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Abstract. The global structure analysis of local field operators is reinvestigated.

I. Introduction

In an earlier paper [1 ] we investigated the global structure of a given
field theory. The assumptions of that paper were that the field theory
is given in terms of Wightman functions which fulfil:

1) Wightman functions are tempered distributions,

2) In variance under the inhomogeneous Lorentz group,

3) Spectrum condition,

4) Local commutativity,

5) Condition of positive definiteness.

Furthermore, there was a hidden assumption which was not explicitly
mentioned, namely,

6) For real test functions f(x) the canonical representation of Λ(f)
is essentially self-adjoint and the spectral resolutions of Λ(f) and Λ(g)
commute if the supports of / and g are spacelike to one another.

In another paper with ZIMMERMANN [2] we studied the question
whether 6) can be derived from the assumptions 1)—5). It turned out
that 6) can only be derived if certain very restrictive conditions are
fulfilled. We gave a trivial counterexample showing that 6) is not a
consequence of the other assumptions. The additional condition we had
to introduce is so restrictive that even the Wick-ordered cube of a free
field does not satisfy it. WIGHTMAN [3] gave arguments indicating that
this field is indeed not self-adjoint. In this special case one can construct
ring systems, and JAFFE [4] has shown that they are local.

Recently ARAKI [5] investigated the global structure of local ring
systems and found that such a theory is only irreducible if the Hubert
space contains a single vacuum state when cyclicity is assumed.
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In this paper we want to re-examine this question for local fields
without using the condition 6). We will need the following assumptions:

a) Wightman functions are distributions,
b) In variance under the translation group,
c) Spectrum condition,
d) Local eommutativity,
e) Condition of positive definiteness.
In [5] ARAKI used a certain smoothness condition for the spectral

measure dEp of the translation group. It turned out that this condition
is always fulfilled as a consequence of the conditions a)—e). As our
main tool we employ techniques of analytic functions developed in a
recent paper [6].

We will assume that the reader is familiar with unbounded operators
in a Hubert space. A short review of this subject can be found in re-
ference [2].

II. Examples

In this section we want to discuss some examples of fields which
are irreducible, but where the Hubert space contains more than one
vacuum state.

Let {$)v U(ά), Λ(x)} be a field theory in the Hubert space S)x and
U(a) the unitary representation of the translation group. Assume there
is only one vacuum state in ξ)v Denote by §\ the cyclic domain of the
field A (x) in $)v

Now let £j0 be any Hubert space and B a symmetric but not self-
adjoint operator in ξ)0. Let ξ)0 be the subspace of all vectors which are
in the domain of every power of B. §)0 will be dense in £j0 and is invariant
under the action of B. Take now the Hubert space § x x § 0 and in it the
unitary representation of the translation group U(a) x 1. On the domain
©x x ©0 we can define a field

0(x) = A{x) x B .

The new theory will again fulfil all axioms of field theory except possibly
cyclicity.

We get a more complicated example if we choose in $)x fields Λ1(x),
,...,An(x) which are elements of the commutation class of A(x).
In £j0 we choose n operators B1 . . . Bn with the properties:

There exists a dense domain ξ)Q which is invariant under the action
of Bi; i = 1 . . . n. For every vector Ψζ ©0 we have BiBkΨ = BkBiW,
i, k = 1 . . . n. Finally, the Bt are symmetric operators.

We define now in $)x x ί)0 the field
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If we assume that the vacuum state in ί)x is a cyclic vector for the
fields Ai(x), i = 1 . . .n, then we see that an operator C commutes with
C(x) only if it is of the form 1 x 6 , where b commutes with all Bim Hence
the global structure analysis of the field C(x) reduces to the structure
analysis of the operators Bh i = 1 . . . n.

From the study of the ^-dimensional moment problem it is well
known that there do exist n operators Bi which have the above prop-
erties and which are not self-adjoint.

What is even worse, NELSON [7] has shown that there exist n such
operators having the additional properties that the Bt are essentially
self-adjoint on the domain §)0, but the spectral projections of Bt do not
commute with those of Bk

All our examples have the f olio wing features in common:
1) ί) is the direct product of two Hubert spaces S)x and § 0 .
2) ί)λ contains only one vacuum state, i.e. § 0 is isomorphic to the

sub-Hilbert space of all invariant vectors in £j.
3) U(a) is of the form Ux(a) x 1.
4) Let P o be the projection onto the subspace of all invariant vectors

in 9). Then we have a linear positive map φ from the polynomial algebra
of G{x) into an Abelian algebra,

φ(Po\C(f))=P0Ί>oW(f)P0.

5) A bounded operator C commutes with all C(f) if and only if it
is of the form l x δ , where b commutes with all φ C(f).

In the next section we want to show that every field whose commu-
tant has no center fulfils the properties 1)—5). This result strongly
suggests that equation (1) gives the general structure. We do not want
to investigate this question. Rather we would like to show that the
equivalence of irreducibility and one vacuum for cyclic fields fails only
because there exist representations of Abelian ^-algebras which are not
one-dimensional.

III. Reduction theory

In this section the details of a reduction theory are worked out.
We will assume that we have a local symmetric field A (x) in a Hubert

space 9) and a unitary representation U(a) of the translation group
fulfilling the spectrum condition. P o denotes the projection onto the sub-
space of all states invariant under the U(a). We assume furthermore
the existence of a cyclic domain 5>0C PQ$)- This means all polynomials
of A (/) can be applied to § 0 and the domain

0) = Linear Span x

A (f2) © 0 > . . ., A (h), . . . , A ( f n ) © 0 } ( 2 )

is dense in £>. Let A(f) be defined only on S.
4*
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From the symmetry assumption it follows that all operators Λ(f),
A (/x) A (/2) . . . are closurable. Define

$ = Π (ζs Π ©

With this notation we have:
Theorem 1. Let £)QE= $ r\ Poξ>. Then we have P0@($0) = £>0.

Since ^(5>0) C @Φ0) we have that © 0 is dense in Poξ).
Proof: Denote by A(ϊ) any polynomial in the A(f). We then have to

consider expressions of the form

(Ψ,A(t*)U(x)A(g*g)ϋ{y)A(t)Ψ) for Ψζ§>0. (3)

We first remark that due to the spectrum condition the operator U(a)
can be defined for complex a such that Imα ζ Ψ*+ (i^+ the forward
light-cone). If Imα ζ ^ + then

lim U(λa) = Po, Imα ζ i^+ (4)

in the strong operator topology.
Now according to reference [6], Theorem 2, the expression

(Ψ,A(t*) ϋ{x)A{%*g) U(y)A(ϊ) Ψ) = F(x, y) (5)

is defined for complex x and y such that Im r, l.m.y ζ ir+.
We now want to use the assumption that f and g have compact

support to show that (5) is bounded in some part of the forward tube.
Let support ϊ be in the sphere of radius rx and support g in the sphere
of radius r2. Denote by ^ the points which are spacelike to the sphere
of radius r1

J

Γr2.
Then we have f or x ζ ^ and Im /̂ ζ ^ + or 0

U(x)A(g*g) U(y)A(ί)Ψ)\ £

Because of locality and the in variance of Ψ this can be majorised by

1 1_

(Ψ, A(!*) A(f) Ψ)* (Ψ A(f*) A (f) A(1*) A (f) ϊ 7 ) * x

1

x (ψ, A(g*g) A(g*g) A(g*g) A(g*g) ψ)*.

From this we learn: expression (5) is uniformly bounded in

x £ ^, \m.y ( f + or 0, y ξ ^, Imα; ζ "Γ+ or 0 .
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Now let a = {α0, ~a}, α0 > 0 be any vector in ^ . Then

u1a0Γa), λ2{u2a0,~a)) = fλl)λz{uv u2)

is uniformly bounded for Im A x^ > 0 and Imu2 = 0, \u2\ ̂  1 or Imλ 2 u 2 > 0
and Imi^ = 0, \ux\ ^ 1 as long as λv λ2 are real and \λ±\, \λ2\ ^ 1.

From reference [6], Lemma 8, it follows that fλ1}λz(uvu2) is uniformly
bounded in the domain

1̂ 1 < 1, \u2\ < 1, ϊm.λ1u1 > 0 Imλ2u2 > 0 .

This implies

\\A{g) ϋ(λ{ua0) t))A{ϊ) Ψ\\ for \u\ < 1, Im^ > 0

is bounded for λ > 1. Hence

lim A(g)U(λ(uao,-a)A(ί)Ψ)
λ—>oo

converges weakly since (Φ, A(g) U(λ(uao>~~a)) A(ϊ) ϊ 7 ) converges if

Since A (g) is a closed operator we see from this together with equation
(4) that P0A (f) Ψ is in the domain of A (g) (since the graph of A (g)
is closed), q.e.d.

This theorem permits us to define the operators ^40(f) = P0A(ϊ) P o

as operators in Po£).

These operators are defined on §)0 and map ξ>0 into itself. We now prove
Theorem 2. The map φ(f) — PQA(ϊ)PQ is a linear positive map into

an Abelian algebra.

Proof: The map P0A(ϊ)P0 is clearly linear and positive. Now let

Ψ, Φ ζ © 0 ; we then have to show that the relation

(Ψ,A(S) P0A(t) Φ) = (Ψ,A(i) P0A(g) Φ)

holds. To this end we consider the function

h(u) = (Ψ, A (g) U{λ{uao,t) A (f) Φ) for \u\ < 1, λ > 1, (αo,"α) ζ ^ .

For IHIM > 0 we have lim fλ(u) = (Ψ, A (g) P0A (f) Φ) and for Imw < 0

lim fλ(u) = (Ψ, A(i) P 0 T(g) Φ) .

Since /Λ(^) is uniformly bounded in λ > 0 and |w| < 1, we have by
Vitali's theorem [8]

(Ψ, A (g) P0A (f) Φ) = (Ψ, A (f) P0A (g) Φ) , q.e.d.
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Next we have to investigate the commutant of {A(ϊ)}. To do this we
say that a bounded operator B is in the commutant of an unbounded
operator A if B and J5* commute with A.

BζAf*>AB^BA, AB*^B*A. (6)

With this definition the commutant of any family of unbounded
operators becomes a von Neumann algebra [9].

Theorem 3. Every element of {A (f)}' commutes with the translation
operators U(a). The map φ{B) = P0BP0 is a one-to-one map of {A(t)}f

o?ιto{A0(ϊ)}'.
Proof: Since we have a cyclic set of invariant vectors we find by an

argument given in Theorem 4 of reference [1] that every element of
{A(ϊ)}f commutes with U(a).

This in particular implies that P o commutes with {A (f)}'. Since ξ)0

is cyclic for {A (f)}, it is separating for {A (f)}'. This implies φ (B) = P0BP0

is a one-to-one map of {J.(f)}' into {AQ(ϊ)}'. Let now Boζ {A0(ϊ)}'.
Define B by the relation

Σ
If now Bo > 0, we have

= (ΣA (ί,) 5 0

2 ψit

This implies that if Bo is a self-adjoint operator then

upper bound of B = upper bound of J50

and lower bound of B = lower bound of Bo .

Hence B is a continuous operator. Since B clearly commutes with
A(t), we have that the map ψ is onto, q.e.d.

The operators A0(i) = P 0 4 ( f ) P 0 are defined in the Hubert space

Poξ). Now we want to define operators -4x(ί) in the Hubert space §

with domain of definition Φ

is defined on ^(© 0 ) and is clearly linear. We have to show that
us single-valued. Assume

Then
17 (1)
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Taking now the limit aΓ-> oo we get

0 = Jim U(x)A(i) Γ7(-*

= 2 1
 J (g£) A(f) ^ =

Thus -4χ(f) is single-valued.
From the definition of ^(f) it follows immediately that ^(f) is

closurable and that Λ^ϊ) commutes with the representation U(a) of
the translation group. This implies Ax (f) commutes with Po. Define now
the ring generated by {̂ 41(f)} and {A(g)}' as the double commutant of
the union of these sets.

9ί({A(f)} , {A{g)Y) = [K(f)}w{i(g)}']" .

With this notation we obtain:
Lemma 4. 9t({yl1(f)}, {A(g)}') is a von Neumann algebra of Type I.

The center of this ring is identical with the center of {A (g)}'.
Proof: The domain §)0 is separating for the set {A^ϊ)} as well as for

{A(g)}f. From this it follows that P0£j is a cyclic subspace for [{J[χ(f)} \j
v{A(g)}']'. Hence P o § is separating for ^({^(ί)}, {A(g)}') = 9{.
Since P o commutes with 91, we have that the central support of P o is
equal to 1. Consider the ring P03l in Poίj. From Theorem 3 it follows
P09ί is of Type I and Center of P09ί = Center of P0{A (g)}'. This implies
Lemma 4 by a well-known theorem on von Neumann algebras [10].

In the following investigation we want to assume that {A(g)}'
is a factor. The general situation can be derived from this by making
a decomposition with respect to the center. How to handle the reduction
theory for families of closed unbounded operators has been studied by
NUSSBAUM [11].

Theorem 5. Assume {A (g)}' is a factor. Then the Hubert space ί)
can be written as a direct product $)x x § 0 such that U (a) is of the form
Ux(a) x 1. ξ)x contains only one vacuum state.

Proof: If {A (g)}' is a factor, then ^({^(f)}, {A (g)}') = 9ί is a factor
of Type I (Lemma 4). This implies we can write S) in the form S)x x £j0

such that 91 = 1 x «2?(§0) t 1 2 ] - (^(θo) denotes the ring of all bounded
operators in ξ)0). Since U(a) is in the commutant of 91 we can write
U(a) in the form U^a) x 1. From the definition of 91 and Theorem 3 it
follows that P 09t restricted to P o § coincides with the ring of all bounded
operators in P 0£j. This means P o is a minimal projection in 9if. Or
PQ •= pQ1 x 1 where P 0 1 maps onto a one-dimensional space in ξ)v

This proves the theorem.
We have shown that the most general field having a cyclic subspace

of invariant states is the direct integral of fields fulfilling the properties
1) —5) listed in the last section. In particular this implies that for a
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field defined in terms of Wightman functions the Abelian algebra
φ (A (f)) has the cyclic vector fiasa cyclic vector in the Hubert space
Poίj. If A(ϊ) is an irreducible field, than the Hubert space contains
exactly one vacuum state if the representation of the Abelian algebra
φ (A (f)) is one-dimensional.
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