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Abstract, While direct-interaction particle theories are generally thought to
be incompatible with relativity in classical physics, such relativistic theories in
quantum mechanics have recently attracted attention. The reasons for rejecting
these theories in classical physics are based on the consideration of world lines, while
relativistic quantum mechanics has no covariant position operator so that the
classical refuting argument cannot be adapted.

This paper discusses the consistency of relativistic particle theories with a finite
number of degrees of freedom, without recourse to the position operator. A particle
is described by a sub-algebra of observables at one time. Homogeneous trans-
formations, including "accelerations," must preserve the identity of particles, and
therefore leave the sub-algebras invariant. It is shown that with this assumption
only non-interacting particle theories are compatible with the principle of relativ-
ity, in quantum as well as classical mechanics.

I. Introduction

Relativistic quantum mechanical particle theories [1—4] — as
contrasted to field theories — have recently attracted great attention,
because they make phenomenological two- or three-particle problems
amenable to a rigorously relativistic, mathematically consistent treat-
ment. On the basis of classical considerations, it had long been believed
that the relativistic interaction of two particles required a field, i.e.
infinitely many variables. Hence, the new developments are somewhat
surprising. Is it possible that quantum mechanics can succeed in a
direct-interaction relativistic theory where classical physics fails, and
if so, what are the virtues of quantum mechanics which make it possible ?

Closer inspection shows that the success of quantum mechanical
particle theories is bought for a price: the particle variables qt are the
Wigner-Newton position operators which do not "transform covariantly"
and therefore cannot be seriously considered as the quantum mechanical
equivalent of the classical position variable xμ (μ = 1 to 3). This circum-
stance raises a question of principle, both in classical and in quantum
mechanics: is the instantaneous position of a particle a necessary and

* Permanent address: Argonne National Laboratory, Argonne, Illinois.



Relativistic Particle Theories 7

a well-defined concept ? Empirically, we can, of course, measure position
of elementary particles only with great inaccuracy, and the extrapola-
tion to a precise position may be a useless idealization.

In the literature, another observable, the "centroid of energy,"
has been discussed repeatedly [5], This observable has the desired trans-
formation properties and it is, in the low-energy limit, equal to the po-
sition times the mass. However, the three components do not commute,
and it is therefore not usually considered as a proper relativistic generali-
zation of the position. Indeed, if the three components of the position
operator did not commute, it would not be possible to localize a particle,
i.e. to create states in which the uncertainty of position is arbitrarily
small. However, we might accept the impossibility of such a localization,
if it leads to useful results.

Instead of investigating specific alternatives for position operators,
we examine, more generally, the possibility of relativistic particle theories
in which the single-particle observables are not necessarily given a
physical interpretation. Of course, such theories can be only provisional,
since the predictive power of a theory depends on physical interpretation
of a complete set of observables. But, as Einstein remarked, it is possible
that the full physical interpretation of a theory follows its formal develop-
ment after years or even decades.

In this framework, the usual arguments against classical relativistic
theories of interacting particles do not necessarily hold: the argument
which uses the relativistic principle of finite signal velocity to exclude
instantaneous interaction between distant particles is based on the idea
that particles are points with well-defined positions*. Similarly, the
argument given recently by CTJRRIE, JORDAN and SUDARSHAN [6],
which does not use the principle of finite signal velocity, is also based
on the physical interpretation of the operator q{ (the canonical conjugate
of the momentum) as position operator, and it loses its point if this
physical interpretation is abandoned. We give a definition of the particle
concept which, while in agreement with existing theoretical concepts,
is more general. In intuitive language, our definition of particle requires
only that it preserves its individuality under Lorentz or Galilei trans-
formations. Our result is negative: even if the position concept is entirely
abandoned, relativistic particle theories with interaction are not physically
consistent, either in classical or quantum mechanics, or even in a larger
class of general schemes which includes classical and quantum mechanics.

* By' 'theory" we mean prediction based on initial data, andnot "closed systems"
as defined by P. HAVAS: "Relativity and Causality" (Paper presented at the Inter-
national Congress for Logic, Methodology and Philosophy of Science, Jerusalem,
1964.)
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II. Assumptions and definitions

We give a general framework for observables and symmetry (co-
variance) which is general enough to cover both classical and quantum
mechanics. This has the advantage that we do not have to give separate
arguments for the two cases. It also has the rather academic advantage
that it covers a class of possibles theories which are more general than
either classical or quantum mechanics.

An observable is a class of procedures with an apparatus, characterized
by a space-time volume V or a time t (space-like hyperplane a) within
which the observation takes place. If two procedures, characterized by
the same V or σ, have the same expectation values with respect to all
states (ensembles), they belong to the same equivalence class. (We are
using the 'Ήeisenberg concept" of observables, where states are time-
independent.)

An equivalence class of observables which have the same expectation
values with respect to all states — and in general belong to different V
or σ — is called a dynamical variable [7], We assume that the observables
form an algebra, without specifying the multiplication: it may be commu-
tative as in classical physics or a Jordan product, as in quantum mechanics.
We do not define a topology.

We consider, in particular, those observations which are made at one
instant over all space, e.g. position, momentum, energy. By moving the
apparatus from its initial position, a new observable is obtained. We
shall consider the following motions of apparatus: translations, rotations
and "accelerations," i.e. the apparatus is put into a state of uniform
translation with respect to its original state. Finally, we consider "time-
translation" as a motion. This consists in changing the delay between
some event characteristic for the production of the state and an instant
characteristic of the measurement. In the space of all observables, a
motion induces a permutation. We assume, in accordance with experience,
that this permutation is an automorphism, i.e., it preserves algebraic
relations, e.g.

A-*A\ B-+B'
imply that

A + B-+A' + B' ,

A*->Af* e t c . . .

If a succession of two motions is defined as multiplication, the motions
form a group, since every motion can be reversed.

Two distinct motions, e.g. the sequence LXLZ and the motion L%
may have identical results as to the expectation values with respect to
all states. Then, the two motions LλL2 and Lz generate identical auto-
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morphisms of dynamical variables, and we will write

One can study the multiplication table of the group empirically. We are
going to consider the Galilei and Poincare groups. It is convenient to
consider the realization of these groups by transformations of space-time.
This realization associates to each motion L a transformation which is
intuitively obvious for all but "acceleration." To an acceleration, the
Galilei group associates a transformation

x' = x + vt, t' = t

while the Poincare group associates it to Lorentz transformations.
The set of observables {̂ 4 (σ)} associated to the hyperplane a has a

specific structure: every dynamical variable has an associated element
A (σ), i.e. the set {̂ 4 (σ)} forms a closed algebra, and it is mapped onto
the whole of the space of dynamical variables. This assumption is
necessary in classical physics as well as quantum mechanics in order
to guarantee (conventional) causality [7]. The preceding assumptions
are common to almost all general frameworks for physical theory, and
need no particular discussion. We consider now more specifically observa-
bles which characterize particles.

For simplicity, we restrict our discussion to a finite number of
distinguishable particles, but the latter restriction is not essential.

A system of N distinguishable particles is characterized by the fact
that the algebra {A (σ)} is generated by subalgebras {Ai(σ)} (ί = 1 . . . N)
which have only the zero and unit elements in common. Since we have
assumed the time-translation to induce an automorphism A(a)->A(a+t),
the structure of {A (or)} is that of each {A (σ + t)}.

Physically, this assumption means first that the observables charac-
terizing the different particles are independent of each other, i.e. that
the specification of expectation values of the observables of particle 1
does not restrict the expectation values of the observables of particle 2.
For, if the algebras {Ai(σ)} had a non-trivial intersection, one could
express a member of {A3 (σ)} as a function of the members of {Ai(σ)}

(i + ?).
Our assumption has the further physical implication that there are

no observables other than particle observables necessary to predict the
future. This specification excludes mediating fields, whose instantaneous
properties would influence particle behavior in the future. The only
field allowed by our specification is one which does not interact with the
particles or (trivially) one which is defined as a given function of particle
observables. For instance, a rigid self-field attached to each particle
would still be in agreement with our assumption.
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Clearly, all known classical and quantum theories of particles satisfy
the requirement.

The subalgebras [A^σ)} have the further property that they are
invariant under "space-translation" within the hyperplane σ. This,
again, is obvious in classical and quantum mechanics. A space-trans-
lation changes e.g. qi into qt -f- α, but never into a function of q} (j φ i).
If it were not true, the properties of a given particle, as seen by a trans-
lated observer, would not be fully determined by the properties of that
particles, as seen by a static observer; they would depend on the ob-
servables of other particles.

Our next assumption is that the subalgebras {Ai(σ)} are invariant
under all elements L of the homogeneous Galilei or Poincare groups.
Operationally, this statement means that there cannot be two particles
which have all properties in common, as viewed from a fixed frame, but
differ in their properties when viewed from a rotated or moving
frame.

Classical relativistic particle theories traditionally appear in tensor
or spinor form. We assert that the (usually unstated) physical reason for
this formalism is that the above assumption is tacitly acknowledged to
be the part of the definition of a particle. It implies that the instantaneous
properties of a given particle, as viewed by a moving observer, can be
calculated in a particularly simple way from the properties of that
same particle as viewed by a static observer.

To appreciate the operational meaning of our assumption, consider
an experiment designed to test it. Given two states, and given that the
expectation values of all observables referring to particle n°l are the
same, we consider the expectation values of dynamical variables L
A1(σ) where L is an acceleration, i.e. the results of observations made
with the same instruments after they have been accelerated. Is it possible
that these observables LA1 (σ) are different in the two cases, i.e. can the
state of particle 1, as viewed from a different frame at a given instant,
depend on other particles ? It seems that such an occurence would be
considered as evidence for the fact that the system under observation
is more complicated than a particle: e.g. a point particle surrounded by
a "deformable" cloud or field. In this case, we could well understand that
the properties of the system are not exhaustively described by instanta-
neous observations; since the accelerated frame sees different space-
time points as simultaneous it would not be surprising that the observables
LA^σ) are not fully determined by the set of A^σ). Then, we would not
describe the situation in terms of a finite number of particles, but in
terms of a field, or, perhaps, clouds with an indefinite number of bare
particles. On other words: the test for the particle nature of an object
is that its identity is preserved under Lorentz transformations.
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III . Conclusion and discussion

We now have the following situation to consider: the automorphisms
induced by space translations and by homogeneous transformations leave
the subalgebras [A^σj] invariant. Can the remaining subgroup, i.e.
the time translations, {Tτ} carry observables Λi(σ) into dynamical
variables associated to Bj(σ) with i =J= j> i.e. can a time-translation mix
the subalgebra {Ai(σ)}'i. If not, we have a trivial case: each particle
behaves as though it were alone, and there is no interaction. In the case
of the Galilei group the answer to our question is, of course, positive,
as shown by nonrelativistic particle theories. For the Poincare group,
we have the following statement which is intuitively obvious, but
proved in the Appendix.

If a function on the group is constant on the subgroups: space-trans-
lation and homogeneous subgroup, then it is constant on the whole
group. Hence, the time translation leaves the subalgebras {A^σ)}
also invariant: the only relativistic particle theory is one of free (non-
interacting) particles.

The argument of CUKRIE, JORDAN and STJDARSHAN [6] is a special
case of the present conclusion. Their Eq. (3.18) is based on the inter-
pretation of Qn as position of the w'th particle and it specifies the per-
mutation of the elements of {An(σ)} (including position and velocity)
induced by an acceleration. As we have seen, the only feature essential
for the conclusion is the existence of such a permutation, i.e. the invariance
of algebra {An(σ)} under Lorentz transformations.

Our conclusions are not in contradiction with F. Coester's view [4]
on relativistic particle theories. Coester considers only the scattering
operator as physically significant and attributes no observable meaning
to the operators which tend asymptotically toward the in- and out-
operators.

The negative conclusion does not destroy the value of relativistic
particle theories as a provisional approach, it only delimits their claim
to legitimacy. It may even be hoped that this clarification can improve the
relativistic particle theories in a way which we discuss now.

The most striking pragmatic defect of reletivistic particle theories
— at least for the case of two particles — is the lack of constraints on
the interaction potential. Far from implying e.g. the correct form of the
hydrogen spectrum, they allow for instance, a Coulomb interaction which
leaves the spin invariant. One shudders at the thought of what would
have happened to physics if DπtAC had known about the Bakamjian-
Thomas-Foldy type of relativistic particle theories. It seems imperative
to find a restrictive principle to select the empirically correct interactions.
It was originally the search for this additional restricting principle which
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motivated the present investigation. We found, disappointingly,! that
the rigorous application of the additional physical requirement* (the
definition of particles) restricts the relativistic particle theories to the
trivial case. It seems tempting to make a pragmatic use of this finding
by requiring relativistic particle theories to satisfy approximately the
requirements which we know, they cannot rigorously satisfy, there-
by restricting the class of allowable interaction operators.

The author expresses his gratitude to D. KASTLER both for his hospitality and
stimulating discussions.

Appendix

Given a representation of either of the two groups of motions (GALILEI

and POΓNΌARE), we consider the subset 8 which contains the space-
translation, space-rotation, and acceleration subgroups. By assumption,
every member A of 8 is represented by an operator U(A) which leaves
the subalgebras of individual particles invariant. Does this imply that
the representatives U(Tτ) of the time-translation subgroups with elements
Tτ share the assumed property with the operators U(A) %

The answer is affirmative if the set 8 generates the subgroup contain-
ing {Tτ}, i.e. if for every element Tτ there exists an equation of the form

ΠAt=Tx. (At£8) (1)
i

Indeed, the representatives are then related by the equation

Πϋ{Ai)=U{Tτ), (2)
i

and since every operator on the left-hand side leaves the sub-algebras
invariant, so does U(Tτ).

Our assertion is that S generates {Tτ} in the Poincare group, but not
in the Galilei group.

Proof: Consider the generators of the one-parameter subgroups in 8.
A linearly independent set consists of the three space-translation gener-
ators (P), the three rotation generators (J) and the three accelerations (K).
To obtain a closed Lie algebra which contains these generators we form
the commutators of Pi and Ki and obtain the generators of time-trans-
lations [8]. Returning from the Lie algebra to the group, we see that
every group which contains 8 must also contain the time-translations Tτ.
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