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Abstraet. It is shown that the difficulties connected with Haag’s theorem can
be bypassed, without losing Euclidean invariance, if the time evolution is considered
as being only locally unitarily implementable.

A variant of the conventional interaction picture is defined, and a perturbation
expansion derived which is shown to converge absolutely for a class of (non-trivial)
Euclidean invariant 2-dimensional models.

1. Introduction

The Hamiltonian formalism, as applied to relativistic quantum field
theories, has fallen very much into discredit during the last decade or so.
But perhaps the time is now ripe to investigate again some of the basic
difficulties of field theories, and this in the light of what has been learned
in the so-called “axiomatic’ approaches.

Following WicHTMAN [1], we can label the three main difficulties of
the conventional approach by the catchwords — Haag’s theorem, —
Instability of the vacuum, — Ultraviolet catastrophe. The aim of this
paper is to show that the first of these difficulties, namely Haag’s
theorem, can be bypassed in a systematic way, with a slight alteration
of the conventional formalism.

We shall have to define a new picture, closely related to the inter-
action (or Dirac) picture. The difference will be that the trivial part of the
time evolution will be acting on the states (instead of on the operators)
and the non trivial part will act on the operators. Haag’s theorem says
that the non-trivial jpart of the time evolution cannot be unitarily
implemented (if the theory is Euclidian invariant), but we shall remark
that it does not forbid us to have the time evolution acting as an alge-
braic mapping of a certain ring of operators. We shall even prove that
this mapping can be locally unitarily implemented if it exists.

We consider the disagreeable feature of having the time evolution
being only locally unitarily implementable (instead of globally) as very
small in comparison to the advantage of being allowed to use the canon-
ical commutation relations (instead of some inequivalent representation
nobody knows how to construct) and to work in the Fock space.

* Research supported in part by the U.S. Air Force Office of Research, Air
Research and Development Command.
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2. Local rings systems?

Let A4 (x) be a free field operator (in the Heisenberg picture), {f(z)}o
the set of all (s + 1)- (or s-) dimensional test functions with support in
a bounded open region of space-time @ (resp. of space (). We denote by
R(0) resp. R(0O) the von Neumann ring generated by all 4 (f) (resp.

A (f) and A'(f)), f €{f(x)}¢- A theorem of AraKI [6] tells us that R(0)
= R(0), if 0 is the double cone spanned by 0.

We denote by 2 the norm closure of the set theoretical union of all

R(0) for all bounded open O : YU = chgd R(0). If we now consider the set

of all s-dimensional spheres S, centered at the origin, and denote by
C,(t) the corresponding double cone at time #, we have that A = A (#)
=, gw R(C.(1).

We shall be interested in isomorphic mappings of U into the ring
B(H) of all bounded operators on the Hilbert space. An important
property to keep in mind, is that, due to the fact that U is strictly
smaller than B(H), such mappings are not always implemented by
unitary operators. An isomorphism f between 2 and a ring ;, A, = S[A],
is called globally unitarily implementable (or spatial) if there exists a
unitary operator U such that S[A]= UAU-! for all 4 €. An iso-
morphism which is not spatial is called algebraic. One can show? that in
this case it is locally unitarily implementable, that is, that there exists
for each bounded region (), a unitary operator Uy, such that, for
ACR(0), f[A]=UyAUgG™.

3. The interaction picture

In this section, we introduce a picture closely related to the usual
interaction picture, and formally derive a perturbation expansion for
the time evolution.

The basic idea of the interaction (or Dirac) picture is to subtract the
part of the time evolution which is given by the free Hamiltonian from
the total evolution. One, therefore, admits that at time ¢ = 0, the
Heisenberg and Schrodinger pictures coincide and that the field operators
Ap® are transformed according to Ap(f) = et A, (0) et el 4,(0)

1 We give here only the essential definitions. For a detailed account see for
instance [2], [3], [4] and [5].

2 Cf. Th. 4.1 and footnote 7.

3 A subscript D indicates the usual form of the interaction or Dirac picture, a
subscript § the Schrodinger picture, and a subscript H the Heisenberg picture. We
shall use no subscript for our form of the interaction picture. In other pictures than
the Dirac one, 4,(f) means the operator A, (t) = e'#°* 4,(0) e7*#°* which will be
well defined when we shall use it.
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= Az (0) = Ag, and the states by

lyp (£)) = (€ e s =030l [yp () = V(¢ 1) [yp(©))  (3.1)
where Hg is the total Hamiltonian in the Schrodinger picture,
Hy=H,+ HEL.

We shall retain the basic idea of the interaction picture, but for
reasons which will become clear below, we prefer to have the trivial part
acting on the states. We, therefore, define

A(t) = e iHat giHs (1) giHol! 4 (1) g—iHot g—iHs(§ 1) ¢iHlot
= U@ ¢)AE) UL, ).
We shall write U (t,0) = U(t) and V (¢, 0) = V (¢). In the Dirac picture,
we have the differential equation

2V ——iHLO VO, VO =1. 3.3)

(3.2)

From which we can deduce the integral equation
¢
Vit)y=1—1 [HL(z) V(z)dz (3.4)
0
and Schwinger’s perturbation expansion:

VE)y=1+ (—1) ftdr HY (1)
0

t 7y
+ (—i)ZOfdfl [ dvy H) (v)) H (75) (3.5)
N

Again for reasons which will become clear later, we are not interested in
equations for V (¢) or U (), but want equations for U (¢) A U-1(¢). In our
picture, this differential equation is

2 UM A©0) U-(0) = +i[Hh (0, UQ 4(0) U ()], UQ) =1 (3.6)
and we get the integral equation

U@)A©0) U-1(t)=4(0)+ 1 ftd‘[ [HL(—7), U(z) 4(0) U-1(7)]
and, therefore, the perturbation e(;pansion
U0 4(0) U0 = AO) + i/ de( (), 40)]
4t dr, [ an (), Hhw), AON  31)

_l_....
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The developments (3.5) and (3.7) are purely formal ones; however, for
the special case where HI is a bounded operator (and 4 a quasilocal
bounded operator), the above expansions are perfectly legitimate and
absolutely convergent with an infinite radius of convergence. If HI is an
unbounded operator, nothing can be said in general, and the series has
to be investigated for each particular case on a suitable domain. The
development (3.7) is not essentially new; it is contained implicitly in
the work of ScHWINGER and of Dyson, although in a different form?.

The surprising fact will be that the expansion (3.7) is better behaved
than the expansion (3.5), at least in some very simple cases (see Section 5).

One can see that the Heisenberg picture is obtained very easily from
our interaction picture, simply Ay () = et 4 (t) e8!, and, therefore,
one can consider the interaction picture as being merely a trick to obtain
the Heisenberg picture by using the canonical commutations relations.
We shall use this fact very often in the sequel.

There are many other expansions which may be written in this line
of thought and have special virtues for particular problems, we shall
deal with them in subsequent publications.

4. Haag’s theorem

Haag’s theorem (cf. for instance [7]) states that if the theory is
Euclidean invariant and irreducible®, the operator V (¢, t') of section 3
exists only if the theory is equivalent to a free field. Things obviously do
not go better in the form we have given to the interaction picture, and
U (¢, t') does not exist either.

If we now look at our interaction picture, we remark that we are not
interested in U (¢, ¢') itself, what is relevant is the mapping 4 (¢') - 4 (¢),
which should be implemented by U (¢, ¢'). Haag’s theorem tells us that
U (¢, t') does not exist, but this does not mean that the above mentioned
mapping cannot be defined and constructed in some other way. Explicitly
stated, we shall try to prove that there exists an isomorphic mapping
B(¢) of the algebra 2 into the algebra B (%) of all bounded operators on
9, and which corresponds to the mapping described above.

4 In the form (5.2) or (5.3), the perturbation expansion is essentially equivalent
to the expansion given by F. Dyson [17]; cf. (20) p. 431. We, however, do not use
time-ordering, as we want to use locality.

§ Haag’s theorem also applies if the algebra ’” is countably degenerate, but
it does not remain true if A" is continuously degenerated and if V (¢, ¢) does not
leave the center A’ N\ A’ elementwise invariant. However, we do not know of any
physically interesting model fitting in this particular category, excepted, of course,
classical physics; cf. [8].

9 Commun. math. Phys., Vol. 3
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In order to prove the existence of f(¢) [2(], we propose to apply the
following procedure :

a) “Cutt off” the interaction Hamiltonian in such a way that
— HY(0), exists (k labeling the various cut offs).

— H, + H%(0), is essentially self-adjoint on some domain.
— H%(0),, is not Buclidean invariant (by Haag’s th. already necessary
for the above point).

b) Construct U,(t) (which exists if a) is already satisfied).

¢) Consider U (t) AUyt (¢) for 4 € R(0), O bounded, and examine
the convergence of U, () AUz (f) in a suitable topology (strong, in
general) whenever one releases some or all “cut-offs”.

The above recipe should not be considered as a universal panacea
against all kinds of infinities. We believe (and shall show it in some cases),
however, that it allows us to eliminate difficulties connected with Haag’s
theorem, and provide a basis for a completely rigorous study of the
other problems of quantum field theories. As we shall see later, the
elimination of the troubles connected with Haag’s theorem is sufficient
to permit the absolute convergence of the perturbative expansion (3.7)
in the case of some ‘“‘cut-off”’ (but translationally invariant) 2-dimensional
models.

We conclude this section with a simple theorem, which makes, how-
ever, heavy use of the theory of local rings. We denote by f(t) [2(] the
limit of the mappings U, (f) 4 Uz1(t), A €U (whenever it exists), the
limit removing some but not necessarily all cut-offs, the others being
held fixed (for instance removing only the cut-off which destroys
Euclidean invariance).

Theorem 4.1.8 If §(#) [] exists, then it is a (faithful) *-isomorphism
of U into B($H), which is norm-continuous and locally unitarily imple-
mentable.

Proof?. That it is faithful follows immediately from the fact that
is simple [10], and that it is a *-isometric mapping follows from this and
the fact that it is the limit of *, isometric mappings. That it is norm
continuous follows from the fact that 2 is a C*-algebra. If now E(0) is
the local von Neumann algebra associated with the bounded region 0,
then it follows from a theorem of FELpMAN and FELL [11], and from the
fact that R(0)' is of infinite type [12], [13], [14], that B(¢) [R(0)] is
again a von Neumann algebra of infinite type, as § is separable. One
easily sees that both R (0) and {f(f) [R(0)]}’ are of infinite type, because
0 being bounded there always exists ¢; which is bounded and completely

¢ We have restricted ourself for this theorem to the special case of a scalar bose
field in interaction with itself, the generalization to other cases is easy.

7 This proof is essentially that of a theorem in [9] together with a theorem
of [10].
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space-like with respect to 0;, R(0,) is of infinite type and R(0;) C R(0)
and B(t) [R(O)1C{B () [R(O)]}Y. We can, therefore, apply a theorem
of Drxmier [15], Cor.7, p.321, which implies that the mapping
R(0) — B(t) [R(0)] is spatial, that is, unitarily implementable. QED

Corollary 4.2. If f(¢) [U] exists, and B(#) is permutable with the
space translations, then the interacting theory is strictly local at equal
times.

We also have the following generalization of a result by ArRAKI [16]

Corollary 4.3. If S(¢) [?] exists, then in all representations of the
interacting theory in separable Hilbert spaces, and in the Heisenberg
picture, the local rings R(®) are of type III for the same (bounded)
regions 0 as this is true for the free field. Furthermore, in all cases where
0 is bounded the R(0) of the interacting theory are spatially isomorphic
to the corresponding R (0) of the free fields.

We see that although U (f) does not exist®, we may expect the next
best thing to be true, namely that for each bounded region @, there
exists Uy (t) such that

B [A] = Uo(t) AUG () YV 4 € R(0)

and we have the automatic insurance that our theory is local at equal
times, provided g (t) is permutable with translations.

The corollary 4.3 is important because (at least for all cases where
[ () exists as an automorphism) it forbids a purely algebraical charac-
terization of a field theory. One could indeed have thought that as it is
known that there exist non-isomorphic of typeIIl von Neumann
algebras, field theories which lead to different S-matrices should have
non isomorphic local rings, even in the case when the representations of
the Poincaré (or of the translation) group were the same. Cor. 4.3, there-
fore, means that this is not possible and that the distinction between
different theories is not made by the local algebraic structure, which is
always the same, but by the different dynamics which is superimposed.
This is, in fact, very reminiscent of the situation in the case of problems
with a finite number of degrees of freedom, where the algebraic structure
is always the same (type I) and only the dynamics differ.

We think that the above approach is superior to the usual way of
bypassing Haag’s theorem, namely of destroying the Euclidean in-
variance by enclosing the system in a finite box. To our knowledge, there
is no systematic way of getting rid of the box, and we feel contrary to the
opinion of many physicists, that discussing scattering and other asympto-

8 Among all possible representations of the interacting theory, one could search
for the particular one in which the time evolution is globally unitarily implementable
(in the Heisenberg picture) and the spectrum condition satisfied. We shall deal
with this problem, and related ones, in a coming paper: “On the physical vacuum”.
9%
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tic properties in a finite box does not make much physical sense. It
should be clear that proving that f(f) exists is in general a very hard
task, but it is an explicitly stated problem, to which one should be able
to get an answer in a finite amount of time for each particular case.

5. Applications

We shall now work out explicitly a possible application of the general
principles presented above. The intuitive idea is the following: if we
suppose that Al (x) is the interaction Hamiltonian density in the Dirac
picture (possibly containing some cut offs), we can imagine the particular
case in which [ h}(z)f,(x) d*x = H}(¢), is well defined (maybe un-
bounded) operator whenever f,(x) is a test function with compact
support, and such that f.(x) = 1 for |x| < r. If we can also show that
H, -+ HL (1), is essentially self-adjoint on some domain, then we can
construct U, () and study the behavior of U,(t) AU () as r > co. If
now the Hamiltonian density is local (or quasi-local) with respect to the
free field, and 4 has support inside a double cone spanned by a sphere of
radius ry < r, U, (t) 4 U;71(¢) will no longer depend upon r if 7 gets very
big, 4 being held fixed. If this idea represents the reality, it means that
B(¢) [Y] and hence the interaction picture exists in our sense. Because
of Theorem 4.1, we can state our idea in the form: “the locality of the
interaction implies that locally, we can use the Fock representation for
the interacting field”.

This intuitive idea is, however, in general very difficult to transform
into a mathematically rigorous argument, and we shall take a rather
particular case, where everything can be proven quite rigorously, and
which, we hope, still contains sufficiently many physically interesting
cases. That we shall use the perturbation expansion (3.7) in the sequel,
does not at all mean that our formulation of the interaction picture
(Section 3) or our recipe for bypassing Haag’s theorem (Section 4), or
even the intuitive idea above, are in any way dependent upon the
success of perturbative explansions, and we hope to show in subsequent
publications how to prove the existence of S(f) without using them.

We shall consider theories characterized by an interaction Hamil-
tonian density k) (z) which is a bounded quasilocal self-adjoint opera-
tor, i.e.

() 1Wh @) = 4] - M < oo, B (@)* = B (2)
(i) [Ah(x, 1), (¥, )] = 0 provided |x —y| = b = const.
(i) [} (x), 4] = 0 provided 4 € R(0) and the space-like distance
from O to x is greater than b.

(iv) R4 (x,t) is a O op.-function in x 6.1)

(this last postulate is not necessary, it only makes the demonstration
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easier. The reader can easily remove it; he will only have to add a good
deal of epsilontics in the proof.)

It is clear that everything is well defined if one is willing to put the
system into a finite box, but then there is no way of showing that it is
possible to remove the box from the solution. If one does not take a box,
the HY (¢) is not defined, so that a perturbation expansion of the type
(3.5) does not even make sense term by term.

Theorem 5.1. Let a theory be characterized by interaction Hamil-
tonian density which is bounded and quasi-local (as defined above). Then
the perturbative expansion (3.7) is defined term by term in any number
of space dimensions, and is absolutely convergent, with finite radius of
convergence in the case of one space-dimension.

Proof. In the Heisenberg picture, the perturbation expansion (3.7)
can be written as4

t
Ap(t) = Ap() + ¢ [ dv[H(E—7), Ap ()] +
0

+ 4 fdfl fndfz (H)(t—m), [Hp(t—75), 4p(®)]]  (5.2)
0 0
+ ..
t
= Ap(t) + (—i)of dv[H}(v), Ap(t)] +

t Ty
+ (—i)zofdrlof dvy[H) (v), [H) (v + 7), Ap ()11 + (5.3)

+..._

We first remark that if we define H} (1), = [ #}(x, 1) %.(X) d*X, with
%-(X) being the characteristic function equal to 1 on a (s-dim.) sphere of
radius r centered at the origin, and equal to 0 outside, then the above
perturbation expansion (with HY (z),) is perfectly well defined, and has
an infinite radius of convergence. We can take the following estimate of
the norm of H} (z7),:

|Hb @), = L2 -r - M (5.4)
2 1
where L = {Z/:% for s = {g, A being the coupling constant and M a
7T

constant. We shall call K = |4, (0)] the norm of A;(0), and assume
that the support of 45(0) is contained in the double cone spanned by a
sphere of radius a, centered at the origin.

We shall now take the limit 7 — oo in each term of the expansion,
show that each term remains well defined, and obtain an estimate of its
norm.
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Consider the first commutator: [HE (¢ —7),, Ap(¢)]. Because of the
quasi-locality, this commutator no longer depends upon » when

r>(@+b+1).

We can, therefore, estimate its norm to be <2KL|A| M(a+ b+ 1)%,
and the norm of the first term of the expansion, will be majorized by

t
c,=2KL|A M [dr(a+ b+ 1) (5.5)
0
with a similar discussion, we get that
t Ty
Cy= 22K L2 |22 M2 [dry(a+ 2b+ 7y) [ dry(a + b+ 15)° (5.6)
0 0

and in general

¢, =2L"} -Mftdr(a—l—nb—kr)s Cpn_1(T). (5.7)
0

It is then clear that every term of the perturbation expansion is well
defined. We shall now study its convergence.

Cn=2L" | - M(a-+ nb+ t)softcn~1('r) dt—
—2L|)| Moftdrl (@ + nb + 7, sofrldtzcn_l(rz) < (5.8)
< 2L|A| M(a+ nb + t)softcn_l(t) dr
the second term being positive. ¢,_,(7) is a polynomial in 7 of degree

contained between n—1 and (n—1) (s+ 1), all coefficients being

positive. Therefore,
t

[ i@ dr = 0y () (5.9)

and ’
6o S 2L~ (2] M(a+ nb + t) 0,y (5.10)
if s = 1, the series converges absolutely for ¢ < 1/(2.L|A| M b). QED

Therefore, at least in the case of 2-dimensional models, we are able
in principle to compute exactly f(f), i.e. the time evolution for times
which are small enough. As it stands, the theory is still incomplete; we
have not given any prescription to compute the transition probabilities
or other observable quantities. One difficulty is the fact that the vacuum
state of the interacting theory is not a normal state in the Fock space,
that is, it cannot be expressed by vectors of our Hilbert space, but has
to be considered only as a linear functional on the algebra QU (or rather
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A= Uoo B(t) [A]). We shall deal with this and other problems in a

1 <
subslalquent publication (cf. footnote 8).

It is perhaps useful to end this section by showing how one can
construct an arbitrary number of Hamiltonian densities satisfying our
conditions (5.1). We give the following examples:

a) Let {R(0)} be the ring system associated with a free field, choose
0 to be the double cone spanned by a sphere of radius /2, take an
A4 € R(0), let u(x) be the (free) translation in the direction z, and put
(@) = u(z) Au-1(z).

b) Let ¢(x) be a free Fermi field. Let f(y) be a s-dimensional test
function with support inside a sphere of radius b/2 centered at the origin.
Then [ @(y,t) f(X—¥) d*y = ¢;(X, t) is a bounded operator, and any
local polynomial of such smeared out fields will satisfy (5.1), for instance
W (x) = ;@) I" §y(2) §s(2) - I §y () . +1 . c.

¢) If now a(x) is a scalar field, we can define as above a,(x), but it is
no longer a bounded operator. We have to introduce a second regulariza-

+ oo
tion. As a;(x) is essentially self-adjoint, we can write a;(x) = [ AdE (A).

+R
We then can a,p(x)= [ AdE(A), and any local polynomial of a,g(x)
R

will again satisfy (5.1).

d) We can take any combination of a), b) and ¢) and get for instance
a Yukawa type interaction: bl (x) = a,z (%) ¢,(x) ¢;(x) + h . c.

The “cut-offs” introduced above have been chosen so that (5.1) could
be satisfied. They are as unphysical as the usual cut-offs, but no more;
however, if one is interested in the exact analytical form of the solution,
they are very impractical.

As another application, we shall show in a coming publication with
G. VeLo, that the perturbation expansion (3.7) and other perturbation
expansions along the same line, are perfectly well defined and convergent,
in the case of a quadratic Hamiltonian, and this in any number of space
dimensions.

6. Discussion®

We think that equations (3.7) or (5.2) are the form of perturbation
expansions that are best suited for a discussion of some basic problems.
We shall not aim at mathematical rigor in this discussion, but want
merely to outline what are the results we may expect, and the insight
which may be gained by using the present formalism.

® In all following discussions, it is no longer necessary to consider 2%, (z) as a
bounded operator, but one can take it as unbounded and then consider the ex-
pectation values between suitable states, and the convergence of the series of
expectation values.
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One fact one can wonder about, is why the radius of convergence in
theorem 5.1 has to be finite. We do not think that this is simply due to
the weakness of the mathematical techniques used, but that there are
underlying physical reasons. Indeed, if we assume the radius of con-
vergence to be infinite, the time evolution of a quasi local operator is
then (at fixed time) an entire function of the coupling constant and this
means that the theory would also exist for negative interaction Hamil-
tonian. We can then think of an argument of the type of Dyson’s to
make this last property at least very suspicious from a physical stand-
point.

One can also study the support properties of the interacting field
when expressed in term of the free fields. Examining the proof of
Theorem 5.1, we see that its support is the entire strip contained between
the hyperplanes at time —(a + t) and + (a + ¢), provided b == 0. We can
ask ourselves, however, what happens when b = 0, that is, when the
interaction Hamiltonian density is strictly local. Suppose, therefore,
that k1 (z) is strictly local, and also local with respect to the free fields.
Suppose also that the perturbation expansion (5.2) is simply convergent
for all finite ¢. Then A5 (t) has its support in the double cone spanned by
a sphere of radius (@ + ¢) centered at the origin. This means that for
each time ¢, the interacting field will commute with the free field, if their
spacelike distance is greater than 2¢. If the interacting field is Lorentz
invariant, it will be strictly local with respect to the free field, and,
therefore, belongs to its Borchers’ class. This argument is independent
of whether we have the renormalized or the unrenormalized series, but
depends only upon the fact that it is convergent and that the conterterms
(which may be infinite in number) are again local with respect to the
free field and themselves.

If the above argument (of the handwaving class!) is correct, the
following theorem holds:

Theorem 6.1. Let a relativistic field theory be characterized by an
interaction Hamiltonian density which is local, and local with respect
to the free field. If the perturbation series is convergent, then the theory
has a trivial S-matrix.

We have no idea whether to expect a similar statement to be true
without the hypothesis of a convergent perturbation expansion. Clearly,
the example to look at is the Federbush model, the solution of which is
exactly known and does not lie in the Borchers’ class of the free field

(cf.[17).
7. Conclusions

We have presented here the idea that in order to bypass Haag’s
theorem, one should consider the time evolution as being only locally
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unitarily implementable and not globally. We have shown that this idea
really works in some particular cases. There are, of course, still a tre-
mendous number of problems left open, we hope, however, to be able to
deal with a least some of them in a not too distant future. If one wants
to study the existence of theories which are not only translation in-
variant, but also Lorentz invariant, one has very probably to work
without perturbation expansions, because even the relatively well
behaved expansion (3.7) no longer makes sense for nontrivial inter-
actions, and the mathematical difficulties are then very great.

One may object that, after all, we have only shown explicitly that
Haag’s theorem could be bypassed for some translationally invariant
models, and that the question could remain open say for fully relativistic
models. We challenge this idea. Indeed Haag’s theorem arises solely
from Euclidean invariance and has, therefore, in our opinion, nothing
to do with whether the theory is Lorentz invariant or not.

The idea that the time evolution need not be linked to some unitary
operator is in itself not new. SEcAL [18] (and earlier references given in
[18]) for instance, has urged for years to consider the Poincaré group
and all symmetries as being simply algebraic automorphisms of some
abstract C*-algebra. To our knowledge, however, he has never presented
any program for the computation of these automorphisms, or to prove
their existence in some model.

There is also a formal analogy between our treatment of the time
evolution and some recent treatments of so called broken symmetries,
for instance [19], [20] and [21], but we do not think there is anything
deep in this analogy.
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