the
non-diagonal metric (3.2), i.e. equations (1I.14) to (I1.20) with the right-
hand sides given by the formulae (7.3), when appropriate values for
Ry, ..., Bp are used in the process.

3‘
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In examining the solution (7.22) for physical interpretation we notice
integrals of the types

r r
I n X, t)dny, [n2X(n t)dy, (7.23)

where X (r, t) stands for X or X. Tt is easily shown that these exist for
all » > 0 and all ¢; that for any given finite value of ¢ these tend to zero as
r— oo at least as rapidly as 7—2 and r—3, respectively; that, from the
Weierstrass M-test, these are uniformly convergent for —oo < ¢ < oo,
for any given positive value of r. As { — 4 oo, the integrals (7.23) tend
to zero (at least as rapidly as t-! and ¢~2, respectively), as can be seen
qualitatively by regarding X (¢ F %) as a J-function; a similar argument
shows that they tend to zero as r tends to infinity with |¢| in such a way
that ¢ F r — a finite limit.

It follows that the metric (7.22) possesses no singularities for » > 0.
Moreover, owing to the fact that, as r — oo and ¢ — 4 co, the derivatives
of the expressions (7.23) tend to zero at least as rapidly as the expressions
themselves (this becomes obvious on differentiation), it follows that the
metric (7.22) tends to flatness as r — co and £ — + co.

Ignoring the expressions (7.23) and R4, . . ., B, in the solution (7.22),
which do not give significant changes in the metric, the solution becomes

t+r
64:1;7! — l[azf]wz )dE— ﬂszﬂz(g)dg] (7.24)

©2) (@2 647:

Jun=9gaa= 1Y =

according to the notation (II1.7) and equations (7.9). If r (>0) is given,
then

647

ﬁzr—lff"z yd&, for t<t,—r,
(2 <) (22
Ju = Jaa = t (7.25)

b4 a2t [ [12()dE, for 1>y 4 .
121

The formula (7.25) corresponds to an approximate Schwarzschild metric

(with terms in r—2 ignored) for a single uncharged particle of mass M
given by

32n

ﬁ262a2f]‘”2(§ dé, for t<t;—r,
= 4 (7.26)

32 et [ [12(6)dE, for 1>ty 47
ty
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Thus the above solution of the (22) approximation shows that there
occurs a secular variation Am in the mass of the source in this approxi-
mation, given by

Am = — 2% (4 )eZasz”(sd& (@+p=1). (127

Up to the (22) approximation this varlatlon in mass is precisely equal
to minus the total flux of energy of electromagnetic waves from the
source, given by the formula (6.14). As expected, this total variation in

. . 1
mass vanishes when the waves are stationary (oc =f= ”é') .

Appendix I

The Multipole Wave Solution

We derive here the solution (5.8), for the source in section 2, of the
wave and gauge equations (5.4) and (5.5). First we obtain the expansion
for the Kirchhoff solution (5.6) and (5.7) (relevant to any electrically
charged distribution) in which 7* is replaced by r.

Carrying out the Taylor expansion about ¢ F r for the integrand in
the first of equations (5.7) we obtain

B G AT %) = f—l)( )JW( G5tFn (L1

n!
n=0
(signs correspondmg), where
g=r*—r (L.2)

and the symbol ™ means ¢7/d¢". Employing the binomial theorem in
expanding g*/r* (n =0, 1,2, ...) in ascending powers of ! (and #) for
the range r > 7 = O P = (82 + 2 + 22)112, we get

1 1 & ™ ol

= X P, (cos0%), % = — I Palcost®),..., (L3)

"= n =

in which 6% =< PO P and P, are the Legendre polynomials. Substituting
the expansions (I.3) into the expansion (I.1), using the formulae

72 = &%, cosl* = x,&r, (L.4)
where z; = (2, ¥, ?), & = (%, 7, £), and inserting the result in the first of
equations (5.7) we arrive at the following required (multipole) expansion
for the right-hand side of equation (5.6):

¢ = r 1L + @y (r2 Ly + 12 1y) +
+ terms involving moments of J; of order higher than the first. (I.5)

Here, I;/,,,... are the moments of J; at time ¢ about the coordinate
planes, defined as

Lo, ..(0) = [&8,%, ... J;@& 7,8 t)dv (4, u,v,...=1,2,3), (L6)
14
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and the notation (ITI.1) of appendix IIT has been used. In this solution
the expansion is valid for any point on or outside the smallest sphere,
centre O, that can enclose for all time all the sources of the field.

For the particular system of section 2 we use the notation (4.2) to
obtain readily the solution (5.8), valid for » > max.|l|. This is the re-
quired solution for this source, because it satisfies the gauge equation (5.5)
as well as the wave equation (5.4) — an expected result since equation
(5.5) implies and is implied by the second of equations (5.7),i.e. e = const.,
for any ¢, satisfying equation (5.4) (MoLLER 1962, § 55).

Appendix 1T

The Approximate Field Equations and their Solution

The (ps) approximation for the diagonal metric (3.1), which is the
coefficients of e?a® obtained on insertion of the expansions (4.5) and (4.1)
in the field equations (1.1), is written out below. To save printing the
labels (ps), which should have been inscribed above the capital letters,
have been omitted throughout this appendix, except for those few
places where confusion might arise without them.

2Ry =0t —Ayy + By + Oy + Dy + 2071 (—4; + By + C) +
4+ 12(dgy + A, cotl) = P, (IL.1)
20=2Rgy = 01 By — By + 171 (—4; + 3By + Oy + Dy) +
+ 17 2(Ay—24 — Bycot + 2B +
+ Ogy + 20, c0t0 + Dyy) = @, (I1.2)
272 2R = 0: Oy — Cyy + r1(—4; + B, + 3C; + D;) +
+ r72(4,cot —24 — B, cotl + 2B + Cyy +

+ 2C, cot@ + D, cotf) = R, (IL.3)
2Ry =0t Ay + By + Cyy— Dy —2r71D; —

— 1=2(Dy, + D, cot) = S, (I1.4)
2R}, = 0: — B, coth + Oy, + C) cotl + Dyy—

4y + Dy = L, (IL5)
2Ry, =0: B+ Cy+r Y (—24,+ B, + Cy) =1, (I1.6)
2Ry, =0: Ayy— Bycotl + Cyy + Cycotf = N, (IT.7)

where R}, = R;;, + 8 E,;;. In the above equations a subscript 1, 2 or 4
after 4, B, C or D indicates differentiation with respect to », 6 or ¢ —
this is to apply to any non-tensorial symbol unless otherwise implied. The
left-hand sides of the above equations, corresponding to the @,,, in

equations (4.4), comprise linear terms in ‘5;’,0 (and their derivatives);
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P,Q,...,N on the right, corresponding to the right-hand sides of
(ps)

equations (4.4), consist of Z,; and the nonlinear expressions ‘ﬁ,m in

(gq?k (and their derivatives) known from solutions of the lower approxi-

mations. For the (22) approximation the ¥;,, vanish and P, @, ..., N
are given by the formulae (7.1).

The (ps) approximate field equations (II.1) to (I1.7) have already been
integrated by BoNNOR, 1959, in his consideration of gravitational waves,
and we simply write down the solution:

4 E (4 + 20 14)) + 12(Ayy + Ay cot0) — A,y
P [ (M, + 1+ M) At — [ [(Ly + r1L)— [ (Nyy + r-2N,) de]d6—

— (417 + [ (o + r7toy) dO— ( + 17 p) (1L.8)
O =—A +cosec?l [sc[24A 4+ rL [{24 +r([f M dt + n)}dr+r-17]d0+
+ cosec?0 [ s*(f N dt + o) d0 + u cosec?0 , (I1.9)
B=—C+rt[24d+r(f Mdt+n)ldr+rit, (IL.10)

D=A+r[[2r 24+ rY{[(L—[Nydt—o,)d0 + y}]dr+rv, (IL11)

where

n=(r,0), o=0(r0), y=x(r1),
v=9(0,1), t=7(0,t), p=u(r1) (IL.12)

are six functions of integration. The key to this solution of the (ps)
approximation is the solution for 4 of the inhomogeneous wave equation
(IL.8).

The six functions (I1.12) of integration have to be chosen to satisfy
two requirements: (i) that the (ps) metric be Galilean at infinity, (ii) that
it be non-singular on the rotation axis Oz, except at 0. If trivial solutions
are ruled out, the necessary and sufficient condition for the satisfaction
of the second requirement is that

A, B cosec?), C cosec?0, D be of class C% near sin = 0. (IL.13)

‘When using the above solution of the (ps) approximation one must sub-
stitute it back into these field equations (II.1) to (I1.7) to find out
whether further conditions have to be imposed on the six arbitrary
functions.

Concerning verification of the solution (7.22) of the (22) approxi-
mation we notice that the (22) field equations it satisfies are not in the
form (IL.1) to (IL.7) but correspond to the non-diagonal metric (3.2).
The (ps) approximation for this metric is in fact the following equations,
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with P, @, ..., N having similar meanings as before:
— Ay + By + Cy + Dy —2F,, +
+ 2r-Y—A4, + B; + C; + B, + E, cotl) +
+ 772 (dy + Ay cotO + 2B, + 2F cot0) = P, (11.14)
By — By + r M (—Ay + 3B, + Oy + Dy + 2B, — 2F, — 2Gyy) +
+ 17%(Ayp—2A4 — Bycoth + 2B + Oy, +
+ 2C, cotl + Dy, + 4E, + 2F cotl) = Q , (I1.15)

Cy—Cy+rt(—4,+ B, +3C; + D; + 2E, cot§ —2F,— 2G, cot0) +
+ r=2(4,cot0 —24 — Bycot + 2B + Cyy + 20, cotl +
+ D, cotl + 2E, + 4E cotl) = R, (IL.16)

Ay + By + Cyy— Dy + 2Fy, +
+ 2r Y (—D; + 2F, + Gy + G, cot0) — r=2(Dyy + D, cotf) = 8, (I1.17)
— B, cotf + Ciy + Cy cotl + Dyy— Foy + G4 +
4 r(By—Gy)— 1Ay + Dy + 2B) =L,  (IL18)
B+ O+ r 1 (—24,+ By + Cy+ Eyy + E cotl + Gy + G cotl) +
+ r2(—Fy— F,cotl + Gy + G cotl) = M , (IL.19)
Ay — Bycotf 4 Cyy + C4 cotd +
+ 3B, + Fy—2G, + r(Byy—Gy) =N, (I1.20)

(ps) (ps) (ps)
in which E, F, G, coming from the expansions

< o (vs)
Jo=r2 X era L,
p=28=2
> °° (ps)
gu=2 Y eaF, (IL.21)
p=28=2
od o0 (Pe)
Gou=12 X e'a @
p=28=2

for the non-diagonal coefficients of the metric (3.2), have been included.

Appendix IIT

Notation Related to Mixed (Outgoing and Incoming) Radiation

The notations introduced below for the treatment of combined out-
going and incoming radiation avoid considerable writing in section 7.
If {p(&)} is a class of functions connected with gravitational or elec-
tromagnetic wave fields, then
PO = ap®(t—r) + @t + 1) }

1;‘;(") — O”/)(n) (t—17)— ﬁ’(/)(") (t+1), (II1.1)
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where ™ denotes 0"/ot" (n = 0).
If y (&) and A(&) are two members of {y (&)}, then

I =5 f'o) = ? (@m0 — o j@)) |

— 1 [P 1 AN (HI-Q)
P L0 =— gm0 = < ( (@ )0 — P i)
‘@(m)z’w): G o) — L 5 PO £ o o)
I11.3
pom J@) = em ] Py — ; @@ A0 4 P @) ( )
Furthermore, if
X (&) =1y, (IIL4)
then
X=%7=wX 2
=i =®X({t—r)+ 2X(E+ 1), (ITL.5)
X=%1 =2X(t—r)— B2X(t+ 7).
Finally, if
Y =X(), (IIL.6)
then we write
= t+r
= 2fX E)d§+/32f X(&)daég,
brr (IIL.7)

—oc2fX§)d§ X

It is worth noting that

X 2X oX X aY a? a¥ Y
T T wrer T a b ar et ar o (L8)
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