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Abstract* In the framework of the &.6f.2£. formalism, the crossing property is
proved on the mass shell for amplitudes involving two incoming and two outgoing
stable particles with arbitrary masses. Any couple of physical regions in the (s9 1, u)
plane corresponding to crossed processes are shown to be connected by a certain
domain of analyticity. For every negative value of ί, the amplitude is analytic in the
cut s-plane outside of a large circle.

1. Introduction

In this paper we propose to prove the property of "crossing" for the
scattering amplitudes involving four stable, particles Aj (j = 0, 1, 2, 3)
with arbitrary non-zero masses mj9 within the framework of the & . £f. 2£ .
formalism [1],

In this formalism the amplitudes corresponding to the processes

AI+ A* -> AZ+ A0 (and C.T.P.) (1)

AI+ A* -> J2+ AQ (and C.T.P.) (2)

J8+ A* •* Λ+ Λ (and C.T.P.) (3)

are different boundary values of a holomorphic function H(k) of the set
of complex four- vectors

k = \k0, klt k29 &3 Σ ^ = θl H(k) is defined

and analytic in a certain primitive domain** Δ in C12. More precisely if Ps is
the four-momentum of the particle^ (oΐAί)(Pjζ V+, for/ =0,1,2, 3) and

* C.N.B.S., France.
** For a description of this domain and for relevant references, we refer the

reader to a previous paper [2], the notations of which will also be used in the
present paper.
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if TW(Pj) denotes the amplitude of the reaction (i) (i = 1, 2, 3), then
we have:

T«> (P,) = lim H (k), k, -+ at, P, . (4)

In these formulae, the limit has to be taken in the sense of distributions
for k lying in certain tubes contained in A the number ε^ is equal either
to -j-1 or to — 1 according to whether the particle Aj (or Aό) is incoming
or outgoing in the reaction (i).

Actually, it tarns out that the section of the primitive domain Δ by
the "mass shell" manifold {&; kf = mf 0 g j ^ 3} is empty.

The purpose of this work is to prove that the envelope of holomorphy
$F (A ) of A always contains a connected open set of the mass shell manifold
which connects the physical regions of the reactions (1), (2), (3); this is
what we mean by "crossing." Of course this property has to be supple-
mented by the fact that the formula (4) still holds true in the sense of dis-
tributions when we replace H (k) by the well-defined analytic function
which is the restriction to the mass shell of the analytic continuation
of H(k) however we postpone the proof of this point to a further paper
and are only concerned here with the questions of analyticity domains.
A typical consequence of the property of crossing is that the knowledge
of one of the amplitudes T^ (Pό) should in principle be sufficient to
determine uniquely the amplitudes of the crossed reactions.

In order to describe our domain of crossing, we introduce the usual
Lorentz invariant coordinates :

ζ,= kf (j = 0,1, 2, 3).

These variables are related by the formula :

* + t + u= Σ ζ f . (5)
7 = 0

Let us denote I the mapping k -> (s, t, u, ζj), and put:

Q (s, t, u, ζs) =

2 (s i t £ 2 ) 2 (^ f i (

) fa — (tt-f-<

(M —fa—f3) ίs

(defined on the manifold (5)). Q ( I ( k ) ) is the Gramian of (kv k2, k3)
(or of (kv k2, ko), etc.).

When ζs— mf (j = 0, 1, 2, 3), there are three real regions in the space
of the variables s, t, u (the Mandelstam-plane), denoted S9 T, U, corre-
sponding to all possible values of s, t, u in the processes (1), (2), (3)
respectively (or their C.T.P. transforms). As it is well known, these

16*
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regions are bounded by branches of the cubic {Q (s, t, u, mf) = 0} (see

Fig. 1).
We shall prove that 3tf (A) contains an open connected subset of the

mass shell which has the following properties:

a) This domain is invariant under complex Lorentz transformations

and can be defined by

Fig. 1. The physical regions S, T, U in the (s, t, u) - plane

where Ω is a connected open set (domain) in the space of the variables

(s, £, u) related by :
s + t + u = mf

b) The open set Ω contains six disjoint subdomains S±, T±, U± of

the following form :

S± = rf (8) Π {(s, t,u):±Ims>0',Q(s,t, u, mf) Φ 0}

where Jf (8) is a certain open connected neighbourhood of S (on the mass
shell). T± and U± have similar forms.

When k tends on the mass-shell to a point of 8, T, U from $+, T+, U+
respectively, the restriction of H(k) to the mass-shell will tend to the
physical amplitudes of the reactions (1), (2), (3) respectively.
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c) For any real negative value t± < 0, there exists an open subset
Ωt (ti) (resp. βf fa)) of Ω of the form:

{(s, ί, u) Ims > 0 (resp. Im a < 0); |s| > E^); |ί — ̂  < ε(ίl5s)} .

β^ (ίj) connects S+ and £7~ ΩΊ~ (tj connects S~ and U+. Analogous
domains Ωf (<%) and Ω^ (%) can be constructed by obvious permutations
of the variables: Ω^ (%) connects T+ and S~ β~ (%) connects T~ and S+,
ΩS~ (όι) connects £7+ and T~ and β^~ (Sj) connects Ό~ and T+. The an-
nounced domain Ω can be taken to be the union of S^, T±, U±, Ωf (s-J,
β^ (ίj), ΩU (%) (for all negative sl9 tl9 u-^. This is clearly a connected set.
One notices that, to pass from one physical region to another within Ω,
one must follow a path which approaches the third physical region from
the "unphysical side": for instance a path going from 8+ to U+ must
intersect T~.

The only assumptions needed on the masses of the theory are the
usual stability conditions (see [2] § 5), and the existence of a strictly
positive minimum mass for all states other than the vacuum.

We first note the following facts which play an important role for the
rigour of the proof.

1. The hypothesis that there is a minimum mass in the theory
implies that Δ contains the origin 0 of the coordinates, and is star-shaped
with respect to 0. It can be shown that &'(Δ) is then necessarily a
star-shaped domain in C12, i. e. it is schlicht. Therefore, if a point of
3? (A) has been obtained by two different methods, the corresponding
continuations of H(k) will nevertheless agree at that point.

2. ffl(Δ) is necessarily invariant under the complex Lorentz group
L+(C). This follows from 3?(Δ) being "schlicht," and from a process of
analytic completion described in reference [3] and [4]. It is also invariant
under reflections, because A has this in variance. Hence: 3? (Δ) is
invariant under L(C), the full complex Lorentz group.

3. The following property has been proved by HALL and WIGHTMAN
in [5]: let k and &' be points having the same set of scalar products
lc. Jcj== k't kj, and having non-zero Gramian Q (/(&)).

Then there exists A ζL(C) such that Λk''= k. It follows that once
the manifold {Q (/(&)) = 0} is removed from Jf(Zl), on obtains a domain
which is the whole inverse image of its image in the invariants: in the
terminology of HBPP [6], tf (Δ) Π {Q (/(&)) φ 0} is an /-saturated
domain.

The property a) of our domain will be a trivial consequence of these
general facts, once we have checked that all the above enumerated sets
the union of which constitute Ω avoid the manifold { Q ( I ( k ) ) — Q}.

The proof of the property b), namely the existence of the domains
8±

9T
±

9U
±

9 can then be deduced from the fact, proved in [2],
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contains cut neighbourhoods of all physical real points. (It is to be noted
that the latter result can be obtained without the use of the Steinmann
identities. For instance, to obtain S±

ί it is sufficient to apply a local edge
of the wedge theorem to the "tubes" (&"& -f 3"^ Π C Γ12 and (3"^\- ̂ 2)
Π C I\z The argument is exactly similar to that of [2], § 5).

The remaining sections of the present paper are thus devoted to
proving the property c). A heuristic sketch of the proof can be given as
follows.

Two kinds of domains of analyticity invariant under L((C) are
constructed. Their images in the invariants are of the types DM and IX2)
which will now be described.

The momentum transfer t = (k^+ &3)
2 is fixed at a negative value

and the variables ζj are restricted to satisfy :

f*- £/= ™l - ™$ (0 £ k £ j £ 3)

the only remaining variables are then:

= Σ

which satisfy (see (5)) :
ζ — s — u — t .

is an open neighbourhood of the topological product of a part RW
of the negative real axis in the ζ -plane, by the upper half -plane in the
variable s (see Fig. 2).

R\
W//Λ

0
Fig. 2. Domain ZKD (shaded)

is an open neighbourhood of the topological product of a domain
of the ζ -plane by the union of two half -lines $(2>, C7(2> of the s-plane

(parallel to the real s-axis) having the following properties (see Fig. 3) :
contains II W and the ''physical point"

with
s2 — ̂  < 0 Im s1 = Im 52 = ε

>Sf(2> C S+ C7(2) C U~ .

An analytic completion of ZW U DW is then performed (see section 5)
by using a certain application of the semi-tube theorem (local version).
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The intersection of this extended domain with the manifold

245

contains a domain in s of the form :

{s : Im s > ε; \s\ > R(t)} ,

s-plane

U<2)

Fig. 3. Domain D(2) (shaded)

which yields a connection, on the mass-shell, between $(2) and Ϊ7(2), and
therefore between 8+ and U~.

It may be noticed that, apart from the method of analytic completion,
the geometrical situation is somewhat similar to that of the classical
proofs of dispersion relations ([7—11]) in that it uses a domain of
type XX1) and the complex variables s and ζ.

In order to obtain domains of type ZX1) and ZX2), we study the
restriction of H (k) to a linear submanifold i^. In section 2, the manifold
if will be defined and studied, and a glimpse of the construction of ZX1)
and ZX2) will be given. In sections, 3, 4, 5, the proof will be given in detail.

2. The Manifold if

The manifold if is defined uniquely up to a sign by the following
conditions:

i) The fourth components Ίcf^ of kQ, kv Jc2, &3 are taken to be zero,
i. e. one considers only vectors of a 3-dimensional space-time.

ii) &! + ks = — (&2+ ^o) is ne^ fiχe(i, real, along the third coordinate
axis, with (^+ &3)

2= t < 0.
iii) The third components of kv kz, &3 are held fixed and real.
iv) The manifold y must contain points on the mass-shell i. e. the

system kf = mf (0 g j ^ 3) must be compatible on y.
The manifold if so defined may be parametrized by two complex

vectors π^ and π2 of a two-dimensional space-time as follows:

2|/-ί

2 \
m\-m\-l

(6)
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The vector π$ — (ftj°\ π^) (j = 1, 2) will often be represented by iso-
tropic coordinates:

0=1,2)

Their scalar products in the Lorentz metric can be expressed :

(7)

(8)

We notice that in the manifold i^ , two mass differences are held
fixed, namely:

- = - = -

By Theorem 4 of [2] the intersection of 3? (A) with i^ contains the
eight following tubes, which are "faces" of the tubes

^ = {(πv π2) Im πx ζ F~ Im (πx + πa

Λ/'= {(πl5 πa) Im ̂  ζ F+ Im (πx — π2

« = {(π1? πa) Im π2 6 F" Im (̂  + πa

$"= {(πl5 τc2) Im π2 ζ F~ Im (̂  — π2

Fig. 4. Symbolic representation of the 8 tubes in -y the arrows indicate the direction where the
corresponding vectors lie in V+

and their opposites (see Fig. 4). These tubes are mutually connected by
certain open sets of ffl(A] Π ̂  near certain real points [2]. In particular
ffl(Δ) Π i^ contains open sets ΛTI (stf + έ$) and i/K'Π (<$#'-\- £$')
connecting <$# with £% and j/' with '̂, respectively, where Jf is an open
complex neighbourhood (in i^) of the real points in 1f satisfying

^2 ^ //Σ ~r% ^ ^2 (~r ~γ \2^ ^2 ΠΠ^
Jl/ ] <^ eX^t -1 , t/t/O ^~-> e-̂ Z O, \>'t'l 1'*'2/ "̂ "* t'*^ 1Λ I J L V / J

7 is an open complex neighbourhood of the real points in i^ such that

π2)
2< (H)
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Here, one has defined:

Jt\ = min jjff -_ -1- (ί + mf — m§)2, M\ - ̂  (ί + m§ - mf)2| (12)

ί 1 1 )
= min \Ml ~— (ί + ml — m§)2, Jtf§ — -̂  (ί + mg — mi)2| (13)

ϊf (mι - m| - mi -f mg)2 . (15)

(<£/ + di} (resp. ja/' + '̂) denotes the convex hull of sf U J* (resp.
j/' U '̂) namely {(π1? π2) Im (πj + π2) 6 F+} (resp. {(πl5 π2) Im (πj— τr2)
ί F~}). (It is easy to see that all these properties of ^ f ( Δ ) Π i^ can be
obtained without using the Steinmann identities).

The domains of the type of DW will be obtained by taking the image
of certain of these tubes and their boundaries in the invariants. On the
other hand those of the type of ZK2) are given by images of partial
analytic completions of the above eight-tube domain. In order to obtain
them, we shall use the well-known Josτ-LEHMANN-DγsoN domains [12,13].

The intersection of i^ with the mass shell is contained in the submani-
f old W of iT denned by

L^ i c,o ~— \ 2 '—" "^l "^2

or alternatively, by:

*W — fiπ ~γ \ . 77.2 77.2 _ ,.2 .Ά\ c\a\w — \(3ΐι9 71%), ΉI — π2 — μ>ι — ̂ } UΌJ

where

μ\ = m\-~(t+m\- m|)»= mf - ̂  (ί + m§ -m?)' (17)

A! = ̂ !-i(ί + ̂ I-^)2=mB-^-(ί + ̂ -^I)2 (is)

We recall the following general fact, which is essential for the rigor
of our proof: let A be a domain and M a (regular) complex submanifold
of d>. Then the envelope of holomorphy of A Π M (in M) is contained
in the envelope of holomorphy of A (see [14]). This shows, in particular,
that every point K = (K1} K2, K3) which we shall obtain by analytic
completion in i^ is an interior point of 3Ί?(Δ), i. e. H(k) can be analyti-
cally continued in some neighbourhood

{k: Ik,- K,\ + p2- K2\\ + ||fc3- Z,H < ε}

of K. This can also be understood by remarking that our methods of
completion can always be, in principle, reduced to the "disk theorem."
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3. Passage to the invariants in f~

The two following systems of variables will be used in the manifold

(I) %, v19 Ufr v%, or: u+, v+, u~, v~, where

and

(Π)

1=π? =

The system of variables (II) corresponds to choosing three indepen-
dent Lorentz invariants, zv z2, 23, and a variable α representing a complex
Lorentz transformation in two-dimensional space-time. To study the
regularity of this change of variables we write down the inverse formulae :

v* ~ ¥αT5Γ Zl ^2 ' ^3' 2]L' ^2

where λ (zs, zv z2) is the symmetric form

2) ^+ (%- 2:2)
2= K v2- u2 vj* . (22)

The above formulae (21) imply: J/λ (23, Zj, 252) = u2 v± — % v2. Note that,
on y\ Q(s, t, u, ζj) == — t λ (zv z2, z3). Two manifolds of critical points
appear in the formulae; namely

Λ (Zi, 22, «3) = 0

and

Z l=0

In order to avoid the critical points of the submanifold z L= 0, we
introduce in i^ the cut :

M2, v2) ^ v1 $ R~} (23)

(R""= set of all real numbers ^0).

The only domains of i^ of which we shall use the images in the space
of the variables (II) will have to be contained in

ir =ir — <g. (24)
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The manifold λ (zv z2, 23) = 0 is a manifold of ramification which can
be suppressed as follows. The domain ^ f ( A ) Π i^' is invariant under the
Lorentz transformations :

Uj -> α % , VJ-+ — VJ (j = 1, 2), α £ C — {0}

and under the reflection Uj<-> Vj (j = 1,2). Let JC be a subdomain of
J^(Δ)Γ[ Ϋ"'. The union X' of the transforms of X under all transforma-
tions of the above type is again in 3ti?(A)Γ[ y In particular X' is
invariant under the following transformation (which is non- singular
on i^') :

% vί% -* — t>ι= uv v1 -+ — u^ v1

(25)
% vτ

 v '
u9-> — v9 ,v9-+ — u9 .2 Vι 2 ' 2 ^ 2

The restriction of the 4-point function to X',

H (kv ia, is) \X' = F K, %, w2, «?2)

can then be written

F (%, v19 Us, v2) = F^ (uv vl9 u29 v2) + (u2 vl— u± v2) F2 (%, vl9 u2, v2) (26)

where :

2 Fί (Ul, vv uz, vz) = F K, vv «,, «,) + J «!, t*!, , (27)

π / x -rr
F (u^ vί9 uz, v2) — F

(28)

^ and F2 are analytic in the same domain as F and one can write :

^1,2 (%> ^2> %' Va) - /!,2 (^i, ^2? ^3' ̂  (29)

where /j and /2 are holomorphic functions of the variables (II) having no
singularities on the manifold λ (z1} z2) z3) = 0. Their domain of analyticity
is the whole image of X' in the space of the variables (II). The computa-
tion of the envelope of holomorphy of X' is therefore equivalent to the
computation of the envelope of holomorphy of its image in the vari-
ables (II).

We also define

v u2) v2) : ̂  Vl- u2 v2 = μ\ - μ*} (30)

In W , we shall use, for later analytic completions, the invariant
variables s, u, and z, where z is defined by the formula

*= Z(C~m?)-Φ (31)
? = o

where
Φ-4 min (Jf? - m?) - 4 min (uTf - ^f, uί| - ̂ |) . (32)
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[The last equality follows from (12), (13), (17), (18)]; according to (5)
s, u, and z are related by:

s + u + t = z + Σmf + Φ. (33)

By virtue of the formulae (6), (17), (18), (20), s, u9 and z are related
to the invariants 21? za, and z3 by the formulae:

s = z«+

_ (ml -— ml -\-m\~~ mg)2

z = 2 (zj— μf) 4- 2 (z2— μ%) — Φ . (35)

Due to the equation (16), which defines iff, we can also write:

z = 4 (^-μf) — Φ = 4 (s2—μ!) - Φ on IT (36)

4. Domains of analyticity in if and their images in the invariants

Certain domains which will be described in this section can be used
only for μ\ > μ\. According to (17) and (18), this amounts to the following
restriction on the momentum transfer t:

When the opposite inequality holds, one must use analogous domains
obtained by exchanging the roles of n± and π2.

a) Domain G±

It has been shown in reference [2] (Theorem 4) that all points of if
belonging to the boundaries of the eight tubes, described in section 2, are
in 3P(Δ), provided they do not belong to one of the cuts:

ρl5 ρl ̂  0}

^ v2) :u2v2= Jt\ + ρa, ρ2 ̂  0}

u2) (^+ v2) = Jl\^ + ρ3 ρ3^ 0}

u2) (v1— v2) = ^§χ+ ρ4, ρ4^ 0}

(Here again, it is easy to show that this result can be obtained without
using the Steinmann identities.) In particular the following sets of points
belonging to the boundary of s& (and of 3$' ) lie inside

i) u^= V L real > 0; u\ < Jί\\ Im u2 ̂  0; Im v2 > 0 .

ϋ) ^1== 0; % real > 0; Im u2^ 0; Im v2> 0 .

iϋ) % = — Vj real > 0 Im u2 Ξ> 0 Im v2 > 0 .
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denote the continuous mapping which associates to every point
(ul7 V-L, u2, v2) of i^ the point (̂  = % vl9 z2 = u2 v2, z3 = (% + u2) (Vj-f- v2))
of C3. We shall now verify that the image under / of the points just
described contains the following set :

E = {(z1? z2, z3) : zl real < Λ\ z2 real ^ 0 Im z% > 0} (38)

(i) 0 < zl < J'l\ U-L — v1 = J/Zj if one fixes z2 = ^2 ι;2 real < 0, the
conditions Im u2 > 0 and Im v2 > 0 become equivalent one then has :

and it is clear that z3 varies over the whole of {Im z3 > 0} when v2 varies
over {Im v2 > 0}.

(ii) z1 = 0 % real > 0 v1= 0 one fixes z2 = u2v2 real < 0. The variable
z3= z2-\- ulv2 varies over {Im z3> 0} when v2 varies over {Im v2 > 0}.

(ϋi) z1 < 0; % = — v1=y — z1 ) one fixes z2= u2 v2 real < 0; then

23= 2^-j- 22-{- j/ — % ( v2 — — 1 when v2 varies over {Im v2> 0}, z3 varies

over a whole cut plane, in particular it takes all values in the upper
half -plane.

In the three cases, the limiting case z2= 0 can be obtained by setting
u2= 0. Then z3= %-f % v2; hence z3 again takes all values in the upper
half -plane when v2 varies in {Im v2> 0}.

We now come to a rather fine point in the argument, regarding the
passage to the variables (II). The reader will notice that certain analyti-
city points described above ((ϋ) and (iϋ)) belong to the cut ̂  (formula
(23)) which should be avoided. But, in effect, since these points are in
$f \Δ), which is open and Lorentz invariant, we know that there exists a
certain open neighborhood ^1?in i^, of the union af all points described
in (i), (ii), (iϋ), with the following properties:

1) ^ is invariant under the complex Lorentz transformations

Uj -> α Uj, Vj -> — Vj, α ζ C — {0}.

2) ^j is invariant under the reflection %<->• v$.
3) ̂ c^ίzljmr.
In order to obtain a domain in the space of the variables (II) [see

(20), (21)], consider the following holomorphic mappings

\ K, vv u2, v2) ζ ΊT'-* (zv z2, z3, α) ζ C4.

:(uvvvu2>v2)ζ^^(zl9z2)zΆ)ζ€^ ( ]

It can be verified that the mapping «/ is open at all the points de-
scribed in (i), (ii), (ϋi). (The only points where a careful verification is
needed are those for which λ (zl9 z2, z3) = 0, i. e. the vectors πx ans π2 are
colinear : there, the rank of the mapping is not maximal.) It follows that
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-L) is a neighborhood of E (defined in (38)). Because of the invariance
of &ι, we have

J CS^ T') = /(^) X {C-{0}}-{Zlg 0} .

We can state :
Lemma 1. The junctions /I j2 (zv z2, 23, α) are analytic in a domain G1 of

the following form :

βi = {(*ι> *» **, oc): 1%-^i + h-Z2| + \z,-Z,\ < ε (Z19 Z» Z8),

(ZvZ2,ZB)^Eiz^ IFT α φ O } .

The domain G1 can be obtained by removing the points % g 0 /rom a
neigborhood of the set

Eλ= {(%, z2, z3, α) : Zi real < ̂ f , z2 real ^ 0

Im z3 > 0 α φ 0} .

δ j Domain G2

We shall now describe a domain in the manifold i^ which is contained
in the envelope of holomorphy £? ^@ of the union of the tubes j/ and 8$
and of a small open set Jf Π {Im (πλ -f π2) ζ F+} connecting j</ and «^
(see section 2). We recall that ^Γ is a complex neighborhood of the real
region

n\ < Jt\ (πj- π2)
2< ^f0} . (10)

For each a > 0, let 3?a be the complex submanifold of i^ defined by
setting

- « = * (41)K- *+«.= *
(t?+= v1+ v2= σ .

In ^fσ one can take as variables the coordinates u~ '— u^ — u2 and
v~= v± — v2 of the vector π^ — π2.

Let Q}a denote the Jost-Lehmann-Dyson domain defined in £?a as the
envelope of hoiomorphy ([13]) of the union of the tubes

t\ 7 ~ 7 ~- 7 w / * —1— — ~~ "" " ~" 7 -J— " - 7 fACy\

+ _ +_ \ \ '

with a neighborhood of the real region:

&a=z\(u+,v+,u-,v~): u+= v+ = or; πf = -^-(%"+ σ) (?Γ+ σ) < « f̂

1 , (43)
π| = -j- (t* — cr) (v — σ)

(resp "̂7) is contained in the boundary of the tube si (resp. )̂,
and ^σ is the trace of the region (10) on the manifold £?a. Therefore
^σ C ^Γσ= jf Π ^σ. Every point in o σ̂ belonging to ^+U 3~~ U Jfa
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has a neighborhood whose intersection with the tube {Im (π± + π2) ζ V+}
is contained in 3^^^. On the other hand, every point M — (σ, a, %~, v^)
of &σ belongs to the envelope of holomorphy of some relatively compact
subdomain KM of 3~^ U ^~7 U J^σ (see, for instance, the process of
analytic completion, using disks, given in [13]). One can therefore
associate with KM a positive number ρ (KM) such that the domain

{u+, v+, u~, v~: (cr, o% uΓ, v~~) ζ KM\ \u+— σ\ + |v+ — σ\ < Q(KM)\

lmu+>0 ,Imv+ >Q}

is contained in ^^@ . This domain being a topological product, so is its
envelope of holomorphy. Therefore the following set of neighboring
points of M :

{(u+, v+, u~, tΓ); \u+- σ\ + \v+- a < ρ(KM)

u~ = u^9 v~= v^ Im u+ > 0, Im v+ > 0}

is contained in =^̂ , hence in $P (Δ).

Thus it has been finall}^ shown that ^f(Δ) contains a domain of the
form:

U {(u+, v+, u~, v~) : (u~, v~) ζ 2a\ \u+ — σ\ + \v+ — σ\ < ρ (u~, v~)
^ "^ (A -Λ\

Im u+ > 0 , Im v+ > 0} .

Henceforth we shall restrict a to values such that

σ>^1+t^2. (45)

In this case, it turns out that the inequalities π\ < <J£\ and π| <
imply (π^ — π2)

2 < ^fo? so that, in the variables u~ and v~, the region
&a is bounded by the two intersecting branches of hyperbolae (see Fig. 5) :

(w~+ cr) (v~+ a) = 4 Jt\\ u~+ a > 0 . (46)

(u~— a) (v~— σ) - 4 Jί\ u~— σ > 0 . (47)

Since our purpose is to consider these domains in the neighborhood of
the manifold i^ = {(u+, v+, u~, v~) : π\ — π| = μ\ — μ%}, we shall study,
for every σ > Jί^ + <J^2, the intersection of Q)a with the manifold
Jίa^ &a Π if. According to (8), (16), (41), Jέa is denned in £a by the
equation :

a («-+»-) = 2(μl-μl). (48)
Define:

* = ̂ =^ (49)
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In *^fσ one can take as variables either x or the Lorentz-invariant
variable z defined by (31): according to (35), (41), (48), (49), z is related
to x by

Φ . (50)

-σ
\

Fig. 5. Coincidence region for the Dyson domain in £?$

In order to simplify the calculations, we replace £ΰa by a subdomain
&'a which is the Jost-Lehmann-Dyson domain corresponding to the (real)
region £%'σ defined by the inequalities:

and

where:

V = V

(51)

(52)

(53)

(54)

(55)

(56)

It can be checked that &t'a is contained in « σ̂, so that <% C 3!0. The
advantage of £%'a is that it is symmetric with respect to the straight line
u'~ -{- v'~= 0.

According to (48), (49), (53), (54), the manifold, <Jta is defined, in the
new variables, by the equation:

u'-+v'-=0. (57)

σ'= σ +•
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One also has:
x —

255

(58)

By using the classical method [9, 12], it is easily seen that the
"admissible hyperbolae" have the equation:

(uf--ξ)(v'-+ξ)-η*^Q (59)

where the point (£, η) belongs to the following set Γ (see Fig. 6)

with:
- {(f, η) 6 ΪR2: ίa+ (η±2 ̂ )2- σ'2 ̂  0} (60)

{(ξ,η)ζ R2:|2-σ'2;g 0; ??2-4 <y/f2 ^ 0}. (61)

The necessary and sufficient condition for a point of ̂ σ to be in 2'a
is, according to (57), (58), (59), that:

(X _ £)2 + ^2 φ o for all (^ η) ζ p

that 1S: x Φ ξ ± ίη for all (|, η) £Γ.

Thus, the intersection of 2'β and Jtσ is represented, in the complex
plane of the variable x (which we can identify with the (ξ, η) plane) by
the complement of Γ (note that Γ is invariant under η -> — η).

fζf TJ) plane or x-plane z-p/σne

Eig. 6. The domain given by the Jost-Lehmann-Dyson domain in the α-plane (shaded)
and its image in the z-plane

Let 2Θ 10 <θ <~2\ he the angle of the two circles bordering γ+ and

γ~ (see Fig. 6). In the conformal mapping x->z, (see (50)), this angle is
conserved. It can be checked that the image of 2'a Π *Jla in the complex
plane of z contains the sector

In particular, taking into account (55), (56), the formula (50) can be
rewritten '

Commun. math. Phys., Vol. 1 17
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and the intersection points of the two circles bordering γ+ and γ (see
(60)) are mapped onto the origin in the s-plane. The value of θ is given by :

=
/nn\(62)

(63)

't*. (64)

When σ > σ0, θ is minorized by the angle Θ0, independent of cr, such

that 2 ̂
cos θn = 7., Λ, , x, x . (65)

Let k be a real positive number such that

and define

We conclude that ^(Δ) contains a subdomain of the domain (44),
which has the following form:

U
σ> σ — σl 4- k+ — σl

> Im ̂ + > 0 Im v+ > 0 .

< ρ (u —v , σ)

Taking the union of all transforms of this domain under the complex
Lorentz transformations in i^, then removing the cut *€ (see (23)), we
obtain a domain, the image of which, in the space of the variables (II)
(see (20)), has the form:

: l 5z2,23,α): |arg (-z)\ < Θ0, z = 2 (*

2= Uσ > σ0

2— μ\

2- μ + μ (66)
Im 23 > 0 % $ R α =f= 0 .

This can be stated as:
Lemma 2. The functions /1)2 (zv z2, z3, α) are analytic in a domain G2

of the form (66), which is obtained by removing all points such that z1 ̂  0
or Im ZB :g 0 /rom «§ome neighborhood of the set

|arg (—z)| ^ Θ 0 ; αφ 0} .

Exchanging the roles of the vectors ^+π2 and 7^— π2, (in par-
ticular, replacing the tubes jtf, & by £#' and '̂), one obtains, by identical

arguments a domain G3, analogous to G2, given by

(z 2 2 Λf^ * lίlTf ί 2^ I <^ β *

Im [2 (zj+ za) — z8] < 0 Zj ί R~ α 4= 0 .
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We can state :
Lemma 3. The functions fι^(zv z2, z3, α) are holomorphic in a domain
of the form (67), which can be obtained by removing all points such that

^ 0 or Im [2 (^-f z2) ~
 zz\ = 0 from some neighborhood of the set

*3> α) : Zj— z2 = μ\ — μ\

2) — z3

 real > GO larβ (— z)l < Θ0 α φ 0} .

5, Analytic completion in the invariants s and z

We shall now consider the intersections of the domains Gί with the
image J (W] of the manifold HT' (/ = 1, 2, 3) :

•ΌίΠ = {(%, *2> *3> «) : zx- za = ^f - //I ^ ^ R- α Φ 0} .

The variables we shall use are s (or u),z, oc (see (34), (35)). The
domains G3 Π ̂  (i^f) are topological products of certain domains in the
space C2 of the variables s, z by the fixed domain {α ζ C — {0}} :

0} Π ./(IT') = {(s,z, «) (a, z) £<?; α ζ C-{0}} = 0; x {C-{0}} .

Hence, to complete analytically (^U 6r2U G%) Π t/(^/) is equivalent
to analytically completing G[\J G^U G%, and then taking the topolog-
ical product with {C — {0}} .

a) Completions of G[ U G% and G{ U Gg

When ^wf — μ\ ^ 0, according to Lemma 1 (or formula (40)), G[ is
oftheform

where ^(E^) is an open neighborhood of the set

E( = {(z2) z3) : z% real ̂  0 Im z3> 0} .

When f̂ — μ\ ^ 0, one obtains the analogous domain

Λ" (#;') n {Zl= 22+ uϊ - μ\ <t R~}
^(^i') is an open neighborhood of

J0i' = {(za, z8) : Zj real g 0 Im z3> 0} .

It may be noticed that the symmetry in Zj and z2 is not complete
because of the unsymmetrical change of variables (I) ->• (II). In the
variables s and z, we find the following expression, valid for both signs

oίμ\-μl: 0; = Λ"^) Π {Z + 4y«ί + Φ $ FT}

where ̂ (^ is a neighborhood of

^= {(5, z) : z real ̂  — α(£) Im s > 0}
α (£) is given by

α(<) - min (4μf + Φ , 4/ι| + Φ) . (68)
17*
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On the other hand, using (66) and (67) (or lemmas 2 and 3), we find

G'2 = J f ( £2) Π {Im s > 0} Π {z + ±μ\ + Φ $ FT} ,

£3 = ./Γ (<fs) Π {Im u = Im (z — s) < 0} Π {z + 4μ? + Φ $ R~} ,

where ./f ((f 2) and jV ((f 3) are respectively open neighborhoods of

*a = {(s, z): |arg (-s)l < Θ0; 5 > *„(*)}

< 3̂ = {(s, z): |arg (-z)| < Θ0; u > t60(ί)} ,
with:

«o(0 = ̂  + ̂  K - mi + m§ - ml)2, (69)

u0 (0 = σ§ + -& K - m| + m| - mg)2. (70)

In order to find an analytic completion of G{ U G'2, we make the
following change of variables:

s'= log (*-*0); *'= arsch [i-2 (~^)π/θ°]' (71)
which transforms (G{ U G'2) Π {̂  + a (t) $ R"} into a domain of the type

Jf'(W] Π {(*', 2;'); 0 < Im5'< π\ 0 < Im2f'< π}

where Λ*'(E'} is a neighborhood of the "flattened" tube:

E'={(s',z'):Ims'= O O ^ Im 2'g π} U

U {(<§', z');0 ̂  Ims' ̂  π Ims'- π} .

A refined version of the tube theorem shows that the envelope of
holomorphy of this domain contains the convex envelope of the "flattened
tube," namely:

{(s', z r ) : 0 < Im s' < π 0 < Im z' < π Im z' > Im s'}

which one can also write as a union of topological products:

s'9 z')' ° < Im S' < ; < Im Z' < π

The value of z corresponding to the mass-shell is z = — Φ, to which
corresponds (see (71)) the value z' — iφ such that

/ φ \π/0 0

cos φ = 1 — 2 I— I . (73)

From (72), we extract a topological product corresponding to a value
β = ψ such that 0 < ψ < φ < π. Its inverse image in the variables
(s, z) is a topological product

{(s, z) •• 0 < arg (s — s0) <ψ;zζL A}

where A is a domain containing the ''physical point" z — — Φ.
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The boundary of A is a curve with the following properties (see Fig.7):
it is convex, symmetric with respect to the real axis and has the asympto-
tic directions:

arg z = ± (π — χ) ,
where:

*='.(!-£). ™

It passes through the real point z = —Ψ, defined, according to (71),

26'/π. (75)

A

Eig. 7. The domains A and B in the z-plane

One can then replace A by a subdomain B of the following form
(see Fig. 7):

z + Ψ
ar£v:= z:π-χ< ^ π , z + a(

where 6 is real and satisfies the condition: b > a ( t ) . The boundary of B
is composed of two arcs of circles with extremities —Ψ and —b, and of
the real segment [—δ, — a ( t ) ] . R> is clear that B still contains the phy-
sical point z = — Φ. We can state:

Lemma 4. TΛe junctions /1)2 (21? z2, 23, α \jyιr ) are holomorphic in the
domain Δ 2 X {α φ 0} where

AZ= {(s, z): 0 < arg (5 — s0) < y 2 ζ B} .

By applying the same process of completion to G{ U G& we obtain
the analogous result:

Lemma 5. The functions /1)2 (zv z2, z3, α) \^(^r^ are holomorphic in the
domain A3 x {α φ 0}, where

0; z ζ B} .
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b) Construction of the "crossing domain"

For reasons which shall be explained later, we shall not attempt to
find the best possible domain, but only to prove that there exists a
"crossing domain." We shall therefore use only subdomains of G{, zJ2, Z)3,
chosen so as to simplify the computations as much as possible. In particu-
lar we shall treat unsymmetrically the variables s and u (related by (33)),
and use only domains which are topological products in s and z. In
order to extract from z!3 such a topological product, we take, in the
s-plane, the intersection of all sectors

{s; — ψ < arg (u — u0) = arg (—s — t + z

s-pi one

Fig. 8. Δ'£]Ά the topological product of B (in the z-plane) by the shaded domain in the s-plane.
K = — u0— t + Σ mj + φ

for all values of z in B. It is clear (see Fig. 8) that this intersection con-
tains the domain

arg π;
where -ψ

(76)

Let Sj be the intersection of the two straight lines {Im s — Im s2} and

arg (s — 50) = ψ

- +
. b — w

Λ _ L_
7Λ

(77)

We finally extract from G[ and A2 U Δ'2 the following open sets:

D1== β[ Π {s : Im s > Im s2}

θ = ̂ -f ρ, ρ> 0})

Here Λ* ({s = ^+ ρ, ρ > 0}), and ./f ({5 = s2~ ρr, ρ' > 0}) denote
open neighborhoods of the corresponding sets.

We apply to these domains the conf ormal mappings

— « )"/x
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and denote „ „
s-^ = Ke s1? s2 ~ K e 52

The image of B in the complex plane of z" is the strip 0<Im z" ' <π\
the cut — b ̂  25 ̂  — a has been unfolded and mapped onto the line
{Imz"= π}; the remainder of the boundary of B is mapped onto the
axis {Imz"= 0}.

The images of D1 and D2 in the variables (s", z") are thus:

jDi' = Fί' n {Im s"> 0 , Im z" < π} .

DZ = {(*", z"} : 0 < Im z" < π s" ζ Λ* ({s" = 4' + ρ, ρ > 0})

or 5" ζΛ ({s" = 52 — ρ', ρ' > 0}) Im s" '> 0} .

Here jf ({s" = s" + ρ, ρ > 0}) , tf ({s" = 4' — ρ', ρ' > 0}) are open
neighborhoods of the corresponding sets. V" is an open neighborhood
of the set: „ tt „

{(s , z ) : Im 2 = π Im s ^ 0} .

Thus D" U I>2 contains the intersection of {Im s r /< π, Im θ / r> 0}
with an open neighborhood of the "flattened" semi-tube

{(s", z") : Im z" = π Im s" ̂  0} U {(s", z"} : 0 < Im z" < π ,

s"= 4'+ ρ> Q > 0 or y^ 4'— ρ', ρ' > 0} .

A refined version of BREMERMANN'S semi-tube theorem [15] asserts
that the envelope of holomorphy of D" U jD2' contains the domain
obtained by constructing the envelope of holomorphy of the "flattened"
semitube in the same way as in the case of an open semi-tube. The solution
of this problem is an open domain, the boundary of which is given by the
harmonic function

Im z"= Im log-^C- = ar§ (a"~ s'ί) - arg (»"- 4') .

and the domain is defined by :

{(s",z") : Im*">0; 0<Imz"< π\ Imz"> arg (s" — 4') — arg («"— 4'),

with 0 < arg (s" — s") < π, 0 < arg (s"— 4') < π} . (78)

Consider the physical value z = — Φ, to which corresponds

The intersection of the domain (78) with {z"= ί φ"} is given, in the
upper half $' '-plane, by the exterior of a (very large) circle passing
through 4'j and 4'> defined by

arg (s"- 4') - arg (*"— 4') < φ", Im *" > 0 .
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Going back to the variables s and z, one finds that for z = — Φ, i. e.
on the physical mass-shell, the domain of analyticity of the functions

/ι,2 (%> 3a, z3, α) contains the region D X {α Φ 0}, with:

D = D(t) = {s: arg (s — s0) <<ψ}\J

U {s : n — y) < arg (s + t + u0 — Σ mf) < n} U
ί

\J\s:
7) _ ψ y

Ims> — 2— tgf

0 < arg (̂  — Sj) — arg (s — s2) < g/'J .

(see Fig. 9).

Fig. 9. The crossing Domain D(t) (shaded)

We note that, due to (64), (69), (70), s = s0 and s = — t — t*0+ Σ mf
define points in the physical regions S and U, respectively so that D
provides the connection between 8+ and U~ which is the object of this
study*. To cast the result in the form announced in section 1, we notice

that, according to the remarks in sections 2 and 3 the points (s, t} u, ζj)

* By using the formulae (32), (64), (65;, (68), (69), (70), (74), (75), (76), (77), (79),
the parameters s09 u09 s19 s29 χ9 Ψ9 φ" which appear in the description of the set
D(t) can be reexpressed in terms of t9 of the various masses mi9 Mi9 and of the three
independent parameters k9b9ψ 9 k has to be chosen according to the formula (63)
ψ and δ have to satisfy the relations:

0 < ψ < φ(t),

b > a(t).

If we were interested in computing the largest domain possible by this method,
we should take the union of the domains D (t) for all possible values of k9 b9 ψ.
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such that t<Q,ζs=mξ,8ζD = D (t) are in the image / (^f (Δ )) oίJί?(Δ)
in the variables s, t, u, ζjt Since D(t) does not intersect the trace of the
manifold {Q(s, t, u, ζj) = 0} on the mass shell, these points are in I (3tf '(A)
Π {Q(I(k)) =f= 0}). The mapping / is open on tf(Δ) Π {Q(I(k)) φ 0},
which is /-saturated (see [5] and section 1). It follows that:

Theorem. For every real negative ^ there exists a certain domain
^t (^i) in the space of the variables s, t, u, and ζ$ (related by (4)) such that

1) if"f (ίj) is an open neighborhood of

in particular it contains a set of the form :

= {(*, t, u, Q: ζj= mf; Im s > 0 |β| > 5 ft); \t -t1\<ε (tv s)} .

2)
By obvious permutations one proves the existence of Ω^ (t-^, Ωf (s j),

ΩU (%) announced in the introduction. The proof is now completed.

6. Conclusion

Several remarks can be made about this result.

a) In all cases when dispersion relations have been proved in quantum
field theory, the crossing property between the corresponding two
channels has ipso facto been demonstrated*. The new feature of the
present approach is that it is valid in all mass cases, and for all negative
momentum transfers.

b) We have already called the reader's attention to the fact that the
proof does not use the Steinmann relations, whereas these relations play
an essential (although implicit) role in the classical derivations of dis-
persion relations [7 — 11]. If one uses the Steinmann relations together
with the methods indicated in this paper, one can take advantage, as in
the classical proofs just mentioned, of the analyticity of the ( Absorptive
part." This leads to a much larger domain of analyticity. However,
because it requires somewhat lengthy distribution-theoretical arguments,
we reserve this subject for a later article. For this reason, we did not
attempt to compute the largest possible size for the domain obtained
here; this domain must only be considered as supplying a general
existence proof for a "crossing" domain of analyticity on the mass-shell.

* Strictly speaking, these proofs give only the "crossing" in the sense of
analyticity in one variable only (for instance in s, for fixed t). However the corre-
sponding points are actually points of analyticity in two variables. This follows
from the work of H. LEHMANN [16], and can also be seen by the methods used in
the present paper.
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c) No properties of Lorentz covariance have been imposed on the
function H(k). This makes the result valid also in the framework of H.
ABAKI and R. HAAG (see [17]).

d) Using the assumption that the Steinmann functions are tempered,
it is possible to prove that H(k) has at most polynomial growth at
infinity in the domain which has been derived in this paper. This proof
will be given elsewhere. This fact, as remarked by A. MABTIN, allows
generalizations of "Pomeranchuk type" theorems to cases where dis-
persion relations have not been proved.
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