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Martingale estimation functions for discretely
observed diffusion processes

BO MARTIN BIBBY and MICHAEL S@RENSEN*

Department of Theoretical Staristics, Institute of Mathematics, University of Aarhus, DE-8000 Aarkus C,
Denmark

We consider three different martingale estimating functions based on discrete-time observations of a diffusion
process. One is the discretized continuous-time score function adjusted by its compensator. The other two
emerge naturally when optimality properties of the first are considered. Subject to natural regularity conditions,
we show that all three martingale estimating functions result in consistent and asymptotically normally
distributed estimators when the underlving diffusion is ergodic. Practical problems with implementing the
estimation procedures are discussed through simulation studies of three specific examples. These studies also
show that our estimators have good properties even for moderate sample sizes and that they are a considerable
improvement compared with the estimator based on the unadjusted discretized continuous-time likelihood
function, which can be seriously biased.

Keywords: discrete-time sampling; inference for diffusion processes; optimality; quasi-likelihood: simulation;
stochastic differential equation

1. Introduction

Ideally, parametric inference concerning diffusion processes based on discrete-time observations
should be based on the likelihood function L. Under weak conditions the maximum likelihood
estimator has the usual good properties (Dacunha-Castelle and Florens-Zmirou 1986). However,
the likelihood function for discrete observations is a product of transition densities, and these are
only known in special cases. One way around this problem is to find good approximations to L. This
approach has been pursued in Pedersen (1993a; 1995b).

The likelihood theory for continuously observed diffusions is well studied (see, for example,
Taraskin 1974; Brown and Hewitt 1975; Liptser and Shiryayev 1977; Ibragimov and Has 'minskii
1981; Kutoyants 1984; and Serensen 1991). Inference from discrete-time observations can be based
on an approximation, L, to the continuous-time likelihood function, obtained by replacing
Lebesgue integrals and Itd integrals by Riemann-Itd sums (see Section 2). This approach works
well when the observation times are closely spaced, as has been demonstrated by several authors
(see, for example, Le Breton 1976; Prakasa Rao 1988; Florens-Zmirou 1989; Genon-Catalot 1990;
Yoshida 1992; and Kloeden et al. 1992). However, the estimator obtained in this way is not
consistent when the time between observations is bounded away from zero (Florens-Zmirou 1989),
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and when the time between observations is not small it can be strongly biased (see Pedersen 1993a;
and Section 4 below).

In the present paper these defects of estimators based on L are avoided by constructing a
martingale estimating function from L. One cannot expect to obtain a consistent estimator from L
since the corresponding pseudo-score function f is biased. A dot denotes differentiation with respect
to the parameter, and £ = log L. When the time between observations is bounded away from zero,
then so is the bias of . Our approach is to compensate 7 so that a martingale G is obtained. This is
done in Section 2. Here we also find, within a natural class of martingale estimating functions, the
optimal estimating function G* sensu Godambe and Heyde (1987). It turns out that G can be viewed
s an approximation to G*. We also derive another approximation to G*. Good approximations to
G" are important in practice since in many cases it is difficult to find the roots of G" because of
problems of numerical instability. The estimating functions can also be used when the diffusion
coefficient depends on the parameter.

In Section 3 we prove that the estimators based on G and G* are consistent and asymptotically
normal. In fact, we give a result for a general class of martingale estimating equations based on
discretely observed ergodic diffusions. Also questions of asymptotic efficiency are discussed. In
Section 4 we study three examples in detail, including simulation studies of the behaviour of the
estimators,

2. Derivation of the estimating functions

We will consider one-dimensional diffusion processes defined by the following class of stochastic
differential equations:

dX, = b(X,;:0)dt + o[ X; ) AW, Xy = xp. (2.1)

Here, then, the drift and the diffusion coefficient do not depend on the time r; however, the method
we shall discuss extends straightforwardly to the time-inhomogeneous case. We assume that (2.1)
has a unique solution for all # in some open subset, 8, of the real line. The assumption that X" and #
are one-dimensional is only made to simplify the exposition. We give results for the multi-
dimensional case later. The function « is assumed to be positive. Furthermore, the functions b
and & are supposed to be known and twice continuously differentiable with respect to both
arguments. The parameter # is to be estimated from discrete equidistant observations of {X,}.
Xu, Xonioony X, say. It is no real limitation that we only consider equidistant observations as the
general case can be treated in exactly the same way,

If o does not depend on &, then under some additional conditions (Liptser and Shiryvavev 1977,
Theorem 7.19) the measures corresponding to continuous observation of the solution of (2.1) for
different values of # are equivalent. The most important condition is that the integrals in (2.2) should
exist. The continuous-time log-likelihood function is

_ ['hlX.:8) _11*&3{,&;9}
f J—L o (X;) o~z 0 o*(X,) &

Using an [t6 sum and a Riemann sum to approximate the integrals in (2.2) and differentiating with

(2.2)
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respect to £, we get an approximate score function of the form

: B Xy_1)a18) BIX 1y @)B( X '5'1
m:e}=;—ali S (i = X a) - AZI T s)

where the dot denotes differentiation with respect to #. This approximate score function can also be
derived using the approximation that, conditionally on the past. the increment Xja — X;_ a8
normally distributed with mean 5(X;_,:0)4 and variance o7 (X ;s )4 If o does depend on #,
we use the same estimating function. but now with « depending on &

g 5(-2'[:..1-3:9] = h(X =—l|_\. H]b{k.. 1a:f)
'n E' = g—{X ||— 'II-\‘ : 2?
£nl8) ZT{XU—I}._‘.ZH} = ha) Z ([ Xii_1a:d) 5]

i=1

As mentioned in Section 1 this estimating function is biased, and the idea is now to adjust (2.3) by
subtracting its compensator in order to get a zero-mean Py-martingale with respect to the filtration
defined by F; = o(Xa,..., Xia). i = 1,2;... . Using the notation

F(x;8) = Eg(Xa| Xp = x), (2.4)
the compensator is
i !;;(X.:r'_ A:H_] 3
ZEFJ{F (8) — &1 (B) [ Fioa} = Zﬁ{F'i-Y;.'-|]a;9}—X:.= nat
T
B(Xy_ 12 005X 1ya; '9]'

-3 P (X 12:6)

i=1

i ] i=1

This means that we get the following estimating function which is a zero-mean Fy-martingale,

- - 5{X-'f—|]gi'9}'
Gl =% ————{ X — FlX,_na:d}} 2.
I:.ll: ! ;n—[}{-, []A:ﬁj{ i LhAii—1A }} |:

]

}

The fact that G,,(#) is a zero-mean Py-martingale estimating function does not depend on whether o
15 a function of # or not. This gives some justification for using (2.3) also in cases where o depends on
#. A stronger justification will be given below.

In order to explore the properties of G we consider the class of zero-mean Ps-martingale
estimating functions of the form

M
G(8) =D gi-1(01{Xia — F(X;_1ya: )}, (2.6)

i=1
where g, _, 15 F,_ -measurable and a continuously differentiable function of 8, i =1,.. ., n. We are
interested in finding the optimal estimating function within the class given by (2.6) in the sense of
giving the smallest asymptotic confidence interval around # and vielding an estimator with the
smallest asymptotic dispersion (see Godambe and Heyde 1987). Straightforward calculations show

that the quadratic characteristic of G(#) is

G(H)), = Zg, (B X- 143 8),
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where
O(Xi_1ai¥) = Eo{(Xia — F(X;i_1)a:8)) | Xpim 1ya}s i=1,....n (2.7)
and that
ZE; 1(O{Xia — F(X(;_1ya; 6)} - ng H{EOF (X141 6), (2.8)
=]

where F is assumed to be a differentiable function of 4. )
The first term on the right-hand side of (2.8) is a martingale, so the compensator of G(#) is given
by

Gy(8) = ZE{G}{& G;1(8) | Fiz1}

== &-1(F(Xy_1a:6).

fom]

According to Heyde (1988), an estimating function G, (#) of the type (2.6) is optimal within the class
(2.6) if and only if

*Guf?} G (8 _ {G7(8))n
G.8)  Gif)

for all » and all & satisfying (2.6). Now. in our case criterion (2.9) becomes

(2.9)

Zm-l(f":lgF—L':E}'f’[Xr_f-n:.:'«"} Zéﬂ 1(8) 0(X(i_1ya30)

R »
- g (BF(X_pa8) - Zg:- 18)F(X-1)a16)
i=1

i=1

which is clearly the case if and only if &_,(8) = a(6)F(X;_ 1)a:8)/&(X;_1ja;0), where a(6) is a
non-random function of #. We can choose o = 1. The optimal estimating function in the asymptotic
sense in the class (2.6) is thus

F(X;_1)a;6)
Gal(8) = ZW {Xia — F(Xy_1a:0)}. (2.10)

i=1

Note that the right-hand side of (2.9) is non-random when G (f) is of the form (2.10). This means
that G, () is also optimal in what Godambe and Heyde (1987) call the fixed sample sense, that is
G, (#) is in some sense closest to the score function based on the usually unknown exact likelihood
function within the class (2.6) (see Godambe and Heyde 1987). )
It is almost never the case that A(x: ) /o (x:6) = F(x:8)/6(x:8), so G,(f) is rarely optimal.
However, for small A we have the expansion (Florens-Zmirou 1989)
F(x:6) = x + Ab(x; 0) + LAY B(x; )0 (x:8) + 17 (x;8)b" (x:8)} + O(A?), {2.11)
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and
o(x:6) = Ac”(x; §) + A% [B(x; B)o(x; 8)o’(x: 6)

+1dA(x; 9}{25 (x:6) + & (x:6)° + o(x:0)0" (x:8)}] + O(AY), (2.12)

where the prlme denotes djfferennatmn with respect to x. Hence F(x;0) = b(x;0)A + Gl{i\zj and
o(x: 0) = o (x:6)A + O(A?), so that for small A we have that G, (#) is approximately optimal.

As we shall mdmate later (see Section 4), it is in some cases not easy to determine F(x; f)
satisfactorily due to numerical problems. In those instances we might turn to the expansion result
{2.11) once again and substitute the terms up to order a Al ) or higher for F(x:#). This gives a third
estimating function which we shall denote by Gt, given by

Gl (8) = 3 (B(Xs- 183 A +  AMB(X (i 1123 0)F' (X 1)ai6)
i=1

+f?':X[4-1:-_~.fH}H': i-1ai ) + {fT2 - 1a: @b (X 1yaif)
Xia — F(X_na:8)
(X pyat) '

Starting from the continuous-time likelihood function we have now found expressions for three
different zero-mean Py-martingale estimating functions. One of them, namely G, is optimal in the
class (2.6) in both senses of Godambe and Heyde (1987) and the other two, G and G 7, are the first-
and second-order approximations in A of G°.

In the multidimensional case we let # be k-dimensional and {X,} d-dimensional. The drift is also
d-dimensional while the diffusion coefficient o is assumed to be a (d = m)-dimensional matrix such
that oo’ is positive definite. Here m is the dimension of the Wiener process, and T denotes
transposition. The (k = 1)-dimensional estimating functions are

=+ UQ[X-:f—l].!.:E]F;”{Xil'—”-ﬁ;ﬁ}}]}

(2.13)

=Y b(Xy—1)a: ) {o(Xy_1)a; 0)o(X_1)a:0)"} " {Xia — F(X_1a:0)}  (2.14)

im]
Ga(8) =D F(X-1)a:0) 0(Xi_1)a;8) ' {Xia — F(X_1)a: )}, (2.15)
i=1

where # and F are (d x k)-dimensional matrices of partial derivatives with respect to the
components of f, and where we have assumed that ¢ is positive definite,

Example 2.1 The Ornstein—Uhlenbeck process
The Ornstein—Uhlenbeck process is the solution to the stochastic differential equation
dY, =68X,dt + ocdW,, Xy = xp,

that is b(x; ) = fx and &(x; #) = 7 is assumed to be known. It is well known that in this case the
transition probability is normal with mean F{x:#) = x em_ and variance ¢(8) = o7 (e™™ — 1)/26.
This means that we get the following explicit formula for G:

- R
Gy(0) = ;Z‘Yﬁ— na(Xia = Xi_pae),
i=]
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giving an estimator for & of the form

L
ZX ii- naXia
i=1

(2.16)

provided that > [, X;_jadia = 0.

Both G and G~ are proportional to G, so that all three estimating functions give 6, as estimator
for #.

It turns out that the estimator, 8,, found by solving either of the three estimating equations is
equal to the maximum likelihood estimator of § in the model where o~ is unknown.

Example 2.2 The mean-reverting process
Consider the class of diffusion processes emerging as solutions to the following stochastic
differential equation:

dY, = (a+ 0X,)dr + (X)) dW,. X, = xq. (2.17)

where v is a positive real-valued function. Processes satisfying (2.17) are often referred to as mean-
reverting processes in the financial literature.
We consider both o and # as unknown parameters. Clearly (1) = E, o( X, | X;) solves the
ordinary differential equation /(1) = a + 8f(1), so
Fix:a.6) = xe" + %(e‘” -1).
Using the explicit form of the conditional mean we get the following expression for G and G~ (see
(2.14) and (2.15)):

: g 1 o
Gyla,b) = {gm (Xia — X{r’ u..\f-‘u LB ] (1 - Emﬂ:

T
Z ||—ll.l '[Xr_‘; (f-l].‘ieg-\._%“ —Eﬂﬁl})} '

.—I:I.‘l.}I

Gale0) = {Z Bo( X i JJ:.CI-‘?}I: Ty g

Il ﬂ.eﬁg(.r;j_nl bl %) +F{l _Eﬂ_\}

O(Xi-yas o, b)

i=]

(XEJ_an—ll_\E *—{1 )}T

The third estimating function, GT, can be obtained from G” by expanding e’ in F, but it is of no
interest to consider G since F is known.
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In the case of G we can solve the estimation equations directly and get

=~ Xi-na - Xia = Xa—pakia & 1
iA (; tszl'J—lma]) (; T-':fX:a-n._x}) (; v (X L::..]') (; *-'?'Z(X-:—lr.ﬂ) 5
gt — - o ] . (2.18)
N Xi-na - {i-1a -
(; 1";'{-]1’[;—1',_1_]) (; T—'"Z(Xu—!:i}) (Zi ‘*«'z'ixu—!;a:')

and
S Xi-na )aa -
: 8, (; P (Xy_na) ) (; W (X n:.J)
Oy = H .
1 — el Z": 1
i=1 1»':'2{-1’:.'—1:_".?'

In the case where v:(x) = /X we have that E, 4(X;| X;). the conditional second moment, solves
the ordinary differential equation /() = (2a + a")E, (X, | Xy) + 28/(¢) so that

B

”; {(a +20%) ™ = 2(a + 6x) ™ + a}.

This specification of ¢+ has often been used in the financial literature (see, for example, Cox et al.
1985).

An example of a diffusion process where the parameter of interest enters the diffusion coefficient is
the mean-reverting process with o = 0, # replaced by —# in the drift, and ¥{x) = v# + x* where
# = 0. Again the conditional second moment solves an ordinary differential equation, and the
conditional variance takes the form

o(x:a.0) =

=204 .4
(

-1+ (1=a'=,

a
20-1"
If the diffusion coefficient is just slightly more complicated than these two examples. it is not possible
to find a closed expression for the conditional variance.

d(xia.f) =xe

Example 2.3 The hyperbolic diffusion process
The solution to the following stochastic differential equation

d){:=gL

V1+ X7
is called the hyperbolic diffusion process because it has a hyperbolic stationary distribution when
6 < 0. In fact, the stationary density is proportional to exp(#v'1 + x% /7).
It is not possible to determine the conditional expectation and conditional variance for the
hyperbolic diffusion process, so the estimation functions look like this:

df'rﬂd”’ Xy = Xy,

: L
Gu) =Y —== (X - F(X_nai®)},
1+ Xx3
=107y I+ Xi_ 1a
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and

= Xin — F(Xi_1)a:8)
G, (8) = =
i z (X 1ya:0)

fuu

i i F A X
A fi= A +ﬂz( fi- 1A 3 i ne.:lﬂ)

‘||.|'!+X:?—JIJ A

T z .
(1+ X7 _ya) 4{]+X[?-1:a
whereas G, (#) can only be written in the general form (2.10).

3. Consistency and asymptotic normality

In this section we show that the estimators obtained from the estimating equations derived in the
previous section are consistent and asymptotically normal. In fact, we give a result for a general
class of martingale estimating equations. In addition, questions of asymptotic efficiency will be
discussed. We mainly confine the discussion to the case of ergodic diffusion processes, but at the end
of the section we will briefly comment on non-ergodic models.

Our framework is similar to that of Florens-Zmirou (1989). We consider discrete observations of
a process X that solves (2.1) for some # € © CE, where © is open. The observations are
[Xapnii=1,..., n}. Let s(x: ) denote the density of the scale measure

s{x; 8) = exp(—ljx b(y;6) d}-).

o oo y; 8)

From now on we shall work under the assumptions below.

Condition 3.1
The following hold for all # € 6.
(a)
-] 1]
L six:d)dx = J s(x:Hdx =
(b)

r {s(x;8)0* (x:6)} " dx = A() < ¢

=g

(c) There exist constants M > 0 and C > 0 such that
{b(x;6)/o(x;8) — 1o (x;8)} sign(x) < —C  for |x| > M.
Under assumptions (a) and (b) X is ergodic, and with respect to the Lebesgue measure its

invariant measure u; has density {A4(#)a” (x; #)s(x;8)} . Condition 3.1 is formulated for diffusions
with state space equal to the real line. For diffusions confined to a smaller interval the conditions
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should be reformulated by replacing the boundaries ¢ by the relevant boundaries. and possibly
replacing zero by another interior point in the state space in (a) of Condition 3.1.

Let P} (respectively P%) denote the distribution of {X,} when X; ~ uy (respectively Xy = xg).
Furthermore, denote by r° the transition kernel of X under Py. i.e. 7 (dy, x) = Py(X, € dy | X, = x),
and define a measure Q] on B by

0F = X .
For a function g: R® — R, we use the notation
0!g) = [edo.
and
H(@)) = [elx (@)
From Florens-Zmirou (1989) we have the following lemma.

Lemma 3.1 Suppose Condition 3.1 holds, and let the function /: B> — R satisfy Q4( /%) < oc.
Then

I n
= f(Xi-na,Xia) = QA(S) (3.1)
i=1
in LE{PH:I as # — oc. Suppose, moreover, that ‘F?_-,[ 1) is identically equal to zero. Then
1 & : :
T2 2 Xa-na: Xia) = N(0.04(f%) (3.2)
i=1
in distribution under Py as n — o0,

Result (3.1) follows from Lemma 2 in Florens-Zmirou (1989), while (3.2) follows from Theorem 1
of the same paper. The results in that paper are only given for processes with a constant
diffusion coefficient. They can, however, easily be generalized to our case by the well-known
transformation

(x) = J:a[}':ﬂ}-| dy

(see also Florens-Zmirou, 1984).
We consider a general estimating function of the form

G,(0) = ZE':X[:—I:-.’_'.FH]'{XJ& = F{Xy_ya; #)}, (3.3)

=]

where F is given by (2.4). Recall also in the following that ¢ is given by (2.7).
We make the following assumptions about G,(#). Let #; = © denote the true value of 4.
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Condition 3.2
For all # £ @ we have:

(a) The functions g(x;#) and F{x;#) are continuously differentiable with respect to # for all x.
(b) The function

hi8;x,y) = g(x:0){ y — F(x:6)} — g(x:8)F(x:6) (3.4)
is locally dominated square integrable with respect to (_Jg“. and
£(8y) = Q2 {h(60)} = —E,, {2(fo)F(60)} # 0.
(c) The function g{x:0){ v — F(x:8;)} is in Lz{Qi“j. and
v(6) = E,, {2(60) (8p)} > 0.

Under these assumptions we can prove the following theorem.

Theorem 3.2 Under Conditions 3.1 and 3.2 an estimator 6, exists for every n. which on a set C,,
solves the equation

Gn(8,) =0, (3.5)
where Py (C,) — 1 as n — oc. Moreover, as n — oo,
b, — 6y
in probability under Py and
V(= 60) — N(0,v(60)/1(60)°) (3.6)

in distribution under Pﬂ:‘.

Proaf :
The existence and consistency of #, follow from Theorem A.l in Barndorfi-Nielsen and Serensen
(1994) if we can verify that under Py

sup [n~'G,(6) — QX {h(6y)} — 0 (3.7)

FEM. .
in probability as n — oc, where
M., = {616 — 8| < c/v}.
for ¢ > 0 and small enough that M_; C ©, and

1 5
\—ﬁGanj — N(0,v(f)) (3.8)
in distribution as n — oc. The result in Barndorfi-Nielsen and Serensen (1994) is formulated in
terms of the maximume-likelihood estimator, but the proof does not use the fact that the estimating
function is the score function,
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Result (3.8) follows immediately from (3.2} in Lemma 3.1. To prove (3.7), note that

"

Ga(8) = Y _h(8: X;_1ja. Xia),

i=1
where / is given by (3.4), and that

R
sup |n7'Gy(0) = f(6p)] € sup |n"S A(8X_pa, Xia) —f(8)
feM. . fs M, jam |

- suup | F(8) — f{Bp)].

fEM, .
where
£(8) = QR {h(8)}. (3.9)

Now apply Lemma 3.3 below.
The asymptotic normality (3.6) follows by the standard expansion

G(6) = —Gy(8,)(6, - 8),

where #, is between fy and 6,. and where we have used (3.5). By (A.5) in Barndorff-Nielsen and
Sorensen (1994)

1" Gu(6,) — f(6o)
in probability under Py as n — oc. This, together with (3.8), proves (3.6). O

Lemma 3.3
(a) The function - 8 — R given by (3.9) is continuous.
(b) Let K be a compact subset of €. and define

J2(8) =07 h(8: X(i_pya. Xia)- (3.10)

im]
Then
sup | f,(8) — f(8)| — 0
Fek
in probability under Py as n — oo
Proof
From the local dominated integrability of 4 it follows that
0% {k(6,6)} =0 fors—0,
where

k(8,8 x,y) = sup |h(6;x,y) = h(B:x.y)|.
Bl &
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In particular, we see that f is continuous. From the local dominated square lnteg:rablllt} of kit
follows that for every # € © there exists a & > 0 such that k(8,8 x, ¥) is in L(Q ;:' for 0 < § < 6.
Fix € > 0. For every # € K, we can choose Ay € (0, ] such that

|f(B)—f(8) <e/4 for|f—6] <X
and
QX {k(6,20)} < /4.
Of course, K C [Jy< ¢ B(6, Ag), where B(#, ) = {#: |# — 8] < \}. Since K is compact, we can find
Hi ..... H, Such lha[
RE U B(6), M-
Ji=1
For 8 € K, we choose 8, such that |# — 8| < As. Then
| £ul8) = F(O)] < | falB) = Fu(8)] + | £ul6;) = £U;)| + | £(6;) = £(6)]

e |

= "_JZ“ g3 X na-ffa?'—'?i‘{‘f[%-.%]}‘

+ 17a(8y) = 1 (6;)] + €/2,

50
e Eu
sup |5(0) =/ (0)| < max 3 k(O doi Kooy Xia) = O3 K6 %0)}
+ max | fu(6) —F(6)] +e/2.
Now (b) follows by applying (3.1) in Lemma 3.1 twice, O

Mot surprisingly, we find that the asymptotic expected information on the inverse asymptotic
variance of the estimator corresponding to the optimal estimating function G is

£(80) = E,, {F(6:)*/6(60)}. (3.11)

By inserting the expansions (2.11) and (2.12) for F and ¢, respectively, we find that

f(6:) = AE,, (ﬁf;ll)

+HAE, 560 (6) +2

b(8y)
7*(6o)

{B(80)8' (60) + 5(8p)o(80)8" ()}

— 2L (26(60)e () [o(B0) + 7 (B0 + B0} G} + O&Y). (312)

a(fy
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For the estimating function G we find that
v(6y) = E,, {b(80)’¢(60)/7*(60)}.
and
f(8y) = —E,, {B(60)F (60)/0” (60)}-
Hence by (2.11) and (2.12) it follows that

oy g (BB
S (66 /2(60) = AE,, (ﬂ,;wn))

40, [Be0s o) +2 ”5“} 200 (51608 @) + 001 60)8" 60}
b;—‘{?; {2b(80)0'(80) /(80) + &' (80)” + (85" (8p)} | + O(A7). (3.13)

Thus terms up to order G{ﬂz) in the expressions (3.12) and (3.13) are identical. For & constant,
Ducunha-Castelle and Florens-Zmirou (1986) found a similar expansion for the Fisher information.
The term of order O{A) in their expression equals the corresponding term in (3.12) and (3.13), but
they found that the term of order O(A?) is zero. This is rarely the case for (3.12) and (3.13). For a
discussion of conditions ensuring integrability of the remainder term in (2.11) and (2.12), see
Florens-Zmirou (1989).

Example 3.1 The mean-reverting process, continued
Consider again the mean-reverting process (2.17) with t{x) = /. For simplicity weput o = 1. In
this case the invariant distribution is a I'(2a, —2#) distribution, provided o > 0 and # < 0.

If o > 1, then for G the asymptotic expected information for « and # is given by

fle) 4a-1) 1-¢
via)  2a-1 a+(a—2)e’

0} 2a(1-¢™)
o(8) 82 (1+e)

For G" the asymptotic expected information is given by the expectation under the invariant measure
of the ratio of a second-order polynomial and a first-order polynomial. In this case the asymptotic
expected information can easily be calculated numerically.

Figures 3.1 and 3.2 show the asymptotic expected information as a function of the size of the time-
step in the case of the mean-reverting process with 1/(x) = /x, a = 10 and # = —1. The figures give
no reason to prefer G* over G from a practical point of view.

A result for the existence and consistency of 8, and for the asymptotic normality of

G»(6)"*(0: ~ 60) (3.14)
also holds for many non-ergodic models. It can be proved via Theorem A.1 in Barndorff-Nielsen
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Figure 3.1. The asymptotic expected information for o in the mean-reverting process with v(x) = V',
c = 10 and # = —1. The dotted line corresponds to G°, and the solid line corresponds to &
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Figure 3.2. The asymptotic expected information for # in the mean-reverting process with ¥(x) = WX,
a = 10and # = —1. The dotted line corresponds to &” and the solid line corresponds to G. Note that the
two curves are virtually indistinguishable
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and Serensen (1994), but of course we cannot use ergodic theory to prove that sums such as -‘."?,,.I[ﬂ},
properly normalized. converge to a non-negative random variable. This must in general be assumed.
Similarly, the central limit theorem for ergodic diffusions used in this paper must be replaced by a
central limit theorem for martingales. This is rather straightforward to do, but since the necessary
assumptions are not easy to check in practice, we will not state the result. The Ornstein—Uhlenbeck
process (Example 2.1) with # > 0 is an example of a non-ergodic model where 4, is consistent and
where (3.14) 1s asvmptotically normal.

4. Practical considerations and simulations

When wanting to use one or more of the estimation functions G. GT, and G" in practice, one
immediate problem is the unknown functions F and ¢, the conditional mean and the conditional
variance (see Section 2). Only for very simple models, such as when the drift depends linearly on the
state of the process, is F explicitly known (see Examples 2.1 and 2.2). An explicit expression for the
conditional variance is even more rarely known.

Our approach is to substitute the conditional mean and the conditional variance by the sample
mean and sample variance of a large number of simulated realizations of the process in question at
the relevant time-point. More precisely, we use the approximation

Fix;8)= éz i (4.1)

=1

and

"o 1 & (i) l < Pl 5
o(x:0) = E;(YJ —;; 4% ) (4.2)
where ¥, is the ith replication of the simulated value of the diffusion process at the time-point A
given that the process starts out in x at time 0.

Most often it is not possible to simulate the diffusion process in question exactly. An approximate
simulation scheme is then necessarv (see Kloeden and Platen 1992). In order to obtain a reliable
simulated value of the process at time A given the starting point of the process, the interval [0, A
should be split up into a large number, N, of subintervals and the process simulated at the end-point
of every subinterval,

Example 4.1 The Ornsiein—Uhlenbeck process, continued

The transition probability is known for the Ornstein—Uhlenbeck process so it can be simulated
exactly. Figure 4.1 shows a typical trajectory of # (see (2.16)). After some initial fluctuations it settles
around the true value # = —1.

To study the behaviour of # further, 500 observations of the Ornstein—Uhlenbeck process were
simulated in the time interval [0.200]. This was repeated 500 times, yielding Table 4.1. In the table
64 is the estimator based on the discretized continuous-time likelihood function. See (3.6) for an
expression for the asymptotic variance of 8,. The table shows that 6, has only a slight bias and
is considerably closer to the true value than 2.
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Figure 4.1. A typical simulated trajectory for # in the case of the Ornstein-Uhlenbeck process. Here
f=-l,o=1,x=0and A =02

Figure 4.2 shows a normal quantile plot of the 500 simulated values of é,T. Since the points show a
straight-line behaviour, we conclude that & is, to a very good approximation, normally distributed
forn =500 and A =04,

Example 4.2 The mean-reverting process, continued

For simulation purposes we restrict ourselves to the special cases where u(x) =oyx or
{x) =+vVH+x, a=0, and # is replaced by —# in the drift (see (2.17)). For these models F and
¢ can be found explicitly (Example 2.2). Realizations of the mean-reverting process are obtained
using the order 1.5 strong Taylor scheme (see Kloeden and Platen 1992, p. 351). In the case where
#(x) = o/, the scheme is given by the following iterative formula:

F .l
Y,.; =Y, +Ala+0Y,) +ag’ﬂaw+%{{aw}f _ A}
b

+00\/Y,AZ + 1 A%(a + 0Y,) + a +0Y, —§){awa—azj.

T
=l
where AW = AU,, AZ = AU, + U»/v3)/2, and U, and U, are independent standard
normal random variables.

Table 4.1. Mean and standard error of the estimator based on the discretized continuous-time likelihood

function and A for the Ornstein— Uhlenbeck process. Here the true parameter value is# = —1, and o = 1,
Xp=0and A=04

tmax num. obs, num. sim. mean 62 SE #° mean #, SE #é, asymp. SE

200 500 500 —0.8362 0.0836 —-1.021 0.1259 0.1238
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Quantiles of Standard Narmal

Figure 4.2. A normal quantile plot of the 500 values of , (n = 500, A = 0.4) in the case of the Ornstein-
Uhlenbeck process with # = —1, o =1, and x; = 0. The straight line corresponds to the asymptotic
normal distribution. The discrepancy is mainly due to a slight bias

Various numbers of observations of the mean-reverting process in different time intervals were
produced according to the order 1.5 strong Taylor scheme. For each set of simulated observations
the parameters o and f were estimated using the discretized continuous-time likelihood function, G,
and G". The estimating equations corresponding to G" were solved using a generalization of
Newton's method called lineanization (see Reverchon and Ducamp 1993, p. 313).

From Tables 4.2—4.4 we see that both G and G* give much better estimates than the discretized
continuous-time likelihood function. We note, however, that as A is decreased, a® and 6% come
closer to their true values. The relatively small bias of the estimators based on G and G is almost the
same. It decreases with sample size in most cases. The standard error increases with increasing
values of A and with decreasing number of observations. Note that the estimators based on G have a
standard error that is only slightly larger than that of the estimators based on G°. The reason why
the number of simulations are different is that runs resulting in negative values on the right-hand
side of (2.18) were discarded. In such cases the estimators do not exist.

The normal quantile plot in Fig. 4.3 shows that the distribution of 8 is close to normal in the case
where the number of observations is 300 and A = 0.5. The estimator & behaves similarly.

In the case where 1/(x) = v + x, o = 0, and # is replaced by —f in the drift, the order 1.5 strong
Taylor scheme is as follows:

Yoe1 = (1 - A8 +1A%70%)Y, + 10+ VI{A(AW) - A+ 2}AW
H | r i

+1V{(AW) - A} - 6/0+ YIAZ + ——= - Y)awa-az)
\'r -I_ E.
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Table 4.2. Mean and standard error of the estimator based on the discretized continuous-time likelihood
function for the mean-reverting process with 1(x) = 7,/%. Here xy =10 and 7 =1, and the true
parameter values are &« = 10 and # = —1

A num. obs. num. sim. mean ol SE o mean §] SE 8¢
0.5 200 500 B.108 1.185 —0.8104 0.1189
0.5 00 300 £.021 0.7067 —0.8029 0.0714
0.3 1000 F00 7.927 0.4984 ={.7923 0.0498
0.5 1300 300 7.912 0.4141 —0.7919 0.0412
1.0 200 300 6,458 0.6828 —0.6457 0.068%
1.0 500 300 6.404 0.4206 —0.6409 (0,0420
1.0 1000 300 6.328 0.2958 ~{).6328 0.0297
1.0 1500 300 6.352 0.2516 —{1.6352 0.0252
i1 200 496 5.200 0.4559 —0.5209 0.0451
1.5 300 500 5,204 (0.2999 —0.5201 0.02599
1.5 1000 500 3176 .2141 —0.5177 0.0213
o] 1500 00 5.180 0.1786 —0.5179 0.0179
2.0 200 466 4297 0.2990 —0.4297 0.0298
2.0 300 495 4337 0.2228 —0.4338 0.0223
20 L1000 500 4,330 0.1606 —0.4331 0.0160)
20 1500 300 4,325 0.1381 —0.4325 00138

Table 4.3. Mean and standard error of the estimator corresponding to & for the mean-reverting process
with ¥(x) = oy/x. Here xy = 10 and 7 = 1, and the true parameter values are o = 10 and 8 = =1

Fa' num. obs. num. sim. mean o, SE &, mean #, SE &,

0.5 200 00 10,30 2.064 —1.049 0.2072
0.5 S00 300 10,29 1.192 —1.030 0.1204
0.5 L] 300 1011 0.8293 —1.011 00830
0.5 1500 500 10.08 0.56872 —1.004 00685
1.0 200 S0 10,59 21 —1.059 0.2127
1.0 S00 S0 1030 1.199 —1.031 0.1199
1.0 1000 500 10.05 0.8158 —1.005 00818
1.0 1500 00 10.11 01,6969 —L.0ll 0.0698
15 200 494 10.50 2,344 -1.030 0.2339
1.5 500 300 10.26 1.474 —1.025 0.1476
1.5 1000 300 10,06 0.9%41 —1.006 00984
1.5 1500 300 10,05 0.8273 —1.005 0.0830
2.0 200 466 10.35 2,493 —1.033 0,250
2.0 300 465 10.46 2.029 -1.046 0.2036
2.0 100D 300 10.22 1.390 —1.022 0.1390

2.0 1500 S0y 10.13 1.097 —1.013 0.1087
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Table 4.4. Mean and standard error of the estimator corresponding to G * for the mean-reverting process
with ¥%(x) = &y/x. Here x; = 10 and o = 1, and the true parameter values are o = 10 and § = =1

Fa num. obs. num. sim. mean o, SE o, mean &, SE &,
0.5 200 500 10.49 2.058 —1.048 0.2066
0.5 300 500 10.29 1.190 —1.030 0.1202
0.5 1000 500 10.11 0.8272 =1.010 0.0828
0.5 1500 500 10.09 0.6865 -1.00% 0.0684
1.0 200 500 10.59 2.109 —1.059 0.2127
1.0 500 500 10.30 1.193 =1.031 0.1194
1.0 1000 500 10.03 0.8163 —1.003 0.0819
1.0 1500 500 10.11 0.65968 —1.011 0.069%
1.5 200 496 10.4% 2.327 —1.048 0.2322
1.5 300 500 10.26 1.444 —1.025 0.1446
1.5 1000 500 10.06 0.9751 =1.006 0.09735
1.5 1500 500 10.05 0.8171 —1.003 0.0820
2.0 200 456 10.30 2.389 —1.030 0.2395
2.0 300 493 10.44 1.993 —1.045 0. 2000
20 1000 500 10.22 1.336 —1.022 0.1335
20 1500 500 10.12 1.085 -1.012 0.1085

Quantiles of Standard Normal

Figure 4.3. A normal quantile plot of 500 values of éﬂ for the mean-reverting process with ¢7(x) = a/x,
=1, a=10,8#= -1, and xy = 10. The number of observations is 500 and A = 0.5. The straight line is
based on the sample mean and the sample variance
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Table 4.5. Mean and standard error of the estimator based on the discretized continuous-time likelihood
function and the estimators corresponding to G and G° for the mean-reverting process with

x) =

#+x*, a=0, and # replaced by —# in the drift. Here x; =0 and # =1, and the true
parameter value is 8 = 10

A num. obs. num. sim. mean#® SE#° meand, SEH, meand; SE&
0.05 300 300 7.952 0.7136 10,18 1.197 10,18 1.197
0.05 1000 500 T.877 05117 10,03 0.8507 10.03 0.8524
0.1 300 500 6.337 0.4228 10.12 1.175 10.13 1.174
0.1 1000 300 6.341 03056 10.09 0.8366 10,09 0.8370
0.2 300 493 4316 0.2179 10.26 2043 10.26 2.105
0.2 1000 500 4.318 0.1625 10.12 1.309 10.13 1.317
0.3 1000 463 3.160 0.0892 10.38 2,122 10.39 2.182

Table 4.5 shows that the estimator based on the discretized continuous-time likelihood function is
strongly biased and that it becomes more and more inaccurate as A is increased. The same tendency
is found for #, and #;, but not nearly to the same extent. The estimators 6, and #, behave almost
identically, and their slight bias decreases with increasing sample size. The standard error decreases
with increasing number of observations.

Normal quantile plots show that for A = 0.1 normality for 8, is approximately reached when the
number of observations is 1000. When the number of observations is 500, there are deviations from
a normal distribution, particularly in the tails.

X

0.0 0.5 1.0

-0.5

-1.0

100

200

Time

3oo

400

s00

Figure 4.4. A typical simulated trajectory for the hyperbolic diffusion process. The number of simulated
points is 1000 and A = 0.5. The parametersare # = -1, e =05 and x, = 0
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Table 4.6. Mean and standard error of the estimator based on the discretized continuous-time likelihood
function and the estimators corresponding to G and G in the case of the hyperbolic diffusion process.
Here xp = 0 and # = 0.5, and the true parameter value is # = -1

A numbobs: m N meandd SES meand, SBS, meandl SEO

0.25 200 25 25 -0.9437 01969  -1.070 02572  =1.070 0.2395
0.25 300 25 25 -09222 01249 -1.034 0.1581  —1.035 0.1563
0.25 1000 25 25 -09114  0.0823 -1.019 0.1037 -1.023 0.1161
0.5 200 23 25 —0.7958 01120 —-0.9837  0.1744  -1.001 0.1934
0.5 500 2% 25 -0.3093 00740 —=1.003 0.1165  =1.005 0.1296
0.5 1000 23 25 —0.8082 0.0552 09992 0.0870 —1.001 0.0985
1.0 200 23 25 —0.6776 0.0688  —1.036 01724 07508  0.1300
1.0 500 25 25 06774  0.0483  -1.027 0.1187 -0.7883  0.1128
1.0 1000 23 25 06719 0.0321 -1.012 00735 08044  0.0897

Example 4.3 The hyperbolic diffusion process, continued
As for the mean-reverting process we use the order 1.5 strong Taylor scheme to simulate realizations
of the hyperbolic diffusion process. Here it is of the form

2
Fori= Yﬂ+9ﬂL—i—aﬂﬂ’+_ﬂ:ﬂ_}:’?_l g_i_. + ot _jﬁz‘.
L+ 1] 2(1+ Y] 2/1+Y7] (1413

T T T T LT

-2 -1 a 1

ha

Quantiles of Standard Normal

Figure 4.5. A normal quantile plot of 100 values of 4, for the hyperbolic diffusion process with # = —1,
= 0.5, and xy = 0. The number of observations is 500 and A = 0.25. The straight line is based on the
sample mean and the sample variance
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where AW = +AU,, AZ = A**(U, + Uy/v3)/2, and U, and U, are independent standard
normal random variables. Figure 4.4 shows a typical realization of the hyperbolic diffusion process.

Because of numerical instability when calculating F, we focus our attention on G and G f. The
parameter # was estimated based on the discretized continuous-time likelihood function. G, and GT.
The mean and the standard error in Table 4.6 are based on 100 simulations. The method used for
solving the estimating equations is bisection.

Looking at Table 4.6, we note that, except for large values of A, the estimators for # have much
the same bias for G and G T and are very close to the true value. When A is la«ge 6 behaves better
than 8. The estimator for # based on the discretized continuous-time likelihood function. 6%, does
well for small values of A, but poorly for large values of A. The standard error is decreasing with
increasing number of observations and with increasing values of A,

The size of the number of repeats, m, and the number of points in between, NV (see (4.1}, (4.2) and
the proceeding paragraph), has almost no effect on the estimates when N is sufficiently large.

Figure 4.5 shows that the distribution of 8, is close to normal in the case where the number of
observations is 500 and A = (.25, A similar plot shows that when the number of observations is 200
normality has not vet been reached.
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