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Abstract
Applying the theory of Calderón-Zygmund operators, we study the compactness of
the commutators [aI,W0(b)] of multiplication operators aI and convolution opera-
tors W0(b) on weighted Lebesgue spaces Lp(R,w) with p ∈ (1,∞) and Muckenhoupt
weights w for some classes of piecewise quasicontinuous functions a ∈ PQC and
b ∈ PQCp,w on the real line R. Then we study two C∗-algebras Z1 and Z2 generated by
the operators aW0(b), where a,b are piecewise quasicontinuous functions admitting
slowly oscillating discontinuities at ∞ or, respectively, quasicontinuous functions on
R admitting piecewise slowly oscillating discontinuities at ∞. We describe the maxi-
mal ideal spaces and the Gelfand transforms for the commutative quotient C∗-algebras
Zπi = Zi/K (i = 1,2) whereK is the ideal of compact operators on the space L2(R), and
establish the Fredholm criteria for the operators A ∈ Zi.
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1 Introduction

Let B(X) denote the Banach algebra of all bounded linear operators acting on a Banach
space X, let K(X) be the closed two-sided ideal of all compact operators in B(X), and let
Bπ(X) = B(X)/K(X) be the Calkin algebra of the cosets Aπ := A+K(X), where A ∈ B(X).
An operator A ∈ B(X) is said to be Fredholm, if its image is closed and the spaces ker A and
ker A∗ are finite-dimensional (see, e.g., [9]). Equivalently, A ∈ B(X) is Fredholm if and only
if the coset Aπ is invertible in the algebra Bπ(X).

A measurable function w : R→ [0,∞] is called a weight if the preimage w−1({0,∞}) of
the set {0,∞} has measure zero. For 1 < p < ∞, a weight w belongs to the Muckenhoupt
class Ap(R) if

cp,w := sup
I

( 1
|I|

∫
I
wp(x)dx

)1/p( 1
|I|

∫
I
w−q(x)dx

)1/q
<∞,

where 1/p+1/q = 1, and supremum is taken over all intervals I ⊂ R of finite length |I|.
In what follows we assume that 1 < p <∞ and w ∈ Ap(R), and consider the weighted

Lebesgue space Lp(R,w) equipped with the norm

∥ f ∥Lp(R,w) :=
(∫
R
| f (x)|pwp(x)dx

)1/p
.

As is known (see, e.g., [11] and [5]), the Cauchy singular integral operator S R given by

(S R f )(x) = lim
ε→0

1
πi

∫
R\(x−ε,x+ε)

f (t)
t− x

dt, x ∈ R, (1.1)

is bounded on every space Lp(R,w) with 1 < p <∞ and w ∈ Ap(R).
Let F : L2(R)→ L2(R) denote the Fourier transform,

(F f )(x) :=
∫
R

f (t)eitxdt, x ∈ R.

A function a ∈ L∞(R) is called a Fourier multiplier on Lp(R,w) if the convolution operator
W0(a) :=F −1aF maps the dense subset L2(R)∩Lp(R,w) of Lp(R,w) into itself and extends
to a bounded linear operator on Lp(R,w). Let Mp,w stand for the Banach algebra of all
Fourier multipliers on Lp(R,w) equipped with the norm ∥a∥Mp,w := ∥W0(a)∥B(Lp(R,w)).

Letting Bp,w := B(Lp(R,w)) and Kp,w :=K(Lp(R,w)) for p ∈ (1,∞) and w ∈ Ap(R), we
consider the Banach subalgebra

Ap,w := alg
(
aI,W0(b) : a ∈ PQC, b ∈ PQCp,w

) ⊂ Bp,w (1.2)

generated by all multiplication operators aI (a ∈ PQC) and all convolution operators W0(b)=
F −1bF (b ∈ PQCp,w), where the algebras PQC ⊂ L∞(R) and PQCp,w ⊂ Mp,w of piecewise
quasicontinuous functions are defined in Section 2. The Banach algebra Ap,w in the case of
slowly oscillating and piecewise slowly oscillating functions a,b was studied in [16]–[18].

In the present paper, applying the theory of Calderón-Zygmund operators (see, e.g.,
[25], [12]), we study the compactness of the commutators

[aI,W0(b)] = aW0(b)−W0(b)aI ∈ Ap,w (1.3)
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of multiplication operators aI and convolution operators W0(b) on weighted Lebesgue
spaces Lp(R,w) with p ∈ (1,∞) and Muckenhoupt weights w for some classes of piece-
wise quasicontinuous functions a ∈ PQC and b ∈ PQCp,w. Obtained results extend those in
[10, Lemmas 7.1–7.4], which are related to piecewise continuous functions a,b, and those
in [1, Theorem 4.2, Corollary 4.3] and [17, Theorem 4.6], which are related to piecewise
slowly oscillating functions a,b, to wider classes of piecewise quasicontinuous functions
a,b on weighted Lebesgue spaces Lp(R,w). Then we study two C∗-subalgebras Z1 and Z2
of the C∗-algebra A2,1 given by (1.2), which are generated by the operators aW0(b), where
a,b are piecewise quasicontinuous functions admitting slowly oscillating discontinuities at
∞ or, respectively, quasicontinuous functions on R admitting piecewise slowly oscillating
discontinuities at ∞. We describe the maximal ideal spaces and the Gelfand transforms for
the commutative quotient C∗-algebras Zπi = Zi/K (i = 1,2) where K is the ideal of compact
operators on the space L2(R), and establish the Fredholm criteria for the operators A ∈ Zi.

The paper is organized as follows. In Section 2, following [23] and [24] (also see [9]),
we introduce the algebras of quasicontinuous and piecewise quasicontinuous functions, and
their subalgebras of slowly oscillating and piecewise slowly oscillating functions. In Sec-
tion 3 we describe the maximal ideal spaces of these commutative algebras. In Section 4 we
study the compactness of commutators (1.3) with piecewise quasicontinuous data functions
a,b. Finally, in Section 5, using the results of Section 4, we describe the maximal ideal
spaces and the Gelfand transforms for the commutative C∗-algebras Zπi (i = 1,2) and study
the Fredholmness of operators A ∈ Zi.

2 Algebras of piecewise quasicontinuous functions

2.1 BMO and V MO

Let Γ be the unit circle T = {z ∈ C : |z| = 1} or the real line R. Given a locally integrable
function f ∈ L1

loc(Γ) and a finite interval I on Γ, let |I| denote the length of I and let

I( f ) := |I|−1
∫

I
f (t)dt

denote the average of f over I. For a > 0, consider the quantities

Ma( f ) := sup
|I|≤a
|I|−1
∫

I
| f (t)− I( f )|dt,

M0( f ) := lim
a→0

Ma( f ), ∥ f ∥∗ := lim
a→∞

Ma( f ). (2.1)

The function f ∈ L1
loc(Γ) is said to have bounded mean oscillation, f ∈ BMO(Γ), if ∥ f ∥∗ <∞.

The space BMO(Γ) is a Banach space under the norm ∥ · ∥∗, provided that two functions
differing by a constant are identified. A function f ∈ BMO(Γ) is said to have vanishing
mean oscillation, f ∈ V MO(Γ), if M0( f ) = 0. As is well known (see, e.g., [23]), V MO(Γ) is
a closed subspace of BMO(Γ).

Let Ṙ := R∪ {∞}. Consider the homeomorphism γ : T→ Ṙ, γ(t) = i(1+ t)/(1− t). By
[11, Chapter VI, Corollary 1.3], f ∈ BMO(R) if and only if f ◦γ ∈ BMO(T), and the norms
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of these functions are equivalent. On the other hand,

V MO :=
{
f ◦γ−1 : f ∈ V MO(T)

}
(2.2)

is a proper closed subspace of V MO(R). Since V MO(T) is the closure of C(T) in BMO(T)
(see, e.g., [11, p. 253]), (2.2) implies the following property of V MO.

Proposition 2.1. V MO is the closure in BMO(R) of the set C(Ṙ).

2.2 The C∗-algebras S O⋄ and QC

Let Γ ∈ {Ṙ,T}. For a bounded measurable function f : Γ→ C and a set I ⊂ Γ, let

osc( f , I) = ess sup
{| f (t)− f (s)| : t, s ∈ I

}
.

Following [2, Section 4], we say that a function f ∈ L∞(Γ) is slowly oscillating at a point
η ∈ Γ if for every r ∈ (0,1) or, equivalently, for some r ∈ (0,1),

lim
ε→0

osc
(
f , Γrε,ε(η)

)
= 0 for η ,∞ and lim

ε→∞
osc
(
f , Γrε,ε(η)

)
= 0 for η =∞,

where

Γrε,ε(η) :=


{
z ∈ Γ : rε ≤ |z−η| ≤ ε} if η ,∞,{
z ∈ Γ : rε ≤ |z| ≤ ε} if η =∞.

For each η ∈ Γ, let S Oη(Γ) denote the C∗-subalgebra of L∞(Γ) defined by

S Oη(Γ) :=
{
f ∈Cb(Γ \ {η}) : f slowly oscillates at η

}
,

where Cb(Γ \ {η}) := C(Γ \ {η})∩ L∞(Γ). Hence, setting S Oλ := S Oλ(Ṙ) for all λ ∈ Ṙ, we
conclude that

S O∞ =
{
f ∈Cb(Ṙ \ {∞}) : lim

x→+∞
osc
(
f , [−x,−x/2] ∪ [x/2, x]

)
= 0
}
,

S Oλ =
{
f ∈Cb(Ṙ \ {λ}) : lim

x→0
osc
(
f ,λ+ ([−x,−x/2]∪ [x/2, x])

)
= 0
}

for λ ∈R. Let S O⋄ be the minimal C∗-subalgebra of L∞(R) that contains all the C∗-algebras
S Oλ with λ ∈ Ṙ. In particular, S O⋄ contains C(Ṙ).

Lemma 2.2. [17, Lemma 2.1] Let λ ∈ Ṙ, a ∈ S Oλ, and let γ : T→ Ṙ be the homeomorphism
given by γ(t) = i(1+ t)/(1− t). Then a◦γ ∈ S Oη(T) where η := γ−1(λ).

Corollary 2.3. [17, Corollary 2.2] For every λ ∈ R, the mapping a 7→ a◦βλ defined by the
homeomorphism

βλ : Ṙ→ Ṙ, x 7→ λx−1
x+λ

is an isometric isomorphism of the C∗-algebra S Oλ onto the C∗-algebra S O∞.

Let H∞ be the closed subalgebra of L∞(R) that consists of all functions being non-
tangential limits on R of bounded analytic functions on the upper half-plane. According to
[23] and [24], the C∗-algebra QC of quasicontinuous functions on Ṙ is defined by

QC := (H∞+C(Ṙ))∩ (H∞+C(Ṙ)) = V MO∩L∞(R). (2.3)

Theorem 2.4. [17, Theorem 4.2] The C∗-algebra S O⋄ is contained in the C∗-algebra QC
of quasicontinuous functions on Ṙ.
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2.3 Fourier multipliers

Let Cn(R) be the set of all n times continuously differentiable functions a : R→ C, and let
V(R) be the Banach algebra of all functions a : R→ C with finite total variation

V(a) := sup
{∑n

i=1
|a(ti)−a(ti−1)| : −∞ < t0 < t1 < ... < tn < +∞, n ∈ N

}
where the supremum is taken over all finite partitions of the real line R and the norm in V(R)
is given by ∥a∥V = ∥a∥L∞(R) +V(a). As is known (see, e.g., [13, Chapter 9]), every function
a ∈ V(R) has finite one-sided limits at every point t ∈ Ṙ.

Let PC be the C∗-algebra of all functions on R having finite one-sided limits at every
point t ∈ Ṙ. If a ∈ PC has finite total variation, then a ∈ Mp,w for all p ∈ (1,∞) and all
w ∈ Ap(R) according to Stechkin’s inequality

∥a∥Mp,w ≤ ∥S R∥B(Lp(R,w))
(∥a∥L∞(R)+V(a)

)
(2.4)

(see, e.g., [10, Theorem 2.11] and [8]), where the Cauchy singular integral operator S R is
given by (1.1).

The following result obtained in [19, Corollary 2.10] supply us with another class of
Fourier multipliers in Mp,w.

Theorem 2.5. If a ∈ C3(R \ {0}) and ∥Dka∥L∞(R) <∞ for all k = 0,1,2,3, where (Da)(x) =
xa′(x) for x ∈R, then the convolution operator W0(a) is bounded on every weighted Lebesgue
space Lp(R,w) with 1 < p <∞ and w ∈ Ap(R), and

∥a∥Mp,w ≤ cp,w max
{∥Dka∥L∞(R) : k = 0,1,2,3

}
<∞,

where the constant cp,w ∈ (0,∞) depends only on p and w.

2.4 Banach algebras Cp,w(Ṙ), Cp,w(R) and PCp,w

Let PC stand for the C∗-algebra of piecewise continuous functions f : R→ C. We denote
by Cp,w(Ṙ) (resp., Cp,w(R), PCp,w) the closure in Mp,w of the set of all functions a ∈ C(Ṙ)
(resp., a ∈ C(R), a ∈ PC) of finite total variation (see [10]). Obviously, by (2.4), Cp,w(Ṙ),
Cp,w(R) and PCp,w are Banach subalgebras of Mp,w, and

Cp,w(Ṙ) ⊂C(Ṙ), Cp,w(R) ⊂C(R), PCp,w ⊂ PC.

2.5 Banach algebras S O⋄p,w and QCp,w

For λ ∈ Ṙ, we consider the commutative Banach algebras

S O3
λ :=
{
a ∈ S Oλ∩C3(R \ {λ}) : lim

x→λ
(Dk
λa)(x) = 0, k = 1,2,3

}
equipped with the norm

∥a∥S O3
λ

:=max
{∥Dk

λa∥L∞(R) : k = 0,1,2,3
}
,
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where (Dλa)(x) = (x−λ)a′(x) for λ ∈ R and (Dλa)(x) = xa′(x) if λ =∞. By Theorem 2.5,
S O3
λ ⊂ Mp,w for all p ∈ (1,∞) and all w ∈ Ap(R). Let S Oλ,p,w denote the closure of S O3

λ in
Mp,w, and let S O⋄p,w be the Banach subalgebra of Mp,w generated by all the algebras S Oλ,p,w
(λ ∈ Ṙ). Because Mp,w ⊂ M2 = L∞(R), we conclude that S O⋄p,w ⊂ S O⋄.

To define an Mp,w-analogue of the C∗-algebra QC, we need the following weighted
analogue of the Krasnoselskii theorem [20, Theorem 3.10] on interpolation of compactness
(see, e.g., [15, Theorem 5.2]), which follows from the Stein-Weiss interpolation theorem
(see, e.g., [4, Corollary 5.5.4]).

Theorem 2.6. Suppose 1 < pi < ∞, wi are weights in Lpi
loc(R), and T ∈ B(Lpi(R,wi)) for

i = 1,2. If the operator T is compact on the space Lp1(R,w1), then T is compact on every
space Lp(R,w) where

1
p
=

1− θ
p1
+
θ

p2
, w = w1−θ

1 wθ2, 0 < θ < 1. (2.5)

Let p ∈ (1,∞) and w ∈ Ap(R). By the stability of Muckenhoupt weights (see, e.g., [5,
Section 2.8]), there exists an ε0 ∈ (0, p− 1) such that w1+ε ∈ Ap0(R) for all ε ∈ (−ε0, ε0)
and all p0 ∈ (p− ε0, p+ ε0). Then, in particular, w1+ε ∈ Lp0

loc(R) (see, e.g., [5, Lemma 4.6,
Theorem 4.15]). According to the proof of [15, Corollary 5.3], let E denote the set of all
ε > 0 such that wε ∈ Apε(R), where

pε := p/[1+ (1− p/2)ε], wε := w1+ε. (2.6)

Taking then p1 = 2, w1 = 1, p2 = pε, w2 = wε and θ = (1+ε)−1, we infer from Theorem 2.6
that (2.5) holds for all ε ∈ E, which implies due to [4, Corollary 5.5.4] that

Mpε,wε ⊂ Mp,w for all p ∈ (1,∞), w ∈ Ap(R) and ε ∈ E. (2.7)

Thus, Theorem 2.6 gives the following.

Corollary 2.7. If p ∈ (1,∞), w ∈ Ap(R) and an operator T is compact on the space L2(R)
and is bounded on the weighted Lebesgue space Lpε(R,wε) for some ε ∈ E, where pε and
wε are given by (2.6), then the operator T is compact on the space Lp(R,w).

By analogy with [14], we define the set Rp,w :=
∪
ε∈EMpε,wε . Along with QC given by

(2.3), we introduce its Mp,w-analogue QCp,w as the closure in Mp,w of the set QC ∩Rp,w.
Obviously, in view of (2.7) and the inclusion S O3

λ ⊂Mp,w for all p ∈ (1,∞) and all w ∈ Ap(R),
we obtain

QCp,w ⊂ QC∩Mp,w ⊂ QC and S O⋄p,w ⊂ QCp,w.

2.6 Banach algebras PS O⋄p,w and PQCp,w

Let PS O⋄ = alg(PC,S O⋄) be the C∗-subalgebra of L∞(R) generated by the C∗-algebras PC
and S O⋄, and let PS O⋄p,w = alg(PCp,w,S O⋄p,w) be the Banach subalgebra of Mp,w generated
by the Banach algebras PCp,w and S O⋄p,w.

Let PQC = alg(PC,QC) be the C∗-algebra of piecewise quasicontinuous functions gen-
erated in L∞(R) by the C∗-algebras PC and QC, and let PQCp,w = alg(PCp,w,QCp,w) denote
the Banach subalgebra of Mp,w generated by the Banach algebras PCp,w and QCp,w.

Clearly,
PS O⋄p,w ⊂ PS O, PQCp,w ⊂ PQC, PS O⋄p,w ⊂ PQCp,w.
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3 The maximal ideal spaces of functional algebras

3.1 The maximal ideal space of the Banach algebra S O⋄p,w

In what follows, let M(A) denote the maximal ideal space of a commutative Banach algebra
A. If C is a Banach subalgebra of A and λ ∈ M(C), then the set Mλ(A) := {ξ ∈ M(A) :
ξ|C = λ} is called the fiber of M(A) over λ. Hence for every Banach algebra A ⊂ L∞(R)
with M(C(Ṙ)∩A) = Ṙ and every λ ∈ Ṙ, the fiber Mλ(A) denotes the set of all characters
(multiplicative linear functionals) ofA that annihilate the set { f ∈C(Ṙ)∩A : f (λ) = 0}. As
usual, for all a ∈ A and all ξ ∈ M(A), we put a(ξ) := ξ(a).

Identifying the points λ ∈ Ṙ with the evaluation functionals δλ on Ṙ, δλ( f ) = f (λ) for
f ∈C(Ṙ), we infer that the maximal ideal space M(S O⋄) of S O⋄ is of the form

M(S O⋄) =
∪
λ∈Ṙ

Mλ(S O⋄), (3.1)

where Mλ(S O⋄) :=
{
ξ ∈ M(S O⋄) : ξ|C(Ṙ) = δλ

}
are fibers of M(S O⋄) over λ ∈ Ṙ. Applying

Corollary 2.3 and [3, Proposition 5], we infer that for every λ ∈ Ṙ,

Mλ(S O⋄) = Mλ(S Oλ) = M∞(S O∞) = (closS O∗∞R) \R, (3.2)

where closS O∗∞R is the weak-star closure of R in S O∗∞, the dual space of S O∞.
The fiber M∞(S O∞) is related to the partial limits of a function a ∈ S O∞ at infinity as

follows (see [6, Corollary 4.3] and [1, Corollary 3.3]).

Proposition 3.1. If {ak}∞k=1 is a countable subset of S O∞ and ξ ∈ M∞(S O∞), then there
exists a sequence {gn} ⊂ R+ such that gn→∞ as n→∞, and for every t ∈ R \ {0} and every
k ∈ N, limn→∞ ak(gnt) = ξ(ak).

Lemma 3.2. [17, Lemma 3.5] If 1 < p <∞, w ∈ Ap(R) and λ ∈ Ṙ, then the maximal ideal
spaces of S Oλ,p,w and S Oλ coincide as sets, that is, M(S Oλ,p,w) = M(S Oλ).

Fix p ∈ (1,∞) and w ∈ Ap(R). Analogously to (3.1) we obtain

M(S O⋄p,w) =
∪
λ∈Ṙ

Mλ(S O⋄p,w). (3.3)

Lemma 3.2 and relations (3.2) imply that

Mλ(S O⋄p,w) = Mλ(S Oλ,p,w) = Mλ(S Oλ) = M∞(S O∞) (3.4)

for every λ ∈ Ṙ. Applying (3.3), (3.4) and (3.1) we arrive at the following result.

Theorem 3.3. [17, Theorem 3.6] If 1< p<∞ and w ∈ Ap(R), then the maximal ideal spaces
of S O⋄p,w and S O⋄ coincide as sets, M(S O⋄p,w) = M(S O⋄).
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3.2 The maximal ideal space of the C∗-algebra QC

Identifying the points λ ∈ Ṙwith the evaluation functionals δλ on Ṙ, we conclude by analogy
with (3.1) that the maximal ideal space M(QC) of the C∗-algebra QC of quasicontinuous
functions a : Ṙ→ C is of the form

M(QC) =
∪
λ∈Ṙ

Mλ(QC),

where Mλ(QC) :=
{
ξ ∈ M(QC) : ξ|C(Ṙ) = δλ

}
are fibers of M(QC) over λ ∈ Ṙ.

Let H∞(T) be the C∗-subalgebra of L∞(T) that consists of all functions being non-
tangential limits on T of bounded analytic functions on the unit disc D := {z ∈ C : |z| < 1}.
In what follows we identify the fibers Mλ(QC) (λ ∈ Ṙ) of the C∗-algebra QC with the fibers
Mt(QC(T)) for t = (λ− i)/(λ+ i) ∈ T of the C∗-algebra QC(T) of quasicontinuous functions
on T,

QC(T) := (H∞(T)+C(T))∩ (H∞(T)+C(T)) = V MO(T)∩L∞(T). (3.5)

Let G be the set of all averaging functionals of the form

fI(a) =
1
|I|

∫
I
a(t)|dt| (a ∈ QC(T)), (3.6)

where I runs the setL of all arcs of T and |I|means the length of I. Let us identify arcs I ⊂ T
with functionals fI given by (3.6). According to [24], M(QC(T)) consists of all functionals
in the weak-star closure of G in the dual space (QC(T))∗ of (3.5) that do not belong to G.

Given t ∈ T, let M±t (QC(T)) be the set of all ξ ∈ Mt(QC(T)) such that ξ(a) = 0 if a ∈
QC(T) and limsup

τ→t±
|a(τ)| = 0, respectively, where τ→ t+ (resp., τ→ t−) means that τ ∈ T

tends to t from the right (resp., from the left).
For t ∈ T and c > 0, let Gt,c denote the set of arcs I ∈ L such that the distance between t

and the center of I (measured along T) does not exceed c|I|. In particular, Gt,0 is the set of
arcs with center t. Let M0

t (QC(T)) be the set of functionals in the fiber Mt(QC(T)) that lie
in the weak-star closure of Gt,0. By [24], M0

t (QC(T)) coincides with the set of functionals
in Mt(QC(T)) that lie in the weak-star closure of Gt,c for any c > 0.

Lemma 3.4. [24, Lemma 8] For every t ∈ T, M+t (QC(T))∩M−t (QC(T)) = M0
t (QC(T)) and

M+t (QC(T))∪M−t (QC(T)) = Mt(QC(T)).

3.3 The maximal ideal spaces of the C∗-algebras PS O⋄ and PQC

For Γ ∈ {Ṙ,T}, let PC(Γ) be the C∗-algebra of piecewise continuous functions f : Γ→ C.
The maximal ideal space M(PC(Γ)) of PC(Γ) can be identified with the set Γ× {0,1}, and
its fibers over points t ∈ Γ are the doubletons Mt(PC(Γ)) = {(t,0), (t,1)}, where

f (t,0) = f (t−0) and f (t,1) = f (t+0) for all f ∈ PC(Γ), (3.7)

and f (∞,0) = f (+∞), f (∞,1) = f (−∞).
By [2, Section 4] and [16, Section 3], the maximal ideal space of the C∗-algebra PS O⋄ ⊂

L∞(R) is of the form

M(PS O⋄) =
∪
λ∈Ṙ

Mλ(PS O⋄), Mλ(PS O⋄) = Mλ(S O⋄)×{0,1} =
∪

ξ∈Mλ(S O⋄)

{(ξ,0), (ξ,1)},
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where, for every λ ∈ Ṙ and every (ξ,µ) ∈ Mλ(S O⋄)×{0,1}, we have

(ξ,µ)|S O⋄ = ξ, (ξ,µ)|C(Ṙ) = λ, (ξ,µ)|PC = (λ,µ).

For all ξ ∈ M(S O⋄), we put ξ− := (ξ,0) and ξ+ := (ξ,1).
Let PQC(T) denote the C∗-subalgebra of L∞(T) generated by the C∗-algebras PC(T)

and QC(T). By [24] (also see [9, Section 3.3]), there is a natural mapping

w : M(PQC(T))→ M(QC(T))×{0,1}

which is given as follows: for y ∈ M(PQC(T)), let ξ = y|QC(T), t = y|C(T), and v = y|PC(T); if
v = (t,0) (resp., v = (t,1)), then w(y) = (ξ,0) (resp., w(y) = (ξ,1)). Hence, M(PQC(T)) is a
subset of the set M(QC(T))×{0,1}. By analogy with (3.7), we obtain

M(PQC(T)) =
∪
t∈T

Mt(PQC(T)) =
∪
t∈T

∪
ξ∈Mt(QC(T))

Mξ(PQC(T)).

The fibers Mξ(PQC(T)) for ξ ∈ M(QC(T)) are described as follows.

Theorem 3.5. [24, Section 5] Let ξ ∈ Mt(QC(T)) for t ∈ T. Then

Mξ(PQC(T)) =


{(ξ,0)} if ξ ∈ M−t (QC(T)) \M0

t (QC(T)),
{(ξ,1)} if ξ ∈ M+t (QC(T)) \M0

t (QC(T)),
{(ξ,0), (ξ,1)} if ξ ∈ M0

t (QC(T)).

4 Compactness of commutators of convolution type operators

Given 1 < p <∞ and w ∈ Ap(R), we consider the Banach algebra Bp,w and its ideal of com-
pact operators Kp,w. In case w ≡ 1 we abbreviate Bp,1 and Kp,1 to Bp and Kp, respectively.
The notation Cp(Ṙ), Cp(R), PCp and S O∞,p is understood analogously.

For two algebrasA and B contained in a Banach algebra C, we denote by alg(A,B) the
Banach subalgebra of C generated by the algebrasA and B.

First we recall three known results on the compactness of commutators.

Lemma 4.1. [10, Lemmas 7.1–7.4] Let 1 < p <∞.

(a) If a ∈ PC, b ∈ PCp, and a(±∞) = b(±∞) = 0, then aW0(b),W0(b)aI ∈ Kp.

(b) If a ∈C(Ṙ) and b ∈ PCp, or a ∈ PC and b ∈Cp(Ṙ), then [aI,W0(b)] ∈ Kp.

(c) If a ∈C(R) and b ∈Cp(R), then [aI,W0(b)] ∈ Kp.

Theorem 4.2. [1, Theorem 4.2, Corollary 4.3] If 1 < p <∞ and either a ∈ alg(S O∞,PC)
and b ∈ S O∞,p, or a ∈ S O∞ and b ∈ alg(S O∞,p,PCp), or a ∈ alg(S O∞,C(R)) and b ∈
alg(S O∞,p,Cp(R)), then [aI,W0(b)] ∈ Kp.

Theorem 4.3. [17, Theorem 4.6] Let p ∈ (1,∞) and w ∈ Ap(R). If a ∈ PS O⋄ and b ∈ S O⋄p,w,
or a ∈ S O⋄ and b ∈ PS O⋄p,w, or a ∈ alg(S O∞,C(R)) and b ∈ alg(S O∞,p,w,Cp,w(R)), then
[aI,W0(b)] ∈ Kp,w.
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We say that two functions a,b ∈ L∞(R) are equivalent at∞ (a ∞∼ b) if

lim
N→∞
∥a−b∥L∞(R\[−N,N]) = 0. (4.1)

Applying the theory of Calderón-Zygmund operators, we establish the following compact-
ness result for weighted Lebesgue spaces.

Theorem 4.4. If p ∈ (1,∞), w ∈ Ap(R) and one of the following conditions holds:

(i) a ∈ PQC and b ∈ S O⋄p,w,

(ii) a ∈ S O⋄ and b ∈ PQCp,w,

(iii) a ∈ PQC, b ∈ PQCp,w, a ∞∼ c, b ∞∼ d and c ∈ S O⋄, d ∈ S O⋄p,w,

(iv) a ∈ alg(QC,C(R)) and b ∈ alg(S O⋄p,w,Cp,w(R)),

(v) a ∈ alg(S O⋄,C(R)) and b ∈ alg(QCp,w,Cp,w(R)),

(vi) a ∈ alg(QC,C(R)), b ∈ alg(QCp,w,Cp,w(R)), a ∞∼ c, b ∞∼ d and
c ∈ alg(S O⋄,C(R)), d ∈ alg(S O⋄p,w,Cp,w(R)),

then the commutator [aI,W0(b)] is compact on the space Lp(R,w).

Proof. Since every function b ∈ QCp,w can be approximated in Mp,w by functions bn ∈
QC∩Mpε,wε for some ε ∈ E, where pε and wε are given by (2.6), and since all functions b in
the algebras S Op,w, Cp,w(R) and PCp,w can be also approximated in Mp,w by functions bn in
S O∩Mpε,wε , C(R)∩Mpε,wε and PC∩Mpε,wε , respectively, we conclude from Corollary 2.7
that the commutators [aI,W0(bn)] will be compact on the space Lp(R,w) for all functions
a and b in conditions (i)–(vi) of the theorem if these commutators will be compact on the
space L2(R). Consequently, in that case, in view of the equality

lim
n→∞

∥∥∥[aI,W0(bn)]− [aI,W0(b)]
∥∥∥B(Lp(R,w)) = 0,

the commutator [aI,W0(b)] will be compact on the space Lp(R,w) as well.
Thus, according to Corollary 2.7, it is sufficient to prove the compactness of the com-

mutator [aI,W0(b)] under conditions (i)–(vi) on functions a and b only on the space L2(R),
which implies its compactness on all the spaces Lp(R,w). Then conditions (i)–(vi) can be
rewritten in the form

(i’) a ∈ PQC and b ∈ S O⋄,

(ii’) a ∈ S O⋄ and b ∈ PQC,

(iii’) a,b ∈ PQC, a ∞∼ c, b ∞∼ d and c,d ∈ S O⋄,

(iv’) a ∈ alg(QC,C(R)) and b ∈ alg(S O⋄,C(R)),

(v’) a ∈ alg(S O⋄,C(R)) and b ∈ alg(QC,C(R)),
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(vi’) a,b ∈ alg(QC,C(R)), a ∞∼ c, b ∞∼ d and c,d ∈ alg(S O⋄,C(R)).

Under the transform A 7→ F AF −1, the cases (ii’) and (v’) are reduced to the cases (i’) and
(iv’), respectively. Indeed, F aF −1 =W0(̃b) and FW0(b)F −1 = ãI where b̃(x) = a(−x) and
ã = b. Thus, it only remains to prove the assertion in the cases (i’), (iii’), (iv’) and (vi’).

Case (i’). Since PQC is the C∗-subalgebra of L∞(R) generated by the C∗-algebras PC
and QC, it is sufficient to prove part (i’) for the pair a ∈ QC, b ∈ S O⋄ only, because for
the pair a ∈ PC, b ∈ S O⋄ the compactness of the commutator [aI,W0(b)] follows from
Theorem 4.3. Since S O⋄ is the C∗-subalgebra of L∞(R) generated by all the C∗-algebras
S Oλ (λ ∈ Ṙ), and since S Oλ is the closure of S O3

λ in L∞(R), it remains to prove part (i’) for
the pair a ∈ QC, b ∈ S O3

λ.
If λ ∈ {0,∞}, then we proceed similarly to the proof of [17, Theorem 4.6]. It follows

from [19, Lemma 2.2] that the distribution K = F −1b for b ∈ S O3
λ agrees with a function

K(·) differentiable on R \ {0} and such that∣∣∣K(x)
∣∣∣ ≤ A0|x|−1,

∣∣∣K′(x)
∣∣∣ ≤ A1|x|−2 for all x ∈ R \ {0}, (4.2)

where the constants Aα (α = 0,1) are estimated by

Aα ≤Cαmax
{∥Dkb∥L∞(R) : k = 0,1,2,3

}
,

(Db)(x) = xb′(x) for x ∈ R and the constants Cα ∈ (0,∞) depend only on α. Hence K(·) is a
classical Calderón-Zygmund kernel, and the convolution operator W0(b) can be considered
as the Calderón-Zygmund operator given by

(T f )(x) = v.p.
∫
R

K(x− y) f (y)dy for x ∈ R, (4.3)

where T is bounded on every weighted Lebesgue space Lp(R,w) with 1 < p <∞ and w ∈
Ap(R) (see, e.g., Theorem 2.5). In particular, the second condition in (4.2) implies that there
is a constant A2 ∈ (0,∞) such that

|K(x− y)−K(x)| ≤ A2|y|δ|x|−1−δ for |x| ≥ 2|y| > 0, (4.4)

where δ ∈ (0,1). Moreover, because the convolution operator W0(b) is bounded on the space
L2(R), we conclude from [25, p. 291, Proposition 2] that

sup
0<r<R<∞

∣∣∣∣∫
r<|x|<R

K(x)dx
∣∣∣∣ <∞. (4.5)

Since conditions (4.2), (4.4) and (4.5) for the operator T = W0(b) represented in the form
(4.3) are fulfilled, we infer from [12, Theorem 7.5.6] that there exists a constant C ∈ (0,∞)
such that ∥∥∥[aI,W0(b)]

∥∥∥B2
≤C∥a∥∗ (4.6)

for every a ∈ BMO(R), where B2 = B(L2(R)) and ∥ · ∥∗ is given by (2.1). On the other
hand, by Theorem 2.4, every function a ∈ QC belongs to the Banach space V MO. Hence,
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in view of Proposition 2.1, for every a ∈ QC there exists a sequence {an} ∈ C(Ṙ) such that
lim
n→∞
∥a−an∥∗ = 0, and therefore, by (4.6),

lim
n→∞

∥∥∥[aI,W0(b)]− [anI,W0(b)]
∥∥∥B2
= lim

n→∞

∥∥∥[(a−an)I,W0(b)]
∥∥∥B2
= 0. (4.7)

But [anI,W0(b)] ∈ K2 for all an ∈ C(Ṙ) and all b ∈ S Oλ (λ ∈ Ṙ) in virtue of Theorem 4.3.
Thus, we deduce from (4.7) that the commutator [aI,W0(b)] is compact on the space L2(R)
for every a ∈ QC and every b ∈ S Oλ with λ ∈ {0,∞}. Note that the compactness of the
commutator [aI,W0(b)] for such a,b also follows from [26, Theorem 2] because QC ⊂
V MO and W0(b) is a classical Calderón-Zygmund operator.

Let eµ(x) := eiµx for all µ, x ∈ R. The case a ∈ QC and b ∈ S Oλ (λ ∈ R \ {0}) is reduced
to the previous one for λ = 0 according to the equality

eλ[aI,W0(b)]e−λI = [aI,W0(b0)],

where b0(x) = b(x+λ) for x ∈R and hence b0 ∈ S O0, which completes the proof of part (i’).
Case (iii’). Since a,b ∈ PQC and a ∞∼ c ∞∼ c̃, b ∞∼ d ∞∼ d̃, where c,d ∈ S O⋄ and c̃, d̃ ∈ S O∞,

we conclude that

a = c̃+ (a− c̃), b = d̃+ (b− d̃), a− c̃, b− d̃ ∈ QC, (4.8)

and, according to (4.1),

lim
N→∞

ess sup
|x|≥N

|a(x)− c̃(x)| = 0, lim
N→∞

ess sup
|x|≥N

|b(x)− d̃(x)| = 0. (4.9)

By (4.8), the commutator [aI,W0(b)] is represented in the form

[aI,W0(b)] = [̃cI,W0(d̃)]+ [̃cI,W0(b− d̃)]+ [(a− c̃)I,W0(d̃)]+ [(a− c̃)I,W0(b− d̃)]. (4.10)

By Theorem 4.2, the commutator [̃cI,W0(d̃)] with c̃, d̃ ∈ S O∞ is compact on the space
L2(R). By part (i’), the commutator [(a− c̃)I,W0(d̃)] is also compact on L2(R) because
a− c̃ ∈ QC and d̃ ∈ S O∞. This implies due to part (ii’), which is equivalent to part (i’), that
the commutator [̃cI,W0(b− d̃)] with c̃ ∈ S O∞ and b− d̃ ∈ QC is also compact on L2(R).

Finally, in view of (4.10), it remains to prove the compactness on L2(R) of the commu-
tator [(a− c̃)I,W0(b− d̃)] with functions a− c̃, b− d̃ ∈ QC that vanish at ∞. We infer from
(4.9) that ∥∥∥(a− c̃)(1− χ̃n)

∥∥∥
L∞(R) = 0,

∥∥∥(b− d̃)(1− χ̃n)
∥∥∥

L∞(R) = 0, (4.11)

where the functions χ̃n ∈C(Ṙ) for n ∈ N are given by

χ̃n(x) =


1 if |x| ≤ n,
n+1− |x| if n < |x| < n+1,
0 if |x| ≥ n+1.

Then from (4.11) it follows that

[(a− c̃)I,W0(b− d̃)] = lim
n→∞
[
(a− c̃)χ̃nI,W0(χ̃n(b− d̃))

]
, (4.12)
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where the limit is taken in the operator norm. Since[
(a− c̃)χ̃nI,W0(χ̃n(b− d̃))

]
= (a− c̃)

(
χ̃nW0(χ̃n)

)
W0(b− d̃)

−W0(b− d̃)
(
W0(χ̃n)χ̃nI

)
(a− c̃)I,

and since the operators χ̃nW0(χ̃n) and W0(χ̃n)χ̃nI are compact on the space L2(R) due to
Lemma 4.1(a), we obtain the compactness of all commutators[

(a− c̃)χ̃nI,W0(χ̃n(b− d̃))
]

(n ∈ N).

Then from (4.12) it follows that the commutator [(a− c̃)I,W0(b− d̃)] is also compact on the
space L2(R), which completes the proof of part (iii’).

Case (iv’). The compactness of the commutator [aI,W0(b)] on the space L2(R) for
a ∈ alg(QC,C(R)) and b ∈ alg(S O⋄,C(R)) follows from the same property for the pairs:
a ∈ QC and b ∈ S O⋄, a ∈ QC and b ∈ C(R), a ∈ C(R) and b ∈ S O⋄, and a,b ∈ C(R). For
a ∈ QC and b ∈ S O⋄, this was proved in part (i’), for a ∈C(R) and b ∈ S O⋄ this follows from
Theorem 4.3, for a,b ∈C(R) this is given by Lemma 4.1(c).

Thus, it remains to prove the compactness of the commutator [aI,W0(b)] for a ∈QC and
b ∈ C(R). Given b ∈ C(R), there exists a sequence {bn}n∈N of piecewise constant functions
with finite sets of discontinuities that uniformly converges to b in L∞(R). Then

[aI,W0(b)] = lim
n→∞

[aI,W0(bn)],

and therefore the compactness of the commutator [aI,W0(b)] on L2(R) will follow from the
compactness of the commutators [aI,W0(bn)]. Since every function bn is of the form

bn(x) =
m∑

k=1

ck sgn(x− tk) (x ∈ R),

where ck are complex constants and −∞ < t1 < t2 < . . . < tm < +∞, we conclude from the
equality W0(sgn((·)− tk)) = −e−tk S R etk I that

[aI,W0(bn)] = −
m∑

k=1

cke−tk [aI,S R]etk I. (4.13)

Because a ∈ QC = (H∞ +C(Ṙ))∩ (H∞ +C(Ṙ)) in view of Theorem 2.4, it immediately
follows from the Hartman compactness result (see, e.g., [7, Theorem 2.18]) that [aI,S R] ∈
K2 (also see [21, Section 2]). Consequently, we conclude from (4.13) that the commutators
[aI,W0(bn)] are compact on the space L2(R), which completes the proof of part (iv’).

Case (vi’). By analogy with part (iii’), if a,b ∈ alg(QC,C(R)), a ∞∼ c, b ∞∼ d and c,d ∈
alg(S O⋄,C(R)), then there are functions c̃, d̃ ∈ alg(S O∞,C(R)) such that a ∞∼ c̃, b ∞∼ d̃. Then
we infer from (4.8) and (4.10) that the commutator [aI,W0(b)] will be compact on L2(R) if
the following commutators will be compact:

1) [̃cI,W0(d̃)] with c̃, d̃ ∈ alg(S O∞,C(R)),

2) [̃cI,W0(b− d̃)] with c̃ ∈ alg(S O∞,C(R)) and b− d̃ ∈ QC,
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3) [(a− c̃)I,W0(d̃)] with a− c̃ ∈ QC and d̃ ∈ alg(S O∞,C(R)),

4) [(a− c̃)I,W0(b− d̃)] with a− c̃, b− d̃ ∈ QC that satisfy (4.9).

Case 1) is covered by Theorem 4.2, case 2) was considered in part (iv’), case 3) is reduced
to case 2) under the transform A 7→ F AF −1, and case 4) was treated in part (iii’). Con-
sequently, the commutator [aI,W0(b)] is compact on L2(R) under conditions (vi’) as well,
which completes the proof of the theorem. �

Open problem. Let p ∈ (1,∞) and w ∈ Ap(R). Is the commutator [aI,W0(b)] compact
on the space Lp(R,w) for all a,b ∈ QC?

5 Fredholm study of the commutative C∗-algebras Z1 and Z2

Let p = 2 and w = 1. Consider the C∗-subalgebras

Z1 := alg
(
aI,W0(b) : a,b ∈ PQC, a ∞∼ c, b ∞∼ d, c,d ∈ S O⋄

)
, (5.1)

Z2 := alg
(
aI,W0(b) : a,b ∈ QC, a ∞∼ c, b ∞∼ d, c,d ∈ alg(S O⋄,C(R))

)
(5.2)

of the C∗-algebra B2 =B(L2(R)) generated by the operators aI and W0(b) with correspond-
ing data a,b ∈ PQC or a,b ∈ QC. As is known (see, e.g., [17, Lemma 6.1]), the ideal
K := K(L2(R)) of compact operators is contained in both the C∗-algebras Z1 and Z2. By
Theorem 4.4, the quotient C∗-algebras Zπi := Zi/K (i = 1,2) are commutative.

Let eλ(x) = eiλx for all λ, x ∈ R, and let Uλ =W0(eλ) be the translation operator acting
by the rule (Uλ f )(x) = f (x−λ) for x ∈ R.

To study the maximal ideal spaces of the commutative C∗-algebras Zπi := Zi/K (i = 1,2)
we need the following two evident results on limit operators (see, e.g., [17, Lemma 5.1]).

Lemma 5.1. If p = 2, and a,b ∈ S O⋄, then for every ξ ∈ M∞(S O⋄) there is a sequence
{hn} ⊂ (0,∞) such that lim

n→∞
hn = +∞, lim

n→∞
a(hn) = a(ξ), lim

n→∞
b(hn) = b(ξ) and on L2(R),

s-lim
n→∞
(
ehn(aI)e−1

hn
I
)
= aI, s-lim

n→∞
(
ehnW0(b)e−1

hn
I
)
= b(ξ)I, (5.3)

s-lim
n→∞
(
U−hn(aI)Uhn

)
= a(ξ)I, s-lim

n→∞
(
Uhn(aI)U−hn

)
= a(ξ)I, (5.4)

s-lim
n→∞
(
U−hnW0(b)Uhn

)
=W0(b), s-lim

n→∞
(
UhnW0(b)U−hn

)
=W0(b). (5.5)

Lemma 5.2. If p = 2, and a,b ∈ alg(S O⋄,C(R)), then for every ξ± ∈ M∞
(
alg(S O⋄,C(R))

)
there is a sequence {hn} ⊂ (0,∞) such that lim

n→∞
hn = +∞, lim

n→∞
a(∓hn) = a(ξ±), lim

n→∞
b(∓hn) =

b(ξ±) and, on the space L2(R),

s-lim
n→∞
(
ehn(aI)e−1

hn
I
)
= aI, s-lim

n→∞
(
e∓hnW0(b)e−1

∓hn
I
)
= b(ξ±)I,

s-lim
n→∞
(
U−hn(aI)Uhn

)
= a(ξ−)I, s-lim

n→∞
(
Uhn(aI)U−hn

)
= a(ξ+)I,

s-lim
n→∞
(
U−hnW0(b)Uhn

)
=W0(b), s-lim

n→∞
(
UhnW0(b)U−hn

)
=W0(b).
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We identify the fibers Mλ(QC) and Mτ(QC(T)), where τ = (λ− i)/(λ+ i), by the rule
ξ ∈ Mλ(QC) 7→ ζ ∈ Mτ(QC(T)), which implies the identification of the fibers Mξ(PQC)
and Mζ(PQC(T)). Thus, the fibers Mξ(PQC) for ξ ∈ M(QC) are actually described by
Theorem 3.5.

Theorem 5.3. The maximal ideal space M(Zπ1 ) of the commutative quotient C∗-algebra Zπ1
is homeomorphic to the set

Ω1 :=
(∪
λ∈R

Mλ(PQC)×M∞(S O⋄)
)
∪
(
M∞(S O⋄)×

∪
λ∈R

Mλ(PQC)
)
∪
(
M∞(S O⋄)×M∞(S O⋄)

)
(5.6)

equipped with topology induced by the product topology of(∪
λ∈R

Mλ(PQC)∪M∞(S O⋄)
)
×
(∪
λ∈R

Mλ(PQC)∪M∞(S O⋄)
)
,

where Mλ(PQC)=
∪

ξ∈Mλ(QC)

Mξ(PQC). The Gelfand transform Γ1 : Zπ1→C(Ω1), Aπ 7→A(·, ·)

is defined on the generators Aπ = (aW0(b))π of the algebra Zπ1 , where a,b ∈ PQC, a∞∼ c, b∞∼ d
and c,d ∈ S O⋄, by

A(ξ,η) = a(ξ)b(η) for all (ξ,η) ∈Ω1. (5.7)

Proof. If J is a maximal ideal of the commutative C∗-algebra Zπ1 , then

J∩ {aI+K : a ∈ PQC, a ∞∼ c, c ∈ S O⋄
}

and J∩ {W0(b)+K : b ∈ PQC, b ∞∼ d, d ∈ S O⋄
}

are maximal ideals of the commutative C∗-algebras{
aI+K : a ∈ PQC, a ∞∼ c, c ∈ S O⋄

}
and

{
W0(b)+K : b ∈ PQC, b ∞∼ d, d ∈ S O⋄

}
, (5.8)

respectively (see [9, Lemma 1.33]). Therefore, taking into account the relations

M
({

aI+K : a ∈ PQC, a ∞∼ c, c ∈ S O⋄
})
=
∪
λ∈R

Mλ(PQC)∪M∞(S O⋄),

M
({

W0(b)+K : b ∈ PQC, b ∞∼ d, d ∈ S O⋄
})
=
∪
λ∈R

Mλ(PQC)∪M∞(S O⋄),
(5.9)

we conclude that for every point

(ξ,η) ∈
(∪
λ∈R

Mλ(PQC)∪M∞(S O⋄)
)
×
(∪
λ∈R

Mλ(PQC)∪M∞(S O⋄)
)
,

there exists the closed two-sided (not necessarily maximal) ideal Iπξ,η of the C∗-algebra Zπ1
generated by the maximal ideals{

aI+K : a ∈ PQC, a ∞∼ c, c ∈ S O⋄, ξ(a) = 0
}
,{

W0(b)+K : b ∈ PQC, b ∞∼ d, d ∈ S O⋄, η(b) = 0
} (5.10)
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of the commutative C∗-algebras (5.8), respectively. Thus, in virtue of (5.9), the maximal
ideal space of Zπ1 can be identified with a subset of(∪

λ∈R
Mλ(PQC)∪M∞(S O⋄)

)
×
(∪
λ∈R

Mλ(PQC)∪M∞(S O⋄)
)
.

Fix (ξ,η) ∈∪λ∈RMλ(PQC)×∪τ∈RMτ(PQC). Then ξ ∈Mλ(PQC) and η ∈Mτ(PQC) for
some λ,τ ∈ R. Given a,b ∈ PQC, we choose functions a1,b1 ∈C(Ṙ) such that a1(λ) = a(ξ),
b1(τ) = b(η), and a1(∞) = b1(∞) = 0. Then

aW0(b) = T1+T2+T3+T4, (5.11)

where

T1 = (a−a1)W0(b−b1), T2 = (a−a1)W0(b1), T3 = a1W0(b−b1), T4 = a1W0(b1).

The operator T4 is compact by Lemma 4.1(a), and the cosets T π1 ,T
π
2 ,T

π
3 belong to the ideal

Iπξ,η. Thus, the smallest closed two-sided ideal of Zπ1 which corresponds to the point (ξ,η) ∈∪
λ∈RMλ(PQC)×∪τ∈RMτ(PQC) coincides with the whole C∗-algebra Zπ1 , and therefore

the ideal Iπξ,η is not maximal. So, the maximal ideals of the commutative C∗-algebra Zπ1 can
only correspond to points (ξ,η) ∈Ω1, where Ω1 is given by (5.6).

It remains to show that for all (ξ,η) ∈ Ω1, the closed two-sided ideals Iπξ,η generated by
the maximal ideals (5.10) are maximal ideals of the commutative C∗-algebra Zπ1 .

First, let us prove that these ideals are proper. To this end we need to show that for all
(ξ,η) ∈Ω1 the ideals Iπξ,η do not contain the coset Iπ = I+K . By [22, Proposition 2.2.5], the
ideals Iπξ,η consist of the cosets

[aI]πAπ+ [W0(b)]πBπ, (5.12)

where

a,b ∈ PQC, a ∞∼ c̃, b ∞∼ d̃, c̃, d̃ ∈ S O∞, ξ(a) = 0, η(b) = 0, A,B ∈ Z1. (5.13)

Given λ ∈ Ṙ, let (ξ,η) ∈ Mλ(PQC)×M∞(S O⋄). Assume that Iπ ∈ Iπξ,η. Hence, by (5.12),

I = aA+W0(b)B+K, (5.14)

where (5.13) holds and K ∈ K . Since for every η ∈ M∞(S O⋄) = M∞(S O∞) and every
d̃ ∈ S O∞ there is a sequence hn→ +∞ in R such that lim

n→∞
d̃(hn) = η(d̃) (see, e.g., [3, Propo-

sition 6]), and therefore

lim
n→∞

b(x+hn) = lim
n→∞

d̃(x+hn) = η(d̃) = η(b) = 0

for almost all x ∈ R, we conclude from (5.3) that

s-lim
n→∞
(
ehnW0(b)e−hn I

)
= 0. (5.15)
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Moreover, from (5.14), the algebraic properties of limit operators (see [6, Proposition 6.1])
and [7, Lemma 10.1] it follows that we can choose the sequence {hn} in such a way that
there exist the strong limits

s-lim
n→∞
(
ehn Ae−hn I

)
= ãI (̃a ∈ PQC), s-lim

n→∞
(
ehn Ke−hn I

)
= 0. (5.16)

Consequently, by (5.15) and (5.16), we obtain

I = s-lim
n→∞
(
ehn(aA+W0(b)B+K)e−hn I

)
= ãaI,

which is impossible because ξ(a) = 0 and therefore ãa , 1.
Given λ ∈ R, let now (ξ,η) ∈ M∞(S O⋄)×Mλ(PQC), and we again assume that Iπ ∈ Iπξ,η.

Then we have (5.14), where (5.13) holds and K ∈ K .
Since for every ξ ∈ M∞(S O⋄) = M∞(S O∞) and every c̃ ∈ S O∞ there is a sequence

{hn} ⊂ R such that lim
n→∞

hn = +∞, lim
n→∞

c̃(hn) = ξ(̃c), and hence

lim
n→∞

a(x+hn) = lim
n→∞

c̃(x+hn) = ξ(̃c) = ξ(a) = 0

for almost all x ∈ R, we conclude from (5.4) that

s-lim
ν→∞

(U−hn(aI)Uhn) = 0, (5.17)

where Uhn =W0(ehn) is a translation operator. On the other hand, we infer from (5.5) that

s-lim
ν→∞
(
U−hnW0(b)Uhn

)
=W0(b).

Using then (5.14), the algebraic properties of limit operators (see [6, Proposition 6.1]) and
[7, Lemma 18.9], we can choose the sequence {hn} in such a way that there exists the strong
limits

s-lim
n→∞
(
U−hn BUhn

)
=W0(̃b) (̃b ∈ PQC), s-lim

n→∞
(
U−hn KUhn

)
= 0. (5.18)

Then from (5.17) and (5.18), we obtain

I = s-lim
n→∞
(
U−hn(aA+W0(b)B+K)Uhn I

)
=W0(b)W0(̃b) =W0(b̃b),

which is impossible because η(b) = 0 and therefore b̃b , 1.
Thus, for all (ξ,η) ∈ Ω1 the ideals Iπξ,η do not contain the unit coset Iπ, and hence these

ideals are proper. Suppose, contrary to our claim on the maximality of the ideal Iπξ,η, that

for a point (ξ,η) ∈ Ω1 there is a proper closed two-sided ideal Ĩπξ,η of the algebra Zπ1 that

properly contains the ideal Iπξ,η. Then there is a coset Aπ ∈ Zπ1 which belongs to Ĩπξ,η \ Iπξ,η.
Since in view of (5.11),

(aW0(b))π− (a(ξ)W0(b(η)))π = (aW0(b))π− (a(ξ)b(η)I)π ∈ Iπξ,η (5.19)

for all a,b ∈ PQC such that a ∞∼ c, b ∞∼ d and c,d ∈ S O⋄, and since Aπ < Iπξ,η, there exists a

complex number v , 0 such that Aπ − (vI)π ∈ Iπξ,η. Hence (vI)π ∈ Ĩπξ,η because Aπ ∈ Ĩπξ,η and
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Iπξ,η ⊂ Ĩπξ,η. But the coset (vI)π is invertible in the algebra Zπ1 , which implies that the ideal

Ĩπξ,η coincides with the whole algebra Zπ1 . Thus the ideal Ĩπξ,η is not proper, a contradiction.
Consequently, all the ideals Iπξ,η for (ξ,η) ∈ Ω1 are maximal, and therefore M(Zπ1 ) can be
identified with Ω1 given by (5.6).

Furthermore, by (5.19), the value of the Gelfand transform of the coset Aπ = (aW0(b))π

at a point (ξ,η) ∈ Ω1 equals a(ξ)b(η) for each choice of functions a,b ∈ PQC being equiva-
lent to functions c,d ∈ S O⋄ at∞. This defines the Gelfand transform for the whole algebra
Zπ1 by formula (5.7). �

Making use of the equality M∞
(
alg(S O⋄,C(R))

)
=M∞(PS O⋄) and applying Lemma 5.2

instead of Lemma 5.1, we obtain the following result by analogy with Theorem 5.3.

Theorem 5.4. The maximal ideal space M(Zπ2 ) of the commutative quotient C∗-algebra Zπ2
is homeomorphic to the set

Ω2 :=
(∪
λ∈R

Mλ(QC)×M∞(PS O⋄)
)
∪
(
M∞(PS O⋄)×

∪
λ∈R

Mλ(QC)
)

∪
(
M∞(PS O⋄)×M∞(PS O⋄)

)
equipped with topology induced by the product topology of(∪

λ∈R
Mλ(QC)∪M∞(PS O⋄)

)
×
(∪
λ∈R

Mλ(QC)∪M∞(PS O⋄)
)
,

and the Gelfand transform Γ2 : Zπ2 → C(Ω2), Aπ 7→ A(·, ·) is defined on the generators
Aπ = (aW0(b))π of the algebra Zπ2 , where a,b ∈ QC, a ∞∼ c, b ∞∼ d and c,d ∈ alg(S O⋄,C(R))

)
,

by

A(ξ,η) = a(ξ)b(η) for all (ξ,η) ∈Ω2.

Theorems 5.3 and 5.4 imply the following Fredholm criteria for the C∗-algebras Z1 and
Z2 given by (5.1) and (5.2), respectively.

Corollary 5.5. An operator A ∈ Z1 is Fredholm on the space L2(R) if and only if the Gelfand
transform of the coset Aπ is invertible, that is, ifA(ξ,η) , 0 for all (ξ,η) ∈Ω1.

Corollary 5.6. An operator A ∈ Z2 is Fredholm on the space L2(R) if and only if the Gelfand
transform of the coset Aπ is invertible, that is, ifA(ξ,η) , 0 for all (ξ,η) ∈Ω2.
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