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Abstract. Upper and lower limits for the number of bound states in a given
central potential are obtained. They imply that for strongly attractive potentials
the number of bound states of given angular momentum increases as the square
root of the strength of the potential.

1. Introduction

Let V(r) be a central potential such that the integral

I = [drr\V(r)\ (1.1)
0

is finite. Note that this integral is dimensionless in the units chosen,
ft = 2 w = 1. JOST and PAIS [1] have shown that a necessary condition
for the existence of bound states is / ^ 1. Subsequently BARGMANN [2],
and later SCHWINGER [3], have derived the more general inequality

n ι < 1/(21+1), (1.2)

where nτ is the number of bound states with angular momentum I.
They also show that the estimate eq. (1.2) is "best possible in the sense
that for a given I potentials may be constructed which have a prescribed
number nx of bound states for that angular momentum and for which /
approaches (21 + 1) nx arbitrarily closely" [2]. This of course does not
imply that other upper limits for the number of bound states could
not be found which, for many potentials, would yield restrictions
more stringent than those obtained from Bargmann's inequality eq. (1.2).
In fact it should be noted that the potentials which saturate Bargmann's
inequality have a rather peculiar shape; for a given ni} they
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consist of nx widely separated narrow and deep wells (see Ref. [2]
and [3])*.

In Sections 2 and 3 of this paper we derive several other rather simple
upper limits for the number of bound states**. We consider only the case
of 8-waves of course the results hold a fortiori for higher partial waves,
although the corresponding restrictions are looser. The results of Section 2
are non trivial only if the three integrals

/ , = - / d r f * F ( r ) β [ - F ( r ) ] , 2> = 0,l,2, (1.3)
0

are finite (θ (x) is the usual step function). The restrictions we obtain may
be more or less stringent than that yielded by Bargmann's formula,
depending on the shape of the potential. Some examples are given. The
results of Section 3 imply that for any potential (which is finite for
r > 0) the number of bound states of a given angular momentum does
not increase faster than the square root of the strength of the poten-
tial***.

In Section 4 we derive a formula which gives a lower limit for the
number of bound states of given angular momentum1". This condition
is best possible in BARGMANN'S sense, and is saturated by potentials
quite different in shape from those which saturate Bargmann's inequality.
The results of this Section imply that the number of bound states of
given angular momentum does not increase slower than the square root
of the strength of the potential.

This last result, together with that mentioned at the end of the
previous paragraph, implies that the number of bound states of given
angular momentum increases, for strongly attractive potentials, as the
square root of some measure of the strength of the potential.

For the reader who is interested only in the results, we have collected
all the conditions derived in the paper in Section 5, together with the
restrictions on the potentials which are required for their validity.

* SCHWINGER considers the case of potentials which are the sum of nt δ-ίunc-
tions [3]. A peculiarity of such potentials is that, no matter how much their strength
is increased, they can never possess more than % bound states for any one angular
momentum (because they can bend the zero-energy radial wave function only at
Πι points). We do not take into consideration such singular potentials, except as a
limiting case.

** Setting n, the number of $-wave bound states, equal to unity, we obtain nec-
essary conditions which the potential must satisfy in order to be able to possess
bound states at all. The condition corresponding to the results of Section 3 is iden-
tical to that given in a previous paper [4].

*** This result had been previously conjectured [5].
t Setting the lower limit equal to one we get a sufficient condition on the po-

tential for the existence of at least one bound state of given angular momentum.
For other conditions to the same effect see Reference [6].
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2. Upper limits for the number of S-wave bound states

The number of $-wave bound states equals the number of poles on the
positive real axis of the solution of the Biccati equation [6—9]*

α ' ( r ) = - F ( r ) [ r + o ( r ) ] » , (2.1)

with boundary condition m\ __ π /o o\

It is simpler to deal with a potential V(r) which is everywhere attractive
(negative). If the potential is repulsive in some region, it is understood
that it should be replaced by the potential V(r) θ[— V(r)]; this replace-
ment makes all the results of this and the following section valid
a fortiori. The potential is also required to be such that the three integrals
eq. (1.3) be finite. This condition implies that the scattering length α(oo)
exists and is finite**.

It is now convenient to introduce after DASHEN [9] the function μ(r)

through a(r) = R(tΆnμ(r)-A) (2.3)

where R and A are positive constants. We then find

μ'(r) = Λ-^Fίr)! [(r - RA) cosμ(r) + R$mμ(r)f , (2.4)

with boundary condition m x , Λ Λ , o s.
J μ(0) = taJn~1A . (2.5)

Obviously μ(r) is a finite positive function, and the number n of $-wave
bound states is the integral part of 1/2 + μ (po)\π. Therefore we may write

n^~ + ~μ(oo). (2.6)

But from eq. (2.4) we immediately infer

μ (r) < R'11 V(r)\ [(r - RAf + R2] , (2.7)

because the maximum value of (P cosx + Q sin#)2 is P 2 + Q2. There-
fore from eqs. (2.5), (2.7), (1.3) and (2.6) we conclude

n - Ύ + ̂ te*-1A + ^ Γ [ / ί - 2BA Ix + B*(l + A*) Io]. (2.8)

It is now convenient to set

JR=t/0(l + ̂ 2 )/4Γ ¥ (2-9)
* Except if the potential is such that an infinitesimal increase in its attractive

strength would produce a new bound state of infinitesimal binding energy, in which
case α(r) has a pole at r = oo. This limiting situation may be described as correspond-
ing to the occurrence of a zero-energy bound state, because in this case the S
matrix has a pole at h = 0. However the residue of this pole vanishes, and the
corresponding state is not normalizable. If this situation were not considered to
correspond to a bound state, then all the inequalities derived in this paper could be
strengthened by eliminating the equality sign.

** See preceding footnote.
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We thus obtain

71 - Ύ + 7 Γ t a n ~ M +ir{Voh(l + ^ 2 ) ] γ ~ AQ . (2.10)

The choice of A is still arbitrary. The most convenient one is the one
which minimizes the right hand side, namely a solution of the equation

2 - ID + A*[I0It - 2/ΛJi - 1)] - & + I)2 = 0 . (2.11)

Simpler choices are A = 0, which insures

(W* (2.12)

and A = 71/(/0/2 — 7f)2 , which insures

n - Ύ + ΊΓ t a n " X [ 7 ^ 7 ° h - * ! )^ ] + 1 " (V»- J?)"̂  (2.13)

From this inequality we immediately obtain the simpler expression

^ l + ( 2 / π ) ( V ί - / f ) ^ . (2.14)

Note that I0I2 is never smaller than 1\. Thus the limitations eq.
(2.12) can never improve on Bargmann's inequality by more than a
factor of (2/π). Furthermore the expression I0I2 — I\ can never become
negative it vanishes only for a delta-like potential V (r) = — (Ijr0) δ(r — r0).
Therefore eq. (2.14) implies that such a potential can support at most
one $-wave bound state, irrespective of its strength /. On the other hand
Bargmann's condition, eq. (1.2), tells us that the number of bound states
is smaller than 1". Thus for / > 1 the condition eq. (2.14) is more stringent
than Bargmann's inequality, and viceversa for I < 1. The value I = 1,
at which the two conditions coincide, is also the exact limiting value for
the appearance of one bound state. We thus see that, at least for n — 1,
the condition eq. (2.14) is also best possible in Bargmann's sense and is
saturated by the same type of potential which saturates Bargmann's
inequality.

For a square well potential of range r0 and depth \V0\, eq. (2.12)
gives n ^ 1/2 + (2/(π]/3)) \V0\ r% and eq. (2.14) gives n g 1 + (l/(π|/3))
\V0\ TQ, while the Bargmann condition gives n< (1/2) | F 0 | TQ. Thus for
large values of |F 0 | /Q both restrictions, and especially the second one,
are more stringent than Bargmann's inequality. However for large
values of | Fo | r% these conditions yield rather poor upper limits to the
number of bound states; in fact the exact relationship is n g 1/2 +

JL
+ (1/π) (I VQ\rl)2 , which implies that the number of bound states increases
as the square root of the potential rather than linearly. This is a general
property, valid for all potentials, as is shown in the following section.

6*
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3. Another upper limit for the number of S-wave bound states

The result of this section consists of a generalization to the case of n
bound states of the condition proved in Reference [4] for the case of one
bound state. The generalization is easily accomplished with an argument
similar to one used by BARGMANN [2].

In this Section we assume the potential to be monotonic. Since the
potential must vanish at infinity and be attractive, this implies the
condition

V ψ) ^ 0 . (3.1)
Only for potentials of this type holds the result which we are going to
prove. However given any potential V(r) it is always possible* to find
a monotonic potential V(r) such that V(r) ^ V(r); and the upper limit
which we could obtain for the number of bound states of V(r) would
hold a fortiori for the number of bound states of V(r).

Let us now assume that the potential V(r) possesses n S-w&ve bound
states. This implies that the function a(r) introduced in the preceding
Section has n poles on the positive real axis, at the points r = piy

i = 1, 2, . . ., n. It is also apparent from the structure of the Riccati
equation satisfied by a (r), eq. (2.1), that a (r) also has n zeros, at the points
r = zi9 i = 1, 2, . . ., n (with z1 = 0 and zt< Pi< zi+1). We now define

Pi -L

J.= f dr\V(r)\z (3.2)

and
oo 1_

U — J UJI I r \ι )\ \ " ^ /

Obviously n

J^ΣJi- (3-4)

But the result proved in Reference (4) implies that

Ji ^ πfi . (3.5)
We therefore conclude that

J ^ nπ/2 , (3.6)
or equivalently,

o
This is the required upper limit on the number of bound states.

It should be noted that this result implies that the number of bound
states for a given angular momentum increases at most as the square
root of the strength of the potential (coupling constant). Note that this
statement holds for any potential**, not only for those satisfying the
restriction eq. (3.1), as indicated in the remark following that equation.

* We exclude potentials which are singular for r > 0.
** See preceding footnote.
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4. Lower limit for the number of bound states of given angular momentum I

The number of bound states n% of angular momentum I coincides with
the number of poles on the positive real axis of the functions %(r),
defined by the Riccati equations [8, 9]

^ aι(r)f, (4.1)

with boundary condition
«ι(0) = 0. (4.2)

Here q is an arbitrary constant, with the dimension of an inverse length.
It is convenient to introduce a new function / (r) through

tan/(r) . (4.3)

It is then clear that

{ { } } (4.4)
where the symbol {{ }} means the integral part of the quantity in the
curly backets, and

/ = l i m / ( r ) . (4.5)
r—>oo

We are assuming here that this limit exists, which is the case if the
potential vanishes asymptotically faster then r~2l~3; but it is easily
seen that our final result holds even for potentials which violate this
condition.

On the other hand the function / (r) satisfies the differential equation

f'(r) = g(gr)« cos2/(r) - ^ψ- (qr)-" fan* f{r) , (4.6)

with boundary condition
/(0) = 0 . (4.7)

But eq. (4.6) implies that

f'(r) S> Min [g(gr)» -~~{qr)-*1] , (4.8)

because the minimum value of A cos2# + B sin2 a; is the smaller number
between A and J5. From this equations and eqs. (4.7), (4.5) and (4.4)
we obtain our final result, namely

[ ^ ] (4.9)

It should be emphasized that in this equation the symbol Min (A, B) is
defined as follows:

= A if A^B
(4.10)

= B tf B^A, K *
6a
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while the constant q is arbitrary. In the case of a monotonic (attractive)
potential we may rewrite eq. (4.9) as follows:

where r* is the (unique) solution of the equation

q2(qr*)*ι + V(r*) = 0 (4.12)

For 8-waves and for potentials which satisfy the condition

V(r) S -M2 (4.13)

with M finite, we may set q — M in eq. (4.9) and we obtain the very
simple equation

n0 S y - / dr V(r)l(πM)\ϊ . (4.14)

But this is not the most profitable choice for q. For instance for an ex-
potential potential V{r) = — | F 0 | exp(—rjr0) eq. (4.14) yields

v >JJ L γ \y I 2 iπW (Δ. in)

while with the optimal choice q = \ F0|/e we derive from eqs. (4.9) or
(4.11) the more stringent condition

n0 3: {{y + 2r0 \Voμi(π j/S)}} (4.16)

From this inequality we find that to secure respectively one and two
bound states it is sufficient that the parameter r% | Vo\ exceeds 1.67 resp. 15.
The exact minimum values of |F 0 | r§ are 1.44 and 6.1, respectively.

It is easily seen that the potential

Vι(r) = -Q2(Qr)^ r<r0

= 0 r>r0

saturates the condition (4.9); that is, it is possible to adjust Q and r0

so that Vx(r) possesses nx bound states of angular momentum I and is
such that, when substituted in the r.h.s. of equation (4.9) (with q = Q),
it yields a value for the quantity within the curly backets which is ar-
bitrarily close to nv We may therefore assert that the condition (4.9) is
best possible in BABGMANN'S sense. Note that for 8-waves the saturating
potential is a square well. It is remarkable that this potential is just of
the opposite shape to the potential which saturates Bargmann's inequality
and the inequality eq. (2.14); here the potential is spread out evenly
over its whole range, there it is all concentrated at one point.
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Finally we note that the lower limit to the number of bound states
given by the inequality (4.9) implies that this number must increase
at least as the square root of the strength of the potential. This is immedi-
ately seen choosing the arbitrary parameter q proportional to g raised
to the power [2(2i+ I)]" 1 , where the "coupling constant" g is some
measure of the strength of the potential*.

5. Summary of results

Let nτ be the number of bound states of angular momentum I in the
central potential V(r). Of course

% ^ w0 ΞΞΞ n , (5.1)

so that any upper limit on n holds a fortiori for nt.
We have shown in Section 2 that

» ^ γ + ( 2 / π ) (/„!,)a", (5.2)

and also

» g l + (2/π)(V ί-Jf)'2. (5.3)

The quantities Ip are defined by

Ip=-fdrr*V{r)θ[-V(r)], p = 1, 2, 3, (5.4)
o

where θ (x) is the usual step function. More stringent, but also more com-
plicated restrictions are given by eqs. (2.10) and (2.13). Of course these
conditions are nontrivial only if the three integrals IP are finite. Note
that these upper limits are linear in the potential strength, just as in the
Bargmann-Schwinger condition

n^ JX/(2Z + 1) . (5.5)

We have shown in Section 3 that
oo _1_

n^ (2/π) / dr\V(r)\* (5.5)
o

provided the potential V(r) is monotonic, i.e.

F'(r)^0. (5.6)

This condition implies that the number of bound states of a given angular
momentum does not increase faster than the square root of the strength
of the potential. This conclusion holds for all potentials**, because it is
always possible to find a monotonic potential which minorizes them.

* Note that in the limit when the potential becomes a delta function (or a
finite sum of N delta functions) the integral in eq. (4.9) vanishes. In fact, as we
already noted, such potentials have the peculiarity that the number of bound
states never increases beyond JV.

** We exclude potentials which are singular for r > 0.
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We have shown in Section 4 that

0

where the symbol {{ }} stands for integral part, the symbol Min is defined

by
Min[A,B] = A if A g B

and q is an arbitrary constant with the dimensions of an inverse length.
This condition is best possible in Bargmann's sense, and is saturated by
the type of potentials given in eq. (4.17). For $-waves and potentials
satisfying the condition

V(r) ^ -i!f2 (5.9)

with M finite, we also have the weaker but much simpler condition

(5.10)

This condition is also best possible in BARGMANN'S sense, and is saturated
by a square well potential.

These lower limits on the number of bound states imply that nx

cannot increase slower then the square root of some measure g of the
strength of the potential (Proof: take q proportional to g~WW + V]'1

in eq. (5.7)). We may therefore conclude that asymptotically the number
of bound states becomes proportional to the square root of the strength
of the potential

n%~γg. (5.11)
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