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Abstract

By means of variational methods, we study the existence and uniqueness of almost
periodic solutions for a class of second order neutral functional differential equations
with infinite delay.
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1 Introduction

Neutral functional differential equations (abreviated NFDE) with infinite delay arise in
many areas of applied mathematics. For this reason the study of these types of equations
has received great attention for several decades. Amoung the wide literature devoted to
retarded differential equations, for the infinite delay we refer to [18, 22, 25, 28] and the
references therein, and for the second-order equations we refer to [20, 21].

One of the most attractive aspects of the qualitative theory of this type of equations
is the existence of almost periodic solutions, due to their significance in physics, biology,
and other. The literature devoted to this subject is fundamentally concerned with first order
equations (see for example [28]). In a similar way, second order NFDE have recently been
considered in the literature by Henriquez-Vasquez [19], and Diagana-Henriquez-Hernandez
[16].
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About the existence of almost periodic solutions, we introduce variational methods.
At our knowledge the use of variational methods is new in the study of almost periodic
solutions of infinite delay-differential equations.

Elsgolc [17] initiated a theory of calculus of variations with a retarded argument. Later
Hughes [23] and Sabbagh [30] provided additional results of this type of calculus of vari-
ations. There also exists a theory of calculus of variations in mean time developed by J.
Blot (cf. [6, 7, 8, 9, 10, 11]) to study the almost periodic solutions for some (non-delayed)
differential equations. In their work [3] M. Ayachi and J. Blot extend Shu and Xu [31] and
Y. Li [27] variational setting for periodic solutions of nonlinear NFDE (finite delay case) to
the almost periodic setting. In the present work we introduce a new formalism of calculus
of variations in mean time with infinite delay argument. The basic problem is the following
: 

Minimize lim
T→+∞

1
2T

Z T

−T
L(u(t),ut ,∇u(t),(∇u)t , t)dt

subject tou ∈ B1,2(R,Rn).

(1.1)

And, we will obtain results of existence and uniqueness of weak almost periodic solutions
(in the sense of Besicovitch) of second order NFDE with infinite delay of the following
form 

D1L(u(t),ut ,u′(t),u′t , t)+T ∗D2L(u(t),ut ,u′(t),u′t , t)

=
d
dt

[
D3L(u(t),ut ,u′(t),u′t , t)+T ∗D4L(u(t),ut ,u′(t),u′t , t)

]
,

(1.2)

where L is a differentiable function, D j denotes the partial differential with respect to the
jth vector variable, T ∗ denotes the adjoint of the linear operator T which will be specified
later, and for t ∈ R, the history function ut is defined by

ut(θ) := u(t +θ), for θ ∈ (−∞,0].

Note that a special case of (1.2) is the following forced second order differential equation
with infinite delay

u′′(t)+D1G(u(t) ,ut)+T ∗D2G(u(t) ,ut) = e(t) .

The paper is organized as follows: in section (2) we precise the notations about the
function spaces and we recall some definitions and properties that will be used in this work.
In section (3) we establish some preliminary results. In section (4) we establish a varia-
tional formalism suitable to the Besicovitch almost-periodic solutions and Euler Lagrange
equation, and in section (5) we obtain results of existence and uniqueness of almost periodic
solutions.

2 Definitions and notations

Let E be a Banach space with norm |.|E.
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For p ∈ [1,∞), we denote by Bp(R,E) the space of Besicovitch almost-periodic (Besi-
covitch a.p. for short) functions from R in E (cf. [4, 5, 29]). We recall that Bp(R,E) is the
completion of AP 0(R,E) (in Lp

loc(R,E)) with respect to the norm

‖ f‖Bp(R,E) = Mt
{
| f (t)|pE

} 1
p := ( lim

T→+∞

1
2T

Z T

−T
| f (t)|pE dt)

1
p ,

where AP 0(R,E) is the space of Bohr almost-periodic (Bohr a.p. for short) functions from
R in E (cf. [5, 12, 13, 26, 29]).

Recall the following useful fact: if ( fm)m is a sequence in AP 0(R,E) and if f ∈
Lp

loc(R,E) satisfies

Mt
{
| fm− f |pE

} 1
p :=

(
limsup

T→∞

1
2T

Z T

−T
| fm− f |pE dt

) 1
p

→ 0 (m → ∞),

then f ∈ Bp(R,E), and we have ‖ fm− f‖Bp(R,E) → 0 (m → ∞).
We recall the ’Mean Value Theorem’ (c.f. ([4, page 93], [5, page 244-245], [13, page

45])) : If f ∈ Bp(R,E), the mean value of f exists in E and satisfies the following property

M{ f}= M+ { f}= M− { f} , (2.1)

where {
M+ { f} := limT→+∞

1
T

R T
0 f (t)dt

M− { f} := limT→+∞
1
T

R 0
−T f (t)dt.

When λ ∈ R, a( f ;λ) := Mt
{

f (t)e−iλt
}

are called the Fourrier-Bohr coefficients of f ,
and

Λ( f ) := {λ ∈ R : a( f ,λ) 6= 0} .

When p = 2, and (E,(.|.)) is a Hilbert space with norm associated to the inner product
|.|E :=

√
(.|.), B2(R,E) is a Hilbert space, and its norm ‖.‖2 associated to the inner product

〈 f |g〉B2(R,E) := M{( f |g)}, (cf. [4, 29]).
We use the generalized derivative (when it exists), ∇ f defined by

lim
T→+∞

1
2T

Z T

−T

∣∣∣∣∇ f (t)− 1
s
( f (t + s)− f (t))

∣∣∣∣2

E
dt → 0 (s → 0),

to define
B1,2(R,E) :=

{
f ∈ B2(R,E) : ∇ f ∈ B2(R,E)

}
,

which is a Hilbert space for the inner product

〈 f |g〉B1,2(R,E) := 〈 f |g〉B2(R,E) + 〈∇ f |∇g〉B2(R,E) ,

and we denote by ‖ f‖B1,2(R,E) :=
√
〈 f | f 〉B1,2(R,E), (c.f. [11, 15]).

We recall that f ∈ B2(R,E) if and only if there exists a sequence {aλ}λ
∈ l2 (E), such

that f (t)∼ ∑λ∈R aλeiλt , and in this case we have

f ∈ B1,2(R,E)⇔ ∑
λ∈R

λ
2 |aλ|2E < +∞, (2.2)
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and
∇ f (t)∼ ∑

λ∈R
iλaλeiλt . (2.3)

If X and Y are two Banach spaces, AP U(X×R,Y) stands for the space of functions
F : X×R→Y, (x, t) 7→ F(x, t), which are almost periodic in t uniformly with respect to x
in the classical sense given in [32, Chapter 1].

To make the writing less heavy, we sometimes use the following notations :

• B := B2 ((−∞,0],Rn), which is a Hilbert space for the norm |.|B associated to the
inner product ( f |g)B := M−

θ
{ f (θ).g(θ)}.

• H := Rn ×B ×Rn ×B is the product Hilbert endowed by the product norm |.|H,
defined by

|X |H :=
(
|x1|2 + |ϕ1|2B + |x2|2 + |ϕ2|2B

) 1
2
,

for all X := (x1,ϕ1,x2,ϕ2) ∈H.

• u− := u|(−∞,0], is the restriction of the function u : R→ Rn on (−∞,0].

• u(t) := (u(t),ut ,∇u(t),(∇u)t), where u ∈ B1,2(R,Rn).

• When u ∈ L2
loc(R,Rn) (Lebesgue space), we denote by ũ : R −→ L2

loc ((−∞,0] ,Rn)
the function defined by ũ(t)(θ) := u(t +θ).

3 Preliminary results

Lemma 3.1. Suppose u∈B2(R,Rn) is such that u(t)∼∑λ aλeiλt . Then u− ∈B and u−(θ)∼
∑λ aλeiλθ for all θ ∈ (−∞,0].

Proof. By using (2.1) we obtain∥∥∥∥∥u(.)−
m

∑
λ=1

aλeiλ(.)

∥∥∥∥∥
2

B2(R,Rn)

= Mt


∣∣∣∣∣u(t)−

m

∑
λ=1

aλeiλt

∣∣∣∣∣
2
 = M−

t


∣∣∣∣∣u(t)−

m

∑
λ=1

aλeiλt

∣∣∣∣∣
2


= M−
θ


∣∣∣∣∣u−(θ)−

m

∑
λ=1

aλeiλθ

∣∣∣∣∣
2
 =

∣∣∣∣∣u−(.)−
m

∑
λ=1

aλeiλ(.)

∣∣∣∣∣
2

B

.

Since u ∈ B2(R,Rn) and u(t)∼ ∑λ aλeiλt , we have

lim
m→∞

∥∥∥∥∥u(.)−
m

∑
λ=1

aλeiλ(.)

∥∥∥∥∥
B2(R,Rn)

= 0, and ∑
λ

|aλ|2 < ∞,

and so

lim
m→∞

∣∣∣∣∣u−(.)−
m

∑
λ=1

aλeiλ(.)

∣∣∣∣∣
B

= 0, and ∑
λ

|aλ|2 < ∞.

Which implies that u− ∈ B , and its Fourier-Bohr series is ∑λ aλeiλθ for all θ ∈ (−∞,0].
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Remark 3.2. Reciprocally, all function [θ 7→ v(θ)] ∈ B , such that v(θ)∼ ∑λ aλeiλθ, possess
a unique extension to R which will be written also v, and v(t)∼ ∑λ aλeiλt , (t ∈ R).

Lemma 3.3. Suppose u ∈ B2(R,Rn) such that u(t)∼∑λ aλeiλt . Then the following proper-
ties are satisfied

(i) ũ ∈ B2(R,B).

(ii) ũ(t)∼ ∑λ bλeiλt , where bλ : (−∞,0]→ Rn is defined by

bλ(θ) := aλeiλθ.

(iii) ‖ũ‖B2(R,B) = ‖u‖B2(R,Rn).

Proof. u ∈ B2(R,Rn), then by using Lemma (3.1) , u− ∈ B , and since B is stable by trans-
lation [4], we deduce that for all t in R, ut ∈ B and

ut(θ)∼∑
λ

aλeiλ(t+θ).

And so the function ũ is well defined in R to B .
Since the mean value is translation invariant (c.f. [29, page 10]), we have for all t ∈ R,

θ ∈ (−∞,0]∥∥∥∥∥ũ(.)−
m

∑
λ=1

bλeiλ(.)

∥∥∥∥∥
2

B2(R,B)

= Mt


∣∣∣∣∣ũ(t)−

m

∑
λ=1

bλeiλt

∣∣∣∣∣
2

B


= Mt

M−
θ


∣∣∣∣∣u(t +θ)−

m

∑
λ=1

aλeiλ(t+θ)

∣∣∣∣∣
2



= Mt

M−
θ


∣∣∣∣∣u(θ)−

m

∑
λ=1

aλeiλθ

∣∣∣∣∣
2



= M−

θ


∣∣∣∣∣u(θ)−

m

∑
λ=1

aλeiλθ

∣∣∣∣∣
2


=

∥∥∥∥∥u−(.)−
m

∑
λ=1

aλeiλ(.)

∥∥∥∥∥
2

B2(R,Rn)

,

and by using the fact that u− ∈ B , which implies that

lim
m→+∞

∥∥∥∥∥u−(.)−
m

∑
λ=1

aλeiλ(.)

∥∥∥∥∥
B2(R,Rn)

= 0,

we obtain

lim
m→+∞

∥∥∥∥∥ũ(.)−
m

∑
λ=1

bλeiλ(.)

∥∥∥∥∥
2

B2(R,B)

= 0.
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In the other hand it is very easy to see that bλ ∈ AP 0((−∞,0],Rn)⊂ B , and that

∑
λ

|bλ|2B = ∑
λ

(
M−

θ

{∣∣∣aλeiλθ

∣∣∣2
})

= ∑
λ

|aλ|2 < ∞,

and so {bλ}λ
∈ l2(B). This implies that ũ ∈ B2(R,B), and ũ(t)∼ ∑λ bλeiλt , and so (i) and

(ii) are proven.
Applying the Parseval equality, (c.f. [4, page 109], [29, Proposition 2.8]), we obtain

‖ũ‖2
B2(R,B) = ∑

λ

∣∣∣bλeiλt
∣∣∣2

B
= ∑

λ

|aλ|2 := ‖u‖2
B2(R,Rn) ,

and so (iii) is proven.

Theorem 3.4. Suppose u ∈ B1,2(R,Rn) is such that u(t)∼ ∑λ aλeiλt . Then ũ ∈ B1,2(R,B),
and ∇ũ(t) = ∇(ut) = (∇u)t ∼ ∑λ iλbλeiλt , ∀t ∈ R.

Proof. u ∈ B1,2(R,Rn) implies that u ∈ B2(R,Rn) and ∑λ |iλaλ|2 < ∞.
Hence, using Lemma (3.3) we have

ũ ∈ B2(R,B), and ũ(t)∼∑
λ

bλeiλt .

However ∑λ |iλbλ|2B = ∑λ

(
M−

θ

{∣∣iλaλeiλθ
∣∣2

})
= ∑λ |iλaλ|2 < ∞, and from (2.2), we ob-

tain
ũ ∈ B1,2(R,B),and ∇ũ(t) = ∇(ut)∼∑

λ

iλbλeiλt .

By virtue of Lemma (3.1), ∇u ∈ B2(R,Rn) implies that [t → (∇u)t ] ∈ B2(R,B).
In the other hand, since the mean value is translation invariant, (c.f. [29, page 10]), we have
for all t in R∥∥∥∥∥(∇u)(.)−

m

∑
λ=1

iλbλeiλ(.)

∥∥∥∥∥
2

B2(R,B)

= Mt


∣∣∣∣∣(∇u)t −

m

∑
λ=1

iλbλeiλt

∣∣∣∣∣
2

B


= Mt

M−
θ


∣∣∣∣∣∇u(t +θ)−

m

∑
λ=1

iλaλeiλ(t+θ)

∣∣∣∣∣
2



= Mt

M−
θ


∣∣∣∣∣∇u(θ)−

m

∑
λ=1

iλaλeiλθ

∣∣∣∣∣
2



= M−

θ


∣∣∣∣∣∇u(θ)−

m

∑
λ=1

iλaλeiλθ

∣∣∣∣∣
2
 .

Since u− ∈ B1,2((−∞,0],Rn) if u ∈ B1,2(R,Rn), we obtain

lim
m→+∞

M−
θ


∣∣∣∣∣∇u(θ)−

m

∑
λ=1

iλaλeiλθ

∣∣∣∣∣
2
 = 0,



Almost Periodic Solutions of Second Order Functional Differential Equations 21

and so

lim
m→+∞

∥∥∥∥∥(∇u)(.)−
m

∑
λ=1

iλbλeiλ(.)

∥∥∥∥∥
2

B1,2(R,B)

= 0,

which implies that (∇u)t ∼ ∑λ iλbλeiλt , and by the unicity of Fourier-Bohr series [4, 25],
we conclude that ∇(ut) = (∇u)t .

Lemma 3.5. Suppose that [t1 7→ [t2 7→ f(t1)(t2)]] and [t1 7→ [t2 7→ g(t1)(t2)]] are in
B2(R,B2(R,Rn)). Then

Mt1 {Mt2 {f(t1)(t2).g(t1)(t2)}}= Mt2 {Mt1 {f(t1)(t2).g(t1)(t2)}} .

Proof. Since for all E Banach space, B2(R,E) is isomorphic to L2(RB,E), where L2(RB,E)
is taken with respect to the Haar measure dµ on the compact group RB, (we recall that RB
is the Bohr compactification of R), (see [29, Chapter 1]), then there exist unique f̃ and g̃ in
L2(RB,L2(RB,Rn)), where f̃ and g̃ are the extensions of f and g to RB×RB, and we have

Mt1 {Mt2 {f(t1)(t2).g(t1)(t2)}}=
Z

RB

(Z
RB

f̃(r)(s).g̃(r)(s)dµ(s)
)

dµ(r).

It follows that
[
(r,s) 7→

∣∣f̃(r)(s).g̃(r)(s)
∣∣] is a measurable-positive function. Since ∀r ∈

RB,
[
s 7→ f̃(r)(s)

]
, and [s 7→ g̃(r)(s)] are in L2(RB,Rn), by using the Hölder inequality [14],

we obtain
[
s 7→ f̃(r)(s).g̃(r)(s)

]
∈ L1(RB,R), and so

∀r ∈ RB,

[
r 7→

Z
RB

∣∣f̃(r)(s).g̃(r)(s)
∣∣dµ(s)

]
< +∞.

Since L2(RB,L2(RB,Rn))⊂ L2(RB,L1(RB,Rn)), we have
[
r 7→

[
s 7→ f̃(r)(s)

]]
and

[r 7→ [s 7→ g̃(r)(s)]] in L2(RB,L1(RB,Rn)), and by the Hölder inequality we obtain[
r 7→

[
s 7→ f̃(r)(s).g̃(r)(s)

]]
∈ L1(RB,L1(RB,Rn)),

and so
R
RB

(R
RB

∣∣f̃(r)(s).g̃(r)(s)
∣∣dµ(s)

)
dµ(r) < +∞, which implies by using Tonelli Theo-

rem, (c.f. [14, page 54]), that
[
(r,s) 7→ f̃(r)(s).g̃(r)(s)

]
∈ L1(RB×RB,R)). And by using

Fubini Theorem (c.f. [14, page 55]), we obtainZ
RB

(Z
RB

f̃(r)(s).g̃(r)(s)dµ(s)
)

dµ(r) =
Z

RB

(Z
RB

f̃(r)(s).g̃(r)(s)dµ(r)
)

dµ(s).

Consequently

Mt1 {Mt2 {f(t1)(t2).g(t1)(t2)}}= Mt2 {Mt1 {f(t1)(t2).g(t1)(t2)}} .

Let T be the operator defined by :

T : B2(R,Rn)→ B2(R,B)
u 7→ [t 7→ ut ] .
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T is a linear continuous operator between two Hilbert spaces, then its adjoint operator T ∗

is well defined in B2(R,B)∗ into B2(R,Rn)∗, linear and continuous (cf. [1, Chapter 2]), and
satisfies the following relation

〈ϕ̌|T (u)〉B2(R,B) = 〈T ∗(ϕ̌)|u〉B2(R,Rn) ,

for all ϕ̌ ∈ B2(R,B)∗ and u ∈ B2(R,Rn)∗ ≡ B2(R,Rn). In the following Lemma, we will
specify the form of T ∗ on B2(R,B).

Lemma 3.6. The adjoint operator of T has the following form in B2(R,B)

T ∗ : B2(R,B)−→ B2(R,Rn)
[t 7→ [θ 7→ ϕ(t)(θ)]] 7→

[
t 7→M−

θ
{ϕ(t−θ)(θ)}

]
.

Proof. Let ϕ̌ ∈ B2(R,B)∗. By Riesz-Frechet Theorem [14, page 81], there exists unique
ϕ ∈ B2(R,B), such that for all ψ ∈ B2(R,B)

〈ϕ̌|ψ〉B2(R,B) = Mt {(ϕ(t)|ψ(t))B} .

And so, by using Remark (3.2), Lemma (3.5), and the invariance of the mean value by
translation, we have ∀u ∈ B2(R,Rn)

〈ϕ̌|T (u)〉B2(R,B) = Mt {(ϕ(t)|T (u)(t))B}
= Mt

{
M−

θ
{ϕ(t)(θ).ut(θ)}

}
= Mt

{
M−

θ
{ϕ(t)(θ).u(t +θ)}

}
= Mt

{
Mt ′

{
ϕ(t)(t ′).u(t + t ′)

}}
= Mt ′

{
Mt

{
ϕ(t)(t ′).u(t + t ′)

}}
= Mt ′

{
Mt

{
ϕ(t− t ′)(t ′).u(t)

}}
= Mt

{
Mt ′

{
ϕ(t− t ′)(t ′).u(t)

}}
= Mt

{
Mt ′

{
ϕ(t− t ′)(t ′)

}
.u(t)

}
= Mt

{
M−

θ
{ϕ(t−θ)(θ)} .u(t)

}
=

〈
M−

θ
{ϕ(t−θ)(θ)}|u(t)

〉
B2(R,Rn)

= 〈T ∗(ϕ)|u〉B2(R,Rn) .

And so ∀ϕ ∈ B2(R,B), T ∗(ϕ)(t) = M−
θ
{ϕ(t−θ)(θ)}.

4 Euler Lagrange Equation (Variational Principle)

Let L : H×R→ R, (X , t)→ L(X , t) be a continuous function.
We give the following list of assumptions :

(H1) L ∈ AP U(H×R,R), such that there exists α ∈ (0,+∞), and a1 ∈ [0,+∞); ∀t ∈ R,
∀X ,Y ∈H, |L(X , t)−L(Y, t)|< a1 |X −Y |αH.

(H2) L∈AP U(H×R,R), such that the partial differential with respect to X ∈H, LX(X , t)
exists for all (X , t) ∈H×R, and LX ∈ AP U(H×R,L(H,R)).
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(H3) There exists a2 ∈ [0,+∞) such that |LX(X , t)−LX(Y, t)|< a2 |X −Y |H for all X ,Y ∈
H, for all t ∈ R.

(H4) L ∈ AP U(H×R,R), the partial differential DkL(x1,ϕ1,x2,ϕ2, t) exists for all
(x1,ϕ1,x2,ϕ2, t) ∈ H×R, DkL ∈ AP U(H×R,L(Rn,R)) for k ∈ {1,3}, and DkL ∈
AP U(H×R,L(B,R)) for k ∈ {2,4}.

Lemma 4.1. We assume condition (H1) fulfilled. Let p,q ∈ [1,+∞) be such that p
q = α,

then the following two assertions hold:

(i) If κ ∈ Bp(R,H), then [t 7→ L(κ(t), t)] ∈ Bq(R,R).

(ii) The Nemytskii operator on L, NL : Bp(R,H)→ Bq(R,R) defined by

NL(κ)(t) := L(κ(t), t),

satisfies
∥∥NL(κ1)−NL(κ2)

∥∥
Bq(R,R) ≤ a1 ‖κ1−κ2‖α

Bp(R,H) .

Proof. Setting g(t) := L(0, t), and so g ∈AP 0(R,R) which implies that g ∈ Lq
loc(R,R) (the

Lebesgue space). The Hölder assumption (H1) implies

|L(X , t)| ≤ a1 |X |αH +g(t), ∀(X , t) ∈H×R.

By using [24, Chapter 1], κ ∈ Lq
loc(R,H) implies [t 7→ L(κ(t), t)] ∈ Lq

loc(R,R).
Since κ ∈ Bp(R,H), there exists

{
κ j

}
j ∈ AP 0(R,H) such that

lim
j→+∞

∥∥κ−κ j
∥∥

Bp(R,H) = 0.

By using [32, Theorem 2.7, page 16], setting χ j(t) := L(κ j(t), t) we have χ j ∈ AP 0(R,R),
and a straightforward calculation gives us the following inequality :

Mt
{∣∣L(κ(t), t)−χ j(t)

∣∣q} 1
q ≤ a1Mt

{∣∣κ(t)−κ j(t)
∣∣q
H
} 1

q = a1
∥∥κ−κ j

∥∥α

Bp(R,H) ,

and consequently we obtain

lim
j 7→+∞

Mt
{∣∣L(κ(t), t)−χ j(t)

∣∣q} 1
q = 0,

that implies [t 7→ L(κ(t), t)] ∈ Bq(R,R), and so (i) is proven.
Moreover the last inequality becomes the one of (ii), when we replace κ(t) by κ1(t) and
χ j(t) by L(κ2(t), t).

Lemma 4.2. We assume conditions (H2) and (H3) fulfilled. Then the Nemytskii operator
NL : B2(R,H) → B1(R,R), defined by NL(κ)(t) := L(κ(t), t), is of class C 1, and for all
κ,δκ ∈ B2(R,H),

(DNL(κ)δκ)(t) = LX(κ(t), t).δκ(t).
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Proof. • We show that there exist c2 ∈ [0,+∞), h ∈ B1(R,H), such that for all X ∈ H and
t ∈ R |L(X , t)| ≤ c2 |X |2H +h(t).
By using (H3) for Y = 0, we obtain

∃a2 ∈ [0,∞); |LX(X , t)−LX(0, t)| ≤ a2 |X |H ,

which implies that
|LX(X , t)| ≤ a2 |X |H + |LX(0, t)| ,

and so the mean value theorem [2, page 144], gives that, for all (X , t) ∈H×R

|L(X , t)| ≤ |L(X , t)−L(0, t)|+ |L(0, t)|
≤ sup

H∈]0,X [
|LX(H, t)| |X −0|H + |L(0, t)|

≤ (a2 |X |H + |LX(0, t)|) |X |H + |L(0, t)|
= a2 |X |2H + |LX(0, t)| . |X |H + |L(0, t)|

≤ a2 |X |2H +
1
2
|LX(0, t)|2 +

1
2
|X |2H + |L(0, t)|

=
(

a2 +
1
2

)
|X |2H +

1
2
|LX(0, t)|2 + |L(0, t)| ,

and by setting h(t) := 1
2 |LX(0, t)|2 + |L(0, t)|, and c1 :=

(
a2 + 1

2

)
, since L ∈ AP U(H×

R,R), and LX ∈ AP U(H×R,L(H,R)), we obtain h ∈ AP 0(R,H)⊂ B1(R,H).
• We show that if κ ∈ B2(R,H), then [t → L(κ(t), t)] ∈ B1(R,R).

Let κ ∈ B2(R,H), then |L(κ(t), t)| ≤ c2 |κ(t)|2H + h(t), where h ∈ B1(R,H) ⊂ L1
loc(R,H),

implies that
[t → L(κ(t), t)] ∈ L1

loc(R,R).

Applying Lemma (4.1) to the function LX with p = 2,q = 2,α = 1, we have

[t → LX(κ(t), t)] ∈ B2(R,L(H,R)).

Let
{

κ j
}

j be a sequence in AP 0(R,H) such that

lim
j→∞

∥∥κ−κ j
∥∥

B2(R,H) = 0.

Using the mean value inequality theorem [2, page 144], we obtain for all t ∈ R

|L(κ(t), t)−L(κ j(t), t)−LX(κ(t), t).(κ(t)−κ j(t))|
≤ sup

ζ∈]κ(t),κ j(t)[
|LX(ζ, t)−LX(κ(t), t)|

∣∣κ−κ j
∣∣
H

≤ a2 sup
ζ∈]κ(t),κ j(t)[

|ζ−κ(t)|H
∣∣κ−κ j

∣∣
H

≤ a2
∣∣κ(t)−κ j(t)

∣∣2
H ,

and by the monoticity of the mean value we obtain :

Mt
{∣∣L(κ(t), t)−L(κ j(t), t)−LX(κ(t), t).(κ(t)−κ j(t))

∣∣}≤ a2Mt

{∣∣κ(t)−κ j(t)
∣∣2
H

}
.
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Since [t → LX(κ(t), t)] ∈ B2(R,L(H,R)), and κ−κ j ∈ B2(R,H), we have

[t → LX (κ(t), t)(κ(t)−κ j (t))] ∈ B1(R,R).

Thanks to [32, Theorem 2.7, page 16], we have

[t → L(κ j(t), t)] ∈ AP 0(R,R)⊂ B1(R,R),

and so by setting φ j(t) := L(κ j(t), t)− LX(κ(t), t)(κ(t)− κ j(t)), we have φ j ∈ B1(R,R).
The last previous inequality implies

lim
j→∞

Mt
{∣∣L(κ(t), t)−φ j(t)

∣∣} = 0.

Consequently
[t → L(κ(t), t)] ∈ B1(R,R).

• We show that for all κ ∈ B2(R,H) the operator

L(κ) : B2(R,H)→ B1(R,R), (L(κ)δκ)(t) := LX(κ(t), t)δκ(t)

is linear continuous.
We have already seen that [t → LX(κ(t), t)] ∈ B1(R,R). The linearity of L(κ) is easy to
verify, and by using a Cauchy-Schwartz-Buniakovski inequality, [4, page 69], we have

Mt {|LX(κ(t), t).δκ(t)|} ≤ Mt {|LX(κ(t), t)| |δκ(t)|H}

≤ Mt

{
|LX(κ(t), t)|2

} 1
2
Mt

{
|δκ(t)|2H

} 1
2
,

and so L(κ) is continuous.
• We show the differentiability of NL.

Let κ ∈ B2(R,H). By using the mean value inequality theorem, [2, page 144], we have for
all t ∈ R,

|L(κ(t)+δκ(t), t)−L(κ(t), t)−LX(κ(t), t).δκ(t)|
≤ sup

ζ∈]κ(t),κ(t)+δκ(t)[
|LX(ζ(t), t)−LX(κ(t), t)| . |δκ(t)|H

≤ a2 |δκ(t)|2H .

And the monotonicity of the mean value permits us to obtain

Mt {|L(κ(t)+δκ(t), t)−L(κ(t), t)−LX(κ(t), t).δκ(t)|} ≤ a2Mt

{
|δκ(t)|2H

}
,

which provides∥∥NL(κ+δκ)−NL(κ)−L(κ).δκ
∥∥

B1(R,R) ≤ a2 ‖δκ‖2
B2(R,H) ,

and so that NL is differentiable at κ and DNL(κ) = L(κ).
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• We show that NL is of class C 1.
Let κ1,κ2 ∈ B2(R,H). From (H3), we have for all δκ∈ B2(R,H) such that ‖δκ‖B2(R,H) ≤ 1,
for all t ∈ R :

|(LX(κ1(t), t)−LX(κ2(t), t))δκ(t)| ≤ |(LX(κ1(t), t)−LX(κ2(t), t))| . |δκ(t)|H
≤ a2 |κ1(t)−κ2(t)|H . |δκ(t)|H ,

that implies by using the Cauchy-Schwarz-Buniakovski inequality, [4, page 69]

Mt {|(LX(κ1(t), t)−LX(κ2(t), t))δκ(t)|} ≤ a2Mt {|κ1(t)−κ2(t)|H . |δκ(t)|H}
≤ a2 ‖κ1−κ2‖B2(R,H) .‖δκ‖B2(R,H)

≤ a2 ‖κ1−κ2‖B2(R,H) .

Therefore we have ∥∥DNL(κ1)−DNL(κ2)
∥∥

L ≤ a2 ‖κ1−κ2‖B2(R,H) ,

which implies the continuity of DNL.

Theorem 4.3 (Variational Principle). We assume conditions (H3) and (H4) fulfilled. Then
the functional Φ : B1,2(R,Rn)→ R, defined by

Φ(u) := Mt {L(u(t),ut ,∇u(t),(∇u)t , t)}

is of class C 1, and the two following assertions are equivalent:

1. DΦ(u) = 0, i.e. u is a critical point of Φ.

2. D1L(u(t),ut ,∇u(t),(∇u)t , t)+T ∗D2L(u(t),ut ,∇u(t),(∇u)t , t)
= ∇ [D3L(u(t),ut ,∇u(t),(∇u)t , t)+T ∗D4L(u(t),ut ,∇u(t),(∇u)t , t)]

Proof. We consider the operator L : B1,2(R,Rn) → B2(R,Rn)×B2(R,B)×B2(R,Rn)×
B2(R,B)≡ B2(R,Rn×B ×Rn×B) := B2(R,H) defined by

L(u)(t) := (u(t),ut ,∇u(t),(∇u)t).

It follows that L is linear continuous, therefore L is of class C 1, and DL(u)v = L(v).
By using Lemma (4.2), the Nemytskii operator NL : B2(R,H)→ B1(R,R), defined by

NL(κ)(t) := L(κ(t), t), is of class C 1 and for all κ,δκ ∈ B2(R,H) we have

(DNL(κ)δκ)(t) = LX(κ(t), t)δκ(t).

It follows that the mean value M : B1(R,R)→ R is linear continuous, therefore it is of
class C 1, and DM{ f} .g = M{g} for all f ,g ∈ B1(R,R).

Consequently Φ : M◦NL ◦L is of class C 1 as a composition of three mappings of class
C 1, and by using the chain rule, we obtain, for all u,v ∈ B1,2(R,Rn), the following formula

DΦ(u).v = DM(NL ◦L(u))◦DNL(L(u))◦DL(u)v
= M

{
DNL(L(u)).L(v)

}
= Mt{D1L(u(t), t)v(t)+D2L(u(t), t)vt

+ D3L(u(t), t)∇v(t)+D4L(u(t), t)(∇v)t}.
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Let u ∈ B1,2(R,Rn), we assume that (i) is true. Then for all v ∈ B1,2(R,Rn) we have

0 = DΦ(u).v
= Mt{D1L(u(t), t)v(t)+D2L(u(t), t)vt

+D3L(u(t), t)∇v(t)+D4L(u(t), t)(∇v)t}
= Mt{D1L(u(t), t)v(t)+D2L(u(t), t)T v(t)

+D3L(u(t), t)∇v(t)+D4L(u(t), t)T (∇v)(t)}
= Mt{D1L(u(t), t)v(t)+T ∗D2L(u(t), t)v(t)

+D3L(u(t), t)∇v(t)+T ∗D4L(u(t), t)∇v(t)}
= Mt{(D1L(u(t), t)+T ∗D2L(u(t), t))v(t)

+(D3L(u(t), t)+T ∗D4L(u(t), t))∇v(t)}.

Then by using [11, Proposition 10], we obtain (ii).
Conversly, if (ii) is true, then

[t 7→ D3L(u(t), t)+T ∗D4L(u(t), t)] ∈ B1,2(R,Rn),

and for all v ∈ AP 1(R,Rn) we have

Mt{(D1L(u(t), t)+T ∗D2L(u(t), t)).v(t)}
−Mt{∇(D3L(u(t), t)+T ∗D4L(u(t), t)).v(t)}= 0.

Using [11, Propsition 9], we obtain

0 = Mt{(D1L(u(t), t)+T ∗D2L(u(t), t)).v(t)
+(D3L(u(t), t)+T ∗D4L(u(t), t)).v′(t)}

= Mt{D1L(u(t), t).v(t)+T ∗D2L(u(t), t).v(t)
+D3L(u(t), t).v′(t)+T ∗D4L(u(t), t).v′(t)}

= Mt{D1L(u(t), t).v(t)+D2L(u(t), t)T v(t)
+D3L(u(t), t).v′(t)+D4L(u(t), t)T v′(t)}

= Mt{D1L(u(t), t).v(t)+D2L(u(t), t)vt

+D3L(u(t), t).v′(t)+D4L(u(t), t)v′t}
= DΦ(u).v.

Since AP 1(R,Rn) is dense in B1,2(R,Rn), [11, Proposition 8], we have DΦ(u).v = 0, for
all v ∈ B1,2(R,Rn), which implies DΦ(u) = 0.

Definition 4.4. When u∈ B1,2(R,Rn) satisfies the equation of (2) in Theorem (4.3), we say
that u is a weak Besicovitch-ap solution of (1.2).

5 Existence and uniqueness

Let L : H×R→R, (X , t) 7→ L(X , t) be a continuous function. We give the following list of
assumptions.
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(H5) L(., t) is convex, for all t ∈ R.

(H6) There exists a3 ∈ [0,+∞) such that for all t ∈ R and (x1,ϕ1,x2,ϕ2) ∈ H, we have
|L(x1,ϕ1,x2,ϕ2, t)| ≥ a3(β+ γ), where{

β := |x1|2 or |ϕ1|2B ,

γ := |x2|2 or |ϕ2|2B .

Theorem 5.1 (Existence). We assume conditions (H3), (H4), (H5), and (H6) fulfilled. Then
there exists a function u ∈ B1,2(R,Rn) which is a weak Besicovitch a.p. solution of (1.2).

Proof. By using Theorem (4.3), the assumptions (H3) and (H4) imply that the functional Φ

is of class C 1. The assumption (H5) implies that the functional Φ is convex. And by using
(iii) of Lemma (3.3) and the monoticity of the mean value, the assumption (H6) implies, for
all u ∈ B1,2(R,Rn)

Φ(u) ≥ a3

(
‖u‖2

B2(R,Rn) +‖∇u‖2
B2(R,Rn)

)
= a3 ‖u‖2

B1,2(R,Rn) ,

which allows us to deduce that Φ is coercive functional on B1,2(R,Rn). And so by using
[14, page 46 ], there exists u ∈ B1,2(R,Rn), such that

Φ(u) = inf
{

Φ(v);v ∈ B1,2(R,Rn)
}

.

Therefore DΦ(u) = 0, and applying Theorem (4.3), u is weak Besicovitch a.p. solution of
(1.2)

Theorem 5.2 (Uniqueness). Assuming that the conditions (H3), (H4), (H5), and (H6) are
satisfied. Assume moreover that the following condition is satisfied,

There exists a4 ∈ [0,+∞), such that the function
K : H×R→ R defined by
K(x1,ϕ1,x2,ϕ2, t) := L(x1,ϕ1,x2,ϕ2, t)− a4

2 (β+ γ) ,
is convex with respect to (x1,ϕ1,x2,ϕ2) for all t ∈ R,

(5.1)

then there exists a unique function u∈ B1,2(R,Rn) which is a weak Besicovitch a.p. solution
of (1.2).

Proof. By using the Theorem (5.1), the assumptions (H3), (H4), (H5), and (H6) ensure the
existence of a weak Besicovitch a.p. solution of (1.2).

Setting the functional

Ψ(u) := Φ(u)− a4

2

(
Mt

{
|u(t)|2

}
+Mt

{
|∇u(t)|2

})
= Φ(u)− a4

2

(
‖u‖2

B2(R,Rn) +‖∇u‖2
B2(R,Rn)

)
.
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By (3i) of Lemma (3.3), the condition (5.1) implies that the functional Ψ is convex, and
since Φ is of class C 1, Ψ it is also, and for all u,v ∈ B1,2(R,Rn)

DΨ(u)v = DΦ(u)v−a4

{
〈u,v〉B2(R,Rn) + 〈∇u,∇v〉B2(R,Rn)

}
= DΦ(u)v−a4 〈u,v〉B1,2(R,Rn) .

The Minty monotinicity of the differential of a convex functional, implies that

〈DΨ(u)−DΨ(v),u− v〉B1,2(R,Rn) ≥ 0, ∀u,v ∈ B1,2(R,Rn),

and then we have ∀u,v ∈ B1,2(R,Rn)

〈DΦ(u)−DΦ(v),u− v〉B1,2(R,Rn)−a4 〈u− v,u− v〉B1,2(R,Rn) ≥ 0,

eventually,

〈DΦ(u)−DΦ(v),u− v〉B1,2(R,Rn) ≥ a4 ‖u− v‖2
B1,2(R,Rn) , ∀u,v ∈ B1,2(R,Rn).

So if u and v are two weak Besicovitch a.p. solutions of (1.2), by Theorem (4.3) we have
DΦ(u) = DΦ(v) = 0, and consequently a4 ‖u− v‖2

B1,2(R,Rn) = 0, which gives that u = v.
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