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The large deviation properties of p�, the approximation to the conditional density of the maximum

likelihood estimator, and r�, the modi®ed directed likelihood, are studied. Attention is restricted to

curved exponential models. Various speci®cations of an approximate ancillary, which are required in

the construction of p� and r�, are considered, including: a modi®ed directed likelihood ancillary, a�,
and an unmodi®ed directed likelihood ancillary, ao. It is shown that if a� is used then p� and r�
achieve saddlepoint accuracy on both normal and large deviation regions; if, on the other hand, ao is

used in the construction of p�, then saddlepoint accuracy is not achieved, though the relative error

still stays bounded on large deviation regions. It is also shown that if ao rather than a� is held ®xed

in the sample space differentiations needed to calculate r�, then saddlepoint accuracy is still attained

in both normal and large deviation regions. On a ®rst impression, the last result is a little surprising

because, in a repeated sampling framework, ao is only ancillary to order O(nÿ1=2). However, this

®nding is also of direct practical interest because, from the point of view of calculation, ao is often

substantially easier to work with than a�. An important aspect of our approach is the development of

guidelines, referred to as Laplace-spa calculus, for the construction of invariant saddlepoint-style

approximations to marginal and conditional densities. Finally, connections between recent work by

Jensen and the results of this paper are discussed and clari®ed.
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1. Introduction

This paper is concerned with the large deviation properties of p� and r� in (m, d) exponential

models (i.e. curved exponential models). In notation which is described in more detail in

Section 2, p� is the approximation p� � cĵjj1=2 el ÿl̂ to the (conditional) density of the

maximum likelihood estimator and r� � r � rÿ1 log (u=r) is the modi®ed directed likelihood,

where r is the unmodi®ed directed, or signed, likelihood and u is a certain test statistic.

Further details of p� and r� are given by Barndorff-Nielsen (1983; 1986; 1991), McCullagh

(1987), Fraser (1988), Reid (1988), Skovgaard (1990) and Barndorff-Nielsen and Cox (1994).
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In (m, d) exponential models, m is the dimension of the canonical statistic t, and d is the

dimension of ù̂, the maximum likelihood estimator of the parameter ù. In (m, m) exponential

models, ù̂ is a minimal suf®cient statistic and in this case p� is known to be equivalent to a

normalized saddlepoint approximation; see, for example, Barndorff-Nielsen and Cox (1994).

However, to determine p� when d , m, it is necessary to specify a second statistic, a, of

dimension k � mÿ d with the following properties: (i) (ù̂, a) should be jointly suf®cient;

and (ii) a should be exactly or approximately ancillary. Typically a will be constructed in

such a way that it has an asymptotic k-dimensional standard normal distribution.

A normal deviation region is one in which ù̂ÿ ù and a � nÿ1=2a are both of

order O(nÿ1=2), where n is the sample size in a repeated sampling framework. A number of

authors have studied the accuracy of p� in normal deviation regions: the basic ®nding is

that, provided a is ancillary to order O(nÿ1) (and locally ancillary to order O(nÿ3=2)), p�
has error O(nÿ3=2) on normal deviation regions; see Barndorff-Nielsen and Cox (1994) for

further details and references. However, under general (m, d) exponential models with

d , m, little attention has been given to the properties of p� in large deviation regions (that

is, regions in which one or both of ù̂ÿ ù and a are of the order O(1)), but see Skovgaard

(1990). We comment on Skovgaard's discussion in more detail in Section 6.

Much of our attention will be focused on two particular types of approximate ancillary:

the modi®ed and unmodi®ed directed likelihood ancillaries, a� and ao, respectively. It is

shown that if a� is used in the construction of p�, then both have saddlepoint accuracy.

That is, for either normal or large deviations of a�, the p� approximation to the conditional

density of ù̂ given a� has relative error of order O(nÿ3=2) and O(nÿ1) for normal and large

deviation regions of ù̂ÿ ù, respectively. If, on the other hand, ao is used in the

construction of p�, then saddlepoint accuracy is not achieved, though the relative error still

stays bounded on large deviation regions.

In the case of r�, our conclusions are more subtle: the standard normal approximation to

the distribution of r� may be interpreted as an approximation to the conditional distribution

of r� given a� regardless of whether we keep a� or ao ®xed in the required sample space

differentiations. On a ®rst impression, this ®nding may seem surprising because ao is only

ancillary to order O(nÿ1=2). This ®nding is also of direct practical interest because, from the

point of view of calculation, ao is usually far easier to work with than a�.
We also give some consideration to a general class of ®rst-order ancillaries which

includes the Efron±Hinkley and score ancillaries. It is shown that, if an ancillary in this

class is used in the construction of p�, then typically the relative error in p� does not stay

bounded if the ancillary varies over a large deviation region.

Our strategy is to compare p�, and the standard normal approximation to the distribution

of r�, with certain saddlepoint-type approximations. This approach is closely connected to

recent developments in saddlepoint and related approximations to marginal and conditional

distributions involving nonlinear statistics. A number of authors have been involved in these

developments, including Tierney et al. (1989), Fraser (1990), DiCiccio et al. (1990),

Barndorff-Nielsen (1990; 1991), Daniels and Young (1991), DiCiccio and Martin (1991),

Jensen (1992) and Jing and Robinson (1994). The basic ideas may be summarized as follows.

Given an approximation to the joint density of a set of variables, for example a saddlepoint

approximation, we estimate marginal densities by applying Laplace's approximation to the
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appropriate integral of the joint density approximation, and we estimate conditional densities

as the joint density estimate divided by the appropriate marginal density estimate. A more

detailed speci®cation of this approach is given in Section 4. In the case of one-dimensional

variables, tail probabilities may then be estimated by applying Temme's (1982) method to the

relevent marginal or conditional density approximation.

Empirical evidence suggests that approximations of the type indicated above are typically

very accurate; see, for example, Barndorff-Nielsen and Cox (1994), Barndorff-Nielsen and

Schmidli (1995) and Jensen (1995). Moreover, the mathematical form of these approxi-

mations suggests that they will generally have desirable relative error properties on large

deviation regions. However, except in particular cases, rigorous mathematical proofs are

lacking, particularly when conditioning is involved. Rigorous justi®cation of these

approximations under general conditions is an open problem, though the technical dif®culties

can be avoided by restricting attention to `local' large deviations. Further discussion is given

in Section 3.

In Section 2, more detailed de®nitions of p�, r� and the approximate ancillaries a� and ao

are given. In Section 3 our main results are presented, and proofs are given in Section 5.

Saddlepoint approximations for nonlinear statistics are reviewed in Section 4, and the issue of

normalization is also discussed. The main focus is on the construction of invariant forms of

these approximations, and the resulting guidelines are referred to as Laplace-spa calculus

(where spa is an abreviation for saddlepoint approximation). We conclude in Section 6 with

some discussion of our results, and we also clarify the connection between the results in this

paper and those of Jensen (1992). An illustrative example is considered in Sections 2 and 6.

Finally, some remarks on notation. For q > 1 and vectors x1 2 R p1 , . . . , xq 2 R pq , we

identify R p1 3 � � �3 R pq with R p1����� pq and de®ne the following norm on R p1 3 � � �3 R pq :

ix1, . . . , xq i �
Xq

j�1

Xp j

i�1

(xi
j)

2

8<:
9=;

1=2

:

For each ã. 0, we de®ne the open ball

Bã � f(x1, . . . , xq): ix1, . . . , xq i , ãg � R p1����� pq :

The dimensions of the vectors concerned will usually not be made explicit. A bar over a

quantity such as r, u or a will indicate multiplication by nÿ1=2: i.e. r � nÿ1=2 r, u � nÿ1=2u

and so on. The motivation for doing this will be explained in Section 2.4. The notation for

likelihood derivatives will follow Barndorff-Nielsen and Cox (1994).

2. Preliminaries

2.1. Curved exponential models

We begin with the de®nition of a prime exponential model. Consider a model M with model

function of the form
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p(y; è) � a0(y) exp fèTs(y)ÿ k(è)g è 2 È (2:1)

where È � fè:
�

a0(y) exp fèTs(y)gì(dy) ,1g, ì is a dominating measure, and the

canonical parameter è and canonical statistic s are assumed to have dimension m. Write

È0 for the interior of È, and let M 0 denote the model obtained from M by deleting all

p(.; è) for which è 2 ÈnÈ0. Consider the following condition: for any è0 2 È0 and for any

point è1 2 ÈnÈ0, we have

d

dë
k(ëè1 � (1ÿ ë)è0)!1

as ë tends to 1 from below. If this condition is satis®ed, then M , M 0 and k(è) are said

to be steep. By de®nition, M 0 is a prime exponential model if it is steep. Important

properties of prime exponential models are summarized in Barndorff-Nielsen and Cox (1994,

pp. 63±64).

Now suppose that the canonical parameter è is restricted to be a smooth function of a

parameter ù of dimension d , m, and domain of variation Ù. The resulting model, referred

to below as M Ù, has a model function of the form

p(y; ù) � a0(y) exp [èT(ù)s(y)ÿ kfè(ù)g], ù 2 Ù: (2:2)

Assuming that è(Ù) does not lie in an af®ne subspace of È, (2.2) de®nes a curved

exponential model or, more speci®cally, an (m, d) exponential model. The original model

(2.1) is referred to as the ambient (m, m) exponential model for the curved exponential model

(2.2). Throughout this paper it is assumed that the ambient model is a prime exponential

model. This is in fact the case for most exponential models of applied interest.

It will be assumed that s(y) �Pn
i�1 yi, where the yi are realizations of independent and

identically distributed random vectors, and we shall take as our starting point the density,

with respect to Lebesgue measure on Rm, of the minimal suf®cient statistic t � nÿ1s(y).

This density is given by

p(t; ù) � a1(t) exp n[èT(ù)t ÿ Kfè(ù)g]
� 	

, (2:3)

where Kfè(ù)g � nÿ1kfè(ù)g. In general, the density (2.3) need not exist. However,

throughout this paper we shall be working under an assumption, given in (3.1) below, which

ensures the existence of this density for n suf®ciently large.

The assumption that the yi are independent and identically distributed can certainly be

weakened signi®cantly. The key requirement is essentially that the cumulants of the

canonical statistic nt should be O(n).

2.2. The p� formula

The p� formula for curved exponential models is now introduced. Taking (2.3) as our

starting point, let a be a quantity of dimension k � mÿ d with the following two properties,

for n suf®ciently large: (i) there is a smooth one±one relationship between the canonical

statistic t and (ù̂, a), where ù̂ is the maximum likelihood estimator of ù under model M Ù;

(ii) a is approximately distribution constant under model M Ù. For example, a� de®ned in
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(2.11) below satis®es these requirements; more detailed discussion is given in Sections 2.4

and 2.5. For reasons to be explained there, it will generally be more convenient and

appropriate to work with a � nÿ1=2a rather then a.

Let p(ù̂; ùja) denote the true conditional density of the maximum likelihood estimator,

ù̂, given a. Then p(ù̂; ùja) may be approximated by p�(ù̂; ùja), with the latter given by

p�(ù̂; ùja) � cj j(ù̂)j1=2 exp fl (ù)ÿ l (ù̂)g, (2:4)

where l (ù) and l (ù̂) are the log-likelihood for the model evaluated at the true parameter and

the maximum likelihood estimator, respectively; j(ù̂) is the observed information evaluated at

the maximum likelihood estimator; and c � c(ù, a) is an exact or approximate normalizing

constant; see Section 4 for further discussion. Further details of the p� formula are given in

Barndorff-Nielsen (1980; 1983), Barndorff-Nielsen and Cox (1994), McCullagh (1987) and

Skovgaard (1990).

The log-likelihood l (ù) which appears in (2.4) is given by

l (ù) � l (ù; ù̂, a) � n[èT(ù)t ÿ Kfè(ù)g]
� n[èT(ù)h(ù̂, a)ÿ Kfè(ù)g] (2:5)

where t � h(ù̂, a) for some one±one function h. The d 3 d matrix j(ù̂) in (2.4) denotes the

observed information function

j(ù̂) � j(ù; ù̂, a) � @
2l (ù; ù̂, a)

@ù@ùT
:

In general, the p� formula provides a very good approximation to p. For transformation

models, p� is generally exact. For (m, d) exponential models that are not transformation

models, it is known that p� typically has relative error of order O(nÿ3=2) on normal

deviation regions, provided that a is ancillary to order O(nÿ1); see Barndorff-Nielsen (1983)

and Barndorff-Nielsen and Cox (1994). A detailed discussion of the accuracy of p� in

exponential models with d � m is given by Barndorff-Nielsen and Cox (1979).

However, for d , m, there are no clear results in the literature on the accuracy of p� in

large deviation regions. This question is addressed in Theorem 3.1 below.

2.3. The r� formula

We shall view ù � (ø, ÷) as consisting of a scalar parameter of interest, ø, and a vector, ÷,

of d ÿ 1 nuisance parameters. We write ÷̂ø for the partial maximum likelihood estimator of ÷
when ø is prescribed and held ®xed. The directed, or signed, likelihood is de®ned by

rø � sign (ø̂ÿ ø)[2fl (ù̂)ÿ l (ù̂ø)g]1=2, (2:6)

where ù̂ø � (ø, ÷̂ø), and the modi®ed directed likelihood r�ø is de®ned by

r�ø � rø � rÿ1
ø log (uø=rø), (2:7)

where
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uø � j[l ÷;ù̂(ù̂ø) l ;ù̂(ù̂)ÿ l ;ù̂(ù̂ø)]j=fj j÷÷(ù̂ø)i j(ù̂)jg1=2 (2:8)

and [.] is a partitioned matrix whose last column is given by

l ;ù̂(ù) � l ;ù̂(ù; ù̂, a) � @l (ù; ù̂, a)

@ù̂q
; q � 1, . . . , d

� �
,

and the d 3 (d ÿ 1) submatrix consisting of the ®rst d ÿ 1 columns is given by

l ÷;ù̂(ù) � l ÷;ù̂(ù; ù̂, a) � @2l (ù; ù̂, a)

@÷s@ù̂q
; q � 1, . . . , d; s � 1, . . . , d ÿ 1

 !
:

An important point here is that a is held ®xed while the sample space differentiation @=@ù̂ is

performed. Note that, apart from in (m, m) exponential models, it is essential to specify a if

we are to calculate uø in (2.8). For further details of the notation used in (2.8), see Barndorff-

Nielsen (1991) and Barndorff-Nielsen and Cox (1994).

2.4. Directed likelihood ancillaries

A procedure for constructing asymptotically normal ancillaries in (m, d) exponential models

will now be described. This type of construction was suggested in Barndorff-Nielsen (1986);

see also Barndorff-Nielsen and Cox (1994, p. 235).

As before, let è be the canonical parameter of the ambient (m, m) exponential model.

Consider an alternative parametrization (ù, ç) of the ambient model, where ù has

dimension d, ç has dimension k and m � d � k. For convenience, we write è � è(ù, ç).

The idea is to choose the parameter ç so that, for some ®xed ç(0), the constraint ç � ç(0)

determines M Ù, the (m, d) exponential model under study. As before, we assume that

ù � (ø, ÷), where ø is the scalar parameter of interest, and ÷ is a nuisance parameter

vector of dimension d ÿ 1. Our aim is to conduct inference for ø under M Ù, the model

determined by the constraint ç � ç(0), treating ÷ as a nuisance parameter vector. To

construct r�ø in (2.7), we need to specify an ancillary of dimension k which is kept ®xed

while the sample space differentiations in uø are performed. We now explain how to

construct two, mutually related, k-dimensional approximate ancillaries, a� and ao, based on

directed likelihoods.

Consider the following sequence of hypotheses involving ç � (ç1, . . . , çk) and ç(0) �
(ç1

(0), . . . , çk
(0)).

H0 : ù unspeci®ed, ç � ç(0).
Hj : ù unspeci®ed, ç1, . . . , ç j unspeci®ed,

ç j�1 � ç j�1
(0) , . . . , çk � çk

(0), 1 < j < k ÿ 1:

Hk : ù unspeci®ed, ç unspeci®ed.

40 O.E. Barndorff-Nielsen and A.T.A. Wood



Observe that H0 � H1 � . . .� H k , the dimension of Hj is d � j, and Hk corresponds to the

ambient (m, m) exponential model.

The log-likelihood l (ù, ç) for the ambient prime exponential model may be written

l (ù, ç) � l (ù, ç; ç̂(k), ù̂(k)) � n[èT(ù, ç)=èKfè(ù̂(k), ç̂(k))g ÿ Kfè(ù, ç)g], (2:9)

where =èK is the è-gradient of K and (ù̂( j), ç̂( j)) is the maximum likelihood estimator of

(ù, ç) under hypothesis Hj. The corresponding directed likelihoods are given by

r j � sign (ç̂ j
( j) ÿ ç j

(0))[2fl (ù̂( j), ç̂( j))ÿ l (ù̂( jÿ1), ç̂( jÿ1))g]1=2, 1 < j < k: (2:10)

We now de®ne a sequence u1, . . . , uk in reverse order, using (2.8) repeatedly, as follows.

Step 1. Calculate uk in (2.8) in the usual way, treating çk as the interest parameter and
(ù, ç1, . . . , çkÿ1) as the nuisance parameter vector of length d � k ÿ 1. In this case
there is no ancillary a. Then put r�k � rk � rÿ1

k log (uk=rk), with rk given in (2.10).
Step 2. For each j � k ÿ 1, k ÿ 2, . . . , 1, calculate u j treating (ù, ç1, . . . , ç jÿ1) as

the nuisance parameter vector, ç j as the interest parameter, and keeping r�j�1, . . . , r�k
®xed in the sample space differentiations; i.e. a � (r�j�1, . . . , r�k ) in (2.8). Then put
r�j � r j � rÿ1

j log (u j=r j).

Then the modi®ed directed likelihood ancillary is de®ned by

a� � (r�1 , . . . , r�k ), (2:11)

and the corresponding ancillary based directly on the sequence of unmodi®ed directed

likelihoods is given by

ao � (r1, . . . , rk), (2:12)

where the presence of a bar indicates multiplication by nÿ1=2.

Under the hypothesis H0: ù unspeci®ed, ç � ç(0), where the constraint ç � ç(0)

determines the model M Ù, both a� and ao are asymptotically multivariate normal with

an Nk(0, I) distribution, where I is the k 3 k identity matrix. However, in normal deviation

regions, a� is typically standard normal to order O(nÿ3=2), whereas ao is only standard

normal to order O(nÿ1=2).

Observe that the ancillaries a� and ao are not invariant with respect to the choice of the

sequence of hypotheses H1 � . . .� H k .

We now digress brie¯y to explain the reason for introducing the bar in quantities such as

a� and r
�
ø. Recall that the bar indicated multiplication by nÿ1=2 so that, for example,

a� � nÿ1=2a� and r�ø � nÿ1=2 r�ø. Consider the curved exponential log-likelihood l (ù, ç0;

ç̂(k), ù̂(k)) de®ned in (2.9). Note that (ù̂(k), ç̂(k)) is a minimal suf®cient statistic, since Hk

corresponds to the ambient exponential model.

In the construction of r�ø, based on an ancillary a with an asymptotic Nk(0, I)

distribution, we ®rst transform from (ù̂(k), ç̂(k)) to (ù̂, a), where ù̂ is the maximum

likelihood estimator of ù under hypothesis H0. More explicitly, we may write
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(ù̂(k), ç̂(k)) � g(ù̂, a)

for some function g, where g is one±one for (ù̂, a) at least in a small neighbourhood of

(ù, 0). Then, because of the presence of the factor nÿ1=2 in a � nÿ1=2a, both g and the

inverse mapping gÿ1 have Jacobians whose norms are bounded for (ù̂, a) in a neighbourhood

of (ù, 0). A related point is that n1=2(ù̂ÿ ù) and a are asymptotically normal, whereas

ù̂ÿ ù and a are both O p(nÿ1=2). Thus, when we consider how the log-likelihood and its

derivatives depend on the ancillary, it is appropriate to view them as being functions of a

rather than a, at least in a repeated sampling framework. For related discussion, see

Barndorff-Nielsen (1984, Section 1).

2.5. A class of ®rst-order ancillaries

We now de®ne a class of ®rst-order ancillaries via Properties 2.1 and 2.2 below. A typical

member of this class will be written a � nÿ1=2a.

Property 2.1. For each ù 2MÙ there exists a function g, independent of n, such that

(ù̂, a) � g(t), where t is the canonical statistic and g is smooth and one±one for all t which

lie in a ®xed neighbourhood of ôù, the expectation of t under ù. Note that this assumption

implies that n1=2fa(t)ÿ ág ! Nk(0, Ó) in distribution, where the limiting covariance matrix

Ó has full rank k and á � a(ôù).

Property 2.2. The quantities á and Ó de®ned above do not depend on ù.

Properties 2.1 and 2.2 have several implications which it will be useful to note. First, the

implicit function theorem allows us to view the unmodi®ed directed ancillary ao as a

smooth function of ù̂ and a, at least in a suf®ciently small neighbourhood of the form

iù̂ÿ ù, aÿ ái , ã; we shall emphasize this by writing ao � G(ù̂, a). Second, we may

assume without loss of generality that

ao
q � aq � 1

2!
Gij

q aia j � 1

3!
Gijk

q a ia jak . . .

� aq � H ij
q aia j, (2:13)

where the summation convention has been used, the quantities Gij
q , Gijk

q , . . . are smooth

functions of ù̂ only, and the Hij
q are smooth functions of ù̂ and a.

An important type of ancillary which satis®es the above assumptions is the score

ancillary, which when k � 1 coincides with the Efron±Hinkley ancillary; see the

continuation of Example 2.1 in Section 6 for an example involving the Efron±Hinkley

ancillary, and Barndorff-Nielsen and Cox (1994) for further discussion. However, there are

sensible approximate ancillaries which do not possess the properties indicated above; for

example, the modi®ed directed ancillary does not fall in this class because the

corresponding function g depends on n.

We now discuss an example which we shall return to in Section 6.
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Example 2.1. De®ne Exp (ë) to be the exponential distribution with density ë eÿëx on x . 0,

and let X1, . . . , Xn and Y1, . . . , Yn be independent samples from the Exp (÷) and Exp (ø)

distributions, respectively. We follow Barndorff-Nielsen (1980), Pedersen (1981) and

Barndorff-Nielsen and Cox (1994, p. 229) and consider the (2,1) exponential model

de®ned by imposing the constraint ÷ø eø � 1, and viewing ÷ as a function of ø. The log-

likelihood in the curved model is given by

l (ø; x, y) � ÿnf÷(ø)x� øyg,
where

x � nÿ1
Xn

i�1

xi, y � nÿ1
Xn

i�1

(yi � 1),

and the maximum likelihood estimator ø̂ in this submodel is the unique solution of

eø(1� øÿ1) � y=x: (2:14)

The Efron±Hinkley ancillary is de®ned by ã̂ÿ1(̂ j=̂iÿ 1), where i and j are the expected

and observed information and ã is the Efron curvature in the (2,1) submodel, and the hat

indicates evaluation of these quantities at the maximum likelihood estimator ø̂, the solution

of (2.14).

As in the above references, we de®ne the functions Ø�(ø) � f1� (1� ø)�2gÿ1=2 and

write Ø̂� for Ø�(ø̂). Direct calculation shows that the Efron±Hinkley ancillary is given by

a � (yÿ 1ÿ ø̂ÿ1)ø̂Ø̂ÿ (2:15)

and the (unmodi®ed) directed likelihood ancillary, ao, is given by

1
2
(ao)2 � (Ø̂� � Ø̂ÿ)aÿ log (1� Ø̂�a)ÿ log (1� Ø̂ÿa), (2:16)

where ao � ao(ø̂, a) is chosen to have the same sign as a.

3. Main results

Before going on to present our main results, we state two key assumptions.

Assumption 3.1 Preliminaries. The ambient model M is a prime (m, m) exponential

model. The parametrization (ù, ç) is smooth in the sense that (ù, ç) may be viewed as a

one±one function of the canonical parameter è with continuous partial derivatives up to and

including those of the sixth order. The submodel obtained by ®xing ç at some prescribed

value is written M Ù; the dependence on ç will be suppressed in our notation.

Assumption 3.2 Integrability of the characteristic function. For some è 2 È0, there exists a

í � í(è) . 0 such that �
ô2R m

jîè(ô)jv(è) dô,1, (3:1)
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where îè(ô) � exp fK(è� iô)ÿ K(è)g is the characteristic function of the distribution with

density (2.3) when the sample size, n, equals 1.

One consequence of Assumption 3.2 is the following: for each è 2 È0 there exists an

integer n0 � n0(è) such that, when n > n0, the distribution of the canonical statistic t is

absolutely continuous with respect to Lebesgue measure on Rm; see Lemma 5.3 below.

Assumptions 3.1 and 3.2 are very mild smoothness requirements, appropriate for

continuous models. It would be desirable to formulate, as far as possible, appropriate

conditions for the purely discrete and `mixed' cases, in which the densities are absolutely

continuous with respect to counting measure, or a product of counting and Lebesgue

measure, respectively.

The main results of the paper are now presented. Recall, from Section 2, that r�ø is the

modi®ed directed likelihood and rø the unmodi®ed directed likelihood; and that a� is the

modi®ed directed likelihood ancillary and ao the unmodi®ed directed likelihood ancillary,

both based on a ®xed sequence of hypotheses H1 �. . .� H k . We shall also denote by a a

typical member of the class of ®rst-order ancillaries de®ned in Section 2.5.

To determine r�ø � rø � rÿ1
ø log (uø=rø), it is necessary to calculate sample space

derivatives to obtain uø; see (2.8). In Theorem 3.3 below, we consider two alternative ways

of calculating these sample space derivatives: (i) keeping a� ®xed (i.e. taking a � a� in

(2.8)); (ii) keeping ao ®xed. We shall write the corresponding modi®ed directed likelihoods

as r�ø and ro
ø respectively.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, in some large deviation

region,

p(ù̂; ùja�) � p�(ù̂; ùja�)f1� O(nÿ1 iù̂ÿ ùi)� O(nÿ2)g (3:2)

and

p(ù̂; ùjao) � p�(ù̂; ùjao)f1� O(iao i)O(iù̂ÿ ùi)� O(nÿ1 iù̂ÿ ùi)� O(nÿ2)g: (3:3)

Now consider a ®rst-order ancillary a which satis®es Properties 2.1 and 2.2 given in

Section 2.5. Then, for ù̂ in some large deviation region and a in some normal deviation

region,

0 , Aÿ1 , lim inf
n!1

p�(ù̂; ùja)

p(ù̂; ùja)
< lim sup

n!1
p�(ù̂; ùja)

p(ù̂; ùja)
, A, (3:4)

where A 2 (0, 1) is a constant.

Theorem 3.2. If Assumptions 3.1 and 3.2 hold, then

Pù(r�ø . yja�) � f1ÿÖ(y)gf1� O(nÿ3=2 y)� O(nÿ3=2)g, (3:5)

where the error terms are uniform for y 2 (y0, n1=2ä). Here, y0 2 (ÿ1, 1) is ®xed but

arbitrary and ä. 0 is suf®ciently small.
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Remark 3.1. In order to simplify the statements of Theorems 3.1, 3.2 and Corollary 3.4

below, we have left a certain technical detail implicit: that we only allow the canonical

statistic t to range over a bounded open set which contains the true expected value of t. This

detail may seem insigni®cant from a practical point of view (and, theoretically, the

probability that t lies outside any such set is exponentially small). However, to obtain fully

rigorous results in useful generality, it does appear that one needs to invoke a condition of

this kind. The key problems are rigorous justi®cation, in general settings, of (i) Laplace's

approximation and (ii) conditional Temme (1982) tail-area approximations. Both (i) and (ii)

can be justi®ed in broad generality when t ranges over a bounded open set; but without this

restriction on t, the technical dif®culties seem to be intractable. In the proofs of Theorems 3.1

and 3.2 below, we do take explicit account of the need to restrict t to a bounded set; more

detailed discussion is given in Barndorff-Nielsen and Wood (1995).

Remark 3.2. In Theorem 3.1, it is assumed that the constant c in (2.4) is calculated in a

speci®c way:

c � Lap1

�
Rd

j ĵ j1=2 exp fl (ù)ÿ l (ù̂)g dù̂

� �ÿ1

,

where Lap1 denotes a two-term Laplace approximation to the integral and is explained in

more detail in Section 4.

Remark 3.3. In (m, m) exponential models there is no need for an ancillary because ù̂ is

minimal suf®cient for ù. In this case, all reference to ancillaries should be omitted in the

statements of Theorems 3.1 and 3.2, and, in particular, statement (3.4) is redundant.

Remark 3.4. The role of y0 in Theorem 3.2 is purely cosmetic: its purpose is to rule out large

deviations in the lower tail so as to simplify the speci®cation of the error terms in (3.5).

Since by hypothesis y is bounded below, it follows directly from (3.5) that the conditional

probability of the complementary event r�ø < y is given by

Pù(r�ø < y=a�) � Ö(y) 1� Of1ÿÖ(y)gO(nÿ3=2 y� nÿ3=2)
� 	

:

Remark 3.5. Comparison of (3.3) with (3.2) shows that an additional relative error term

O(iao i)O(iù̂ÿ ùi)

has appeared in (3.3), although it should be noted that this term is always zero when m � d

and also in exponential transformation models, as de®ned in Barndorff-Nielsen and Cox

(1994). The additional relative error term in (3.3) is of order O(1) if both ù̂ and ao lie in

large deviation regions, of order O(nÿ1=2) if one lies in a large deviation region and the other

lies in a normal deviation region, and of order O(nÿ1) if both ù̂ and ao lie in normal

deviation regions. Thus, the additional term will typically dominate the relative error in (3.3).
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Remark 3.6. Typically, (3.4), which was anticipated by Skovgaard (1990), fails if a varies

over a large deviation region. See Section 6 for further discussion and an example.

Theorem 3.3. Suppose that Assumption 3.1 holds. Then, in some large deviation region,

r�ø ÿ ro
ø � O(nÿ2):

An important implication of Theorems 3.2 and 3.3 may be summarized in the following

corollary. Let us write r�øobs and ro
øobs for the `observed' values of r�ø and ro

ø based on a

notional sample.

Corollary 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, for any y0 2 (ÿ1, 1) and

some ä. 0, we have

Pù[ro
ø . ro

øobsja�] � f1ÿÖ(ro
øobs)gf1� O(nÿ1 ro

øobs)� O(nÿ3=2)g, (3:6)

where the relative errors are uniformly of the stated order for ro
øobs 2 (y0, n1=2ä).

Proof. Using Theorems 3.2 and 3.3, we obtain

Pù[ro
ø . ro

øobsja�] � Pù[r�ø . ro
øobs � r�ø ÿ ro

øja�]
� Pù[r�ø . ro

øobs � O(nÿ3=2)ja�]
� 1ÿÖfro

øobs � O(nÿ3=2)g]f1� O(nÿ3=2 ro
øobs)� O(nÿ3=2)g

� f1ÿÖ(ro
øobs)gf1� O(nÿ1 ro

øobs)� O(nÿ3=2)g,
as required. u

It is clear that in general ro
øobs, obtained by keeping ao ®xed in the sample space

differentiations, will be substantially easier to calculate than r�øobs, which is obtained by

keeping a� ®xed in the sample space differentiations. The importance of result (3.6) given

in Corollary 3.4 is that, if we work with ro
øobs instead of r�øobs, the resulting inference can

still be interpreted as being conditional on a� rather than ao, and in addition we do not

increase the order of magnitude of the relative error in the standard normal approximation

to the distribution of r�ø.

4. Laplace-spa calculus

The main element in our strategy for proving Theorems 3.1 and 3.2 is a careful analysis of

certain related saddlepoint-style approximations. As mentioned in Section 1, a number of

authors have contributed in the development of saddlepoint-style approximations in recent

years. The main ingredients of these approximations are (i) `classical' saddlepoint

approximations; (ii) smooth nonlinear transformations; and (iii) the use of Laplace's

approximation to obtain approximations to marginal and conditional densities.

On a ®rst impression, there is non-uniqueness in the speci®cation of these approximations,

46 O.E. Barndorff-Nielsen and A.T.A. Wood



due the fact that Laplace's approximation can be implemented in different ways. However, it

turns out that if one wishes the resulting approximations to possess certain desirable

invariance properties, then there is only one way to proceed. In this section, we present

explicit guidelines for the construction of invariant marginal and conditional density

approximations, and the issue of normalization is also addressed. We refer to these

developments as Laplace-spa calculus (where `spa' is an abreviation for `saddlepoint

approximation'). More detailed discussion is given in Barndorff-Nielsen and Wood (1995).

In all applications of Laplace's approximation considered in Section 5, it is always

possible (perhaps after some manipulation) to write the integral to be approximated in a

particular way: speci®cally, in the form�
Rm

D(n)(x) enI(x) dx (4:1)

where D(n) � D0 � nÿ1 D1 � . . ., and the functions I(x), D0(x), D1(x), . . . do not depend on

n.

Let �x be a stationary maximum of I(x). We de®ne the Lap functionals

Lap0

�
, �x .

Dn(x) enI(x) dx � nÿm=2 en�I (2ð)m=2j ÿ ==T�I jÿ1=2 �D0 (4:2)

and

Lap1

�
, �x .

Dn(x) enI(x) dx � nÿm=2 en�I (2ð)m=2j ÿ ==T�I jÿ1=2f�D0 � nÿ1�d1g, (4:3)

where �I � I(�x), �D0 � D0(x̂) and so on. The quantity �d1, which is given explicitly by,

for example, Shun and McCullagh (1995), is a function of �D1, the ®rst and second

derivatives of D0, and the second, third and fourth derivatives of I, all evaluated at x � �x. The

region of integration is written as , �x . to highlight the fact that the calculation of Lap0 and

Lap1 depends only on the behaviour of the functions I(x) and D(n)(x) in a neighbourhood

of �x.

Lap0 and Lap1 give, respectively, the one-term and two-term Laplace approximation to the

integral (4.1). We have used explicit terminology for these widely used approximations partly

because we need to be precise about what we mean by the approximation, and partly to

emphasize that the right-hand sides of (4.2) and (4.3) are well de®ned even when the integral

in (4.1) does not exist. An important consequence of insisting that the integral in (4.1) has

the stated form is that the Lap0 and Lap1 approximations are invariant with respect to smooth

one±one transformations of the form y � g(x) de®ned in a neighbourhood of x � �x. Further

discussion of invariance is given in Barndorff-Nielsen and Wood (1995).

We now move on to saddlepoint approximations to densities. Let t denote the sample

mean of a sum of independent and identically distributed random vectors of dimension m.

Assume that the cumulant generating function, K(è), of a single observation exists in a

neighbourhood of è � 0, and so is analytic there. Denote the mean of t by ì.

The leading term in the saddlepoint expansion for the density of t may be written

pSP
0 (t) � (2ð)ÿm=2 nÿm=2j=è=T

è K(è̂)jÿ1=2 enfK(è̂)ÿè̂T tg
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where =è=T
è K(è̂) denotes the Hessian of K(è) evaluated at è � è̂, and è̂ � è̂(t) is the unique

solution to the saddlepoint equation =èK(è) � t. The saddlepoint approximation based on the

®rst two leading terms in the saddlepoint expansion may be written

pSP
1 (t) � pSP

0 (t)f1� nÿ1Q(t)g (4:4)

where Q is a certain polynomial function of t; see, for example, McCullagh (1987, Chapter

6) where an expression for Q is given.

Now consider transformed variables w � w(t) where w is a smooth, one-to-one function

of t in a neighbourhood of t � ì. The resulting saddlepoint approximations to the density

of w may be written

pSP
i (w) � pSP

i (t)J (t; ù), i � 0, 1,

where J(t; w) is the Jacobian of the transformation from t to w, and t and J are viewed as

functions of w.

Marginal and conditional densities are now considered. More detailed discussion of some

aspects may be found in Jensen (1995, Section 4.1). Write w � (x, y), where x and y are

subvectors of w. Natural de®nitions for saddlepoint-type approximations to the marginal

density of y, and the conditional density of x given y, are, for i � 0, 1,

pSP
i (y) � Lapi

�
, �xy .

pSP
i (x, y)dx

pSP
i (xjy) � pSP

i (x, y)=pSP
i (y),

(4:5)

where �xy is the locally unique maximizer of the exponent K(è̂)ÿ è̂T t, viewed as a

function of x and y with y ®xed. Strictly speaking, we should use a notation which

indicates that pSP
i (y) and pSP

i (xjy) have been obtained using Laplace's approximation;

however, the expressions given are notationally convenient and should not cause confusion.

It follows easily from the above de®nitions, and from basic properties of Laplace's

approximation, that

pSP
1 (y) � pSP

0 (y)f1� nÿ1Q1(y)� O(nÿ2)g (4:6)

and

pSP
1 (xjy) � pSP

0 (xjy)f1� nÿ1Q2(xjy)� O(nÿ2)g, (4:7)

where Q1 and Q2 are smooth functions of their respective arguments.

Finally, we de®ne the normalized saddlepoint approximations

pNSP
0 (y) � pSP

0 (y)=Lap1

�
, �y .

pSP
0 (y) dy

and

pNSP
0 (xjy) � pSP

0 (xjy)=Lap1

�
, �xy .

pSP
0 (xjy) dx:

The motivation for normalization is the following:
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pSP
1 (y) � pNSP

0 (y)f1� O(nÿ1 i yÿ �yi)� O(nÿ2)g (4:8)

and

pSP
1 (xjy) � pNSP

0 (xjy)f1� O(nÿ1 ixÿ �xy i)� O(nÿ2)g, (4:9)

i.e. pNSP
0 is a better approximation to pSP

1 than is pSP
0 ; compare (4.8) with (4.6) and (4.9) with

(4.7). The possibility of normalizing via Laplace's approximation was suggested by

Skovgaard (1985, Remark 4.11). Detailed derivations of (4.8) and (4.9) are given in

Barndorff-Nielsen and Wood (1995, Section 3.3).

The development in this section only requires that the cumulant generating function, K,

exists in a neighbourhood of the origin, and that the transformation w � w(t) be smooth

and one±one for t in a neighbourhood of ì � =èK(0). Thus, the accuracy of the

normalized saddlepoint approximation pNSP
0 is governed only by the accuracy of pSP

1 .

5. Proofs

5.1. Preliminary lemmas

Our ®rst result concerns the difference r�ø ÿ rø. Observe that on sets of the form (rø, a�,
÷̂ø ÿ ÷) 2 Bã with ã. 0 suf®ciently small, we may view r�ø as a function of rø, ÷̂ø and a�.
However, r�ø and a� and uø, but not rø and ÷̂ø, will depend on n, as noted in Section 2.5.

Lemma 5.1. If Assumption 3.1 holds, then there exists a ã � ã(ù) . 0 such that

r�ø ÿ rø � nÿ1S0(r�ø, a�, ÷̂ø)� O(nÿ2), (5:1)

where the O(nÿ2) term is uniformly of that order for (r�ø, a�, ÷̂ø ÿ ÷) 2 Bã. Moreover S0,

which may be chosen to be independent of n, is a smooth function on Bã.

Proof. It follows from the de®nition of uø in (2.8), and Assumption 3.1, that we may view uø

as a function of rø, a� and ÷̂ø. Note that uø also depends on n, since uø depends on a� and

a� depends on n. However, Taylor expansion of uø about rø � 0, keeping ÷̂ø and a� ®xed,

shows that we may write

uø � rø � r2
øQ1(÷̂ø, a�)� r3

øQ2(÷̂ø, a�)� O(r 4
ø)� O(nÿ1 r2

ø), (5:2)

where the functions Q1 and Q2 do not depend on n. Note that the dependence of uø on n has

been absorbed into the O(nÿ1 r2
ø) remainder term in (5.2). Consequently,

rÿ1
ø uø ÿ 1 � røQ1(÷̂ø, a�)� r2

øQ2(÷̂ø, a�)� O(r3
ø)� O(nÿ1 rø) (5:3)

and

rÿ1
ø (rÿ1

ø uø ÿ 1) � Q1(÷̂ø, a�)� røQ2(÷̂ø, a�)� O(r2
ø)� O(nÿ1), (5:4)

where the two remainder terms are smooth functions of rø, ÷̂ø and a�, and uniformly of the

stated order, for i rø, a�, ÷̂ø ÿ ÷i suf®ciently small.
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It follows that there exists a function S0, independent of n, such that

S0(rø, a�, ÷̂ø) � rÿ1
ø log (uø=rø)� O(nÿ1)

� rÿ1
ø log f1� (rÿ1

ø uø ÿ 1)g � O(nÿ1)

� rÿ1
ø (rÿ1

ø uø ÿ 1)g(rÿ1
ø uø ÿ 1)� O(nÿ1) (5:5)

where, for any ë 2 (0, 1), g(x) � xÿ1 log (1� x) is analytic for jxj < 1ÿ ë. In view of (5.2)±

(5.5), S0 is smooth for (rø, a�, ÷̂ø ÿ ÷) 2 B2ã when ã. 0 is suf®ciently small. Since

r�ø ÿ rø � nÿ1S0(rø, a�, ÷̂ø)� O(nÿ2),

it follows that jr�ø ÿ røj � O(nÿ1) uniformly on B2ã ; therefore, for (r�ø, a�, ÷̂ø ÿ ÷) 2 Bã we

may replace rø by r�ø in S0 with uniform O(nÿ2) error; hence (5.1) is valid.

Lemma 5.2. Suppose that Assumption 3.1 holds. Then

py(r�ø, ÷̂ø; ùja�) � ö(r�ø) py(÷̂ø; ÷jr�ø, a�)J (r�ø, a�, ÷̂ø) (5:6)

where

J � J (r�ø, a�, ÷̂ø) � e(r�øÿrø)2=2j@ r�ø(rø, a�, ÷̂ø)=@ røjÿ1

� 1� nÿ1S1(r�ø, a�, ÷̂ø)� O(nÿ2) (5:7)

uniformly for (r�ø, a�, ÷̂ø ÿ ÷) 2 Bã when ã. 0 is suf®ciently small. Moreover, S1, which

may be chosen to be independent of n, is a smooth function on Bã. Note: py is obtained by

choosing c � (2ð)ÿd=2 in (2.4).

Proof. We ®rst establish identity (5.6). From formulae (2.7) and (3.3) of Barndorff-Nielsen

(1991) it follows that

j(ø̂, ÷̂)=(rø,÷̂ø)j � røuÿ1
ø j j÷÷(ù̂ø)j1=2j j(ù̂)jÿ1=2,

where jø̂, ÷̂)=(rø ,÷̂ø)j is the determinant of the Jacobian of the transformation from (ø̂, ÷̂) to

(rø, ÷̂ø). Therefore the determinant of the Jacobian of the transformation from (ø̂, ÷̂) to

( r̂�ø, ÷̂ø) is given by

røuÿ1
ø j j÷÷(ù̂ø)j1=2j j(ù̂)jÿ1=2j@ rø(rø, a�, ÷̂ø)=@ røjÿ1:

Writing ĵ j÷÷j and ĵ jj for j j÷÷(ù̂ø) and j j(ù̂)j, respectively, we obtain

py(r�ø, ÷̂ø; ùja�) � røuÿ1
ø ĵ j÷÷j1=2 ĵ jjÿ1=2j@ r�ø=@ røjÿ1 py(ù̂; ùja�)

� røuÿ1
ø ĵ j÷÷j1=2 ĵ jjÿ1=2j@ r�ø=@ røjÿ1(2ð)ÿd=2 ĵ jj1=2 el (ù)ÿl (ù̂ø)ÿr2

ø=2

� røuÿ1
ø j@ r�ø=@ røjÿ1ö(rø) py(÷̂ø; ùjr�ø, a�)

� ö(r�ø) py(÷̂ø; ùjr�, a�) e(r�øÿrø)2=2j@ r�ø=@ røjÿ1

� ö(r�ø) py(÷̂ø; ùjr�, a�)J (r�ø, a�, ÷̂ø),

say. Using Lemma 5.1 we have
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@ r�ø(rø, a�, ÷̂ø)=@ rø � 1� nÿ1@S0(rø, a�, ÷̂ø)=@ rø

� 1� nÿ1@S0(r�ø, a�, ÷̂ø)=@ r � O(nÿ2) (5:8)

and

e(r�ø ÿrø)2=2 � 1� nÿ1S2
0(r�ø, a�, ÷̂ø)=2� O(nÿ2): (5:9)

Thus (5.7) follows directly from Lemma 5.1, (5.8) and (5.9). u

Lemma 5.3. Suppose that Assumptions 3.1 and 3.2 hold and let a? denote one of a�, ao or a.

Then there exists a ã � ã(ù) . 0 such that

p(ù̂, a?; ù) � pSP
1 (ù̂, a?; ù)f1� O(nÿ2)g

where the O(nÿ2) term is uniform for (ù̂ÿ ù, a?) 2 Bã.

Proof. A convenient reference is Jensen (1995); see, in particular, Lemmas 2.3.4 and 2.3.5

given there. u

Lemma 5.4. Let a�, ao be as de®ned in (2.11) and (2.12), and let us view ao as a function of

ù̂ and a�, and write ao � h(ù̂, a�). If Assumption 3.1 holds then there exists a ã � ã(ù) . 0

such that ia� ÿ ao i � O(nÿ1), where the O(nÿ1) error is uniform for (ù̂ÿ ù, a�) 2 Bã.

Moreover, if g (not depending on n) is a differentiable function of ù̂ and ao, and if we de®ne

f (ù̂, a�) � gfù̂, h(ù̂, a�)g for (ù̂ÿ ù, a�) 2 Bã,

then

@ f

@ù̂
� @ g

@ù̂
� nÿ1G,

where the quantity G � G(ù̂, a�) has dimension d and satis®es iGi � O(1) uniformly for

(ù̂ÿ ù, a�) 2 Bã. The functions h, f and G (but not g) will depend on n. More speci®cally,

h � h0 � nÿ1 h1 � O(nÿ2), where h0 and h1 do not depend on n, with similar formulae for f

and G.

Proof. The ®rst part of the lemma follows from k � mÿ d applications of Lemma 5.1.

Write ao � a� � nÿ1 A, where i Ai � O(1) uniformly for (ù̂ÿ ù, a�) 2 Bã. Interpreting

ù̂, ao, a� and A as row vectors and differentiating, we obtain

@ f

@ù̂
� @ g

@ù̂
� @ g

@ao

@(ao)T

@ù̂

� @ g

@ù̂
� @ g

@ao
nÿ1 @AT

@ù̂
� @(a�)T

@ù̂

� �
� @ g

@ù̂
� @ g

@ao
nÿ1 @AT

@ù̂
� 0

� �
� @ g

@ù̂
� nÿ1G, where G � @ g

@ao

@AT

@ù̂
:
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The statement that iGi � O(1) uniformly for (ù̂ÿ ù, a�) 2 Bã follows since G � G(ù̂, a�)
is a continuous function of its arguments. u

5.2. Proof of Theorem 3.1

As noted in Remark 3.1, we shall assume that t varies over a ®xed bounded open set which

contains the expected value, ì of t. To be speci®c, and without loss of generality, we shall

assume that this bounded set is of the form

Îã � ft: i t ÿ ìi , ãg,
where ã. 0 is suitably small. There is no reason, other than convenience, for choosing Îã to

be a ball; other types of set could equally well be used. A convenient way to incorporate the

restriction on t is to condition on the event t 2 Îã: We will follow this approach, and it

should be understood that, strictly speaking, we are approximating the density p(ù̂;

ùja?, t 2 Îã) rather than the density p(ù̂; ùja?) in Theorem 3.1.

The preliminary step in the proof is to establish that under Assumptions 3.1 and 3.2,

p(ù̂; ùja?, t 2 Îã) � pNSP
0 (ù̂; ùja?)f1� O(nÿ1 iù̂ÿ ùi)� O(nÿ2)g

uniformly for iù̂ÿ ù, a? i , ã1, with ã and ã1 suf®ciently small. Viewing ù̂ and a? as

functions of the canonical statistic t, we de®ne the sets

Dã � f(ù̂(t), a?(t)): t 2 Îãg, Eã � fa?(t): t 2 Îãg
and, for each a? 2 Eã,

Fã(a?) � fù̂: (ù̂, a?) 2 Dãg:
Then

p(ù̂; ùja?, t 2 Îã) � p(ù̂, a?)�
Fã(a?) p(ù̂, a?; ù) dù̂

� pSP
1 (ù̂, a?; ù)f1� O(nÿ2)g

f1� O(nÿ2)g Lap1

�
Fã(a?) p(ù̂, a?; ù) dù̂

� pSP
1 (ù̂; a?; ù)f1� O(nÿ2)g

Lap1

�
Fã(a?) pSP

1 (ù̂, a?; ù)f1� O(nÿ2)g dù̂)

� pSP
1 (ù̂, a?; ù)f1� O(nÿ2)g
pSP

1 (a?; ù)f1� O(nÿ2)g

� pSP
1 (ù̂; ùja?)f1� O(nÿ2)g

� pNSP
0 (ù̂; ùja?)f1� O(nÿ1 iù̂ÿ ùi)� O(nÿ2)g, (5:10)

as required.
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The argument leading to (5.10) requires some further explanation. When ã and ã1 are

suf®ciently small, Assumption 3.1 implies the following: for each a? 2 Dã, Fã(a?) is a

bounded, open, connected subset of Rd with a smooth boundary. Consequently, the ®rst

equality leading to (5.10) is legitimate. The second equality follows from an application of

Lemma 5.3 to the numerator; and the Lap1 approximation to the integral in the denominator

can be justi®ed rigorously since the region of integration is a bounded set; see, for example,

Jensen (1995a, Theorem 3.1.3). The third equality follows from another application of

Lemma 5.3, while the fourth and ®fth steps follow from de®nitions given in Section 4. The

®nal line follows from (4.9).

The remainder of the proof is divided into three parts, corresponding to statements (3.2),

(3.3) and (3.4).

Proof of (3.2). Using Lemma 5.2 repeatedly (k � mÿ d times, to be precise) we have

py(ù̂, a�; ù) � py(ù̂; ùja�)
Yk

q�1

Jq

8<:
9=; Yk

q�1

ö(a�q )

8<:
9=; (5:11)

where J1 . . . , Jk are the versions of the factor J de®ned in (5.7) corresponding to the

hypotheses H1 � . . .� H k speci®ed in Section 2.4. Write D1 �
Qk

q�1 Jq. Repeated

application of Lemma 5.2 also tells us that

D1 � D1(ù̂, a�) � 1� nÿ1S2(ù̂, a�)� O(nÿ2) (5:12)

uniformly for (a�, ù̂ÿ ù) 2 Bã for suf®ciently small ã. 0. But, in view of the fact that

pSP
0 (ù̂, a�; ù) � py(ù̂, a�; ù), we also have

pSP
0 (ù̂, a�; ù) � D1(ù̂, a�) py(ù̂; ùja�)

Yk

q�1

ö(a�q )

8<:
9=;:

In view of (5.12), we have

Lap0

�
py(ù̂; ùja�)D1(ù̂, a�) dù̂ � 1:

The above result is precisely 1 because our de®nition of Lap0, given in Section 4, is such that

all O(nÿ1) and higher-order terms are excluded. Consequently, the pSP
0 (a�; ù) approximation

to the marginal density p(a�; ù) is given by

pSP
0 (a�; ù) �

Yk

q�1

ö(a�q ),

and the pSP
0 approximation to the conditional distribution p(ù̂; ùja�) is given by

pSP
0 (ù̂; ùja�) � pSP

0 (ù̂, a�; ù)

pSP
0 (a�; ù)

� py(ù̂; ùja�)D1(ù̂, a�): (5:13)

Write ~cSP
ù for the Lap1-normalizing factor for pSP

0 (ù̂; ùja�) and let ~cù denote the Lap1-
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normalizing factor for py(ù̂; ùja�). The relationship between ~cSP
ù and ~cù is obtained by

application of the Lap1 approximation to the integral over ù̂ of (5.13), and is given by

f~cSP
ù gÿ1 �~cÿ1

ù � nÿ1S2(ù, a�)
�~cÿ1

ù D1(ù, a�)f1� O(nÿ1)g, (5:14)

where S2 and D1 are the functions de®ned in (5.12), and we used the fact that

~cù � 1� nÿ1Cù for some Cù. Since (5.12) implies that

D1(ù̂, a�)=D1(ù; a�) � 1� O(nÿ1 iù̂ÿ ùi),

it follows from (5.13) and (5.14) that

pNSP
0 (ù̂; ùja�) � ~cSP

ù pSP
0 (ù̂; ùja�)

� ~cùDÿ1
1 (ù, a�)f1� nÿ1 R(a�)gÿ1f1� O(nÿ2)g

3 py(ù̂; ùja�)D1(ù̂, a�)f1� nÿ1 R(a�)g

� p�(ù̂; ùja�)f1� O(nÿ1 iù̂ÿ ùi)� O(nÿ2)g, (5:15)

where pNSP
0 (ù̂; ùja�) and p�(ù̂; ùja�) are the Lap1-normalized versions of pSP

0 (ù̂; ùja�)
and py(ù̂; ùja�), respectively.

Conclusion (3.2) follows directly from (5.10), with a? � a�, and (5.15).

Proof of (3.3). Since the argument leading to (3.3) is a straightforward modi®cation of the

argument leading to (3.2), we only give brief details.

The analogue of (5.11) is

py(ù̂, ao; ù) � py(ù̂; ùjao)D2(ù̂; ao)
Yk

q�1

ö(ao
q)

8<:
9=;,

where

D2 �
Yk

q�1

ao
j

u j

,

in which the quantities ao
j are the unmodi®ed directed likelihoods de®ned in Section 2.4, but

the uo
j are calculated keeping the ao

j , rather than the a�j , ®xed in the required sample space

differentiations. Following the reasoning in the proof of (3.2), we obtain

pNSP
0 (ù̂; ùjao) � p�(ù̂; ùjao)

D2(ù̂, ao)

D2(ù; ao)
: (5:16)

The form of expansion (5.2) implies that

D2(ù̂, ao) � D2(ù; ao)f1� O(iao i)O(iù̂ÿ ùi)g: (5:17)

Then (3.3) is obtained by combining (5.10) with a? � ao, (5.16) and (5.17).
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Proof of (3.4). To establish (3.4), it will be suf®cient to compare pSP
0 (ù̂; ùja) and py(ù̂; ùja)

in a region of the form

fiù̂ÿ ùi , ã, iai , nÿ1=2Cg, (5:18)

with ã. 0 suf®ciently small and C . 0 arbitrary. The desired conclusion will then follow an

application of (5.10) with a? � a. The ®rst point to note is that we only need to study the

exponents l ÿ l̂ and n(mÿ �m) in, respectively,

py(ù̂; ùja) � (2ð)ÿd ĵ jj1=2 el ÿl̂ and pSP
0 (ù̂; ùja) � (2ð)ÿd J en(mÿ �m),

since the factors ĵ jj1=2 and J will be uniformly bounded away from zero and in®nity in a

region of the form (5.18). The quantity m � m(ù̂, a) is de®ned in the next paragraph, and

�m � �m(a) � sup ù̂:iù̂ÿùi , ã m(ù̂, a).

Now consider the parametrization (ù̂, ao) for the ambient (m, m) exponential model,

where ao is an unmodi®ed directed likelihood ancillary for which (2.13) is satis®ed. The

(ù̂, ao) parametrization is smooth and one±one, at least in a region for which

iù̂ÿ ù, ao i , ã with ã. 0 suf®ciently small. De®ne

mo(ù̂, ao) � nÿ1[l (ù, 0; ù̂, ao)ÿ l (ù̂1, ao; ù̂, ao)]

� nÿ1[l (ù, 0; ù̂, ao)ÿ l (ù̂, 0; ù̂, ao)]ÿ 1

2

Xk

q�1

(ao
q)2,

where ù̂ is the maximum likelihood estimate of ù in the d-dimensional submodel M Ù as

before, and ù̂1 � ù̂1(ù̂, ao) is the maximum likelihood estimate of ù in the ambient (m, m)

exponential model. The second line above follows from the de®nition of the unmodi®ed

directed likelihood ancillary ao � (ao
1, . . . , ao

k). Recall from (2.13) that we may view ao as a

function of ù̂ and a, at least for those (ù̂, a) which satisfy iù̂ÿ ù, ai , ã1 with ã1 . 0

suf®ciently small. In such a region we may de®ne

m(ù̂, a) � mofù̂, ao(ù̂, a)g � nÿ1[l (ù, 0; ù̂, ao)ÿ l (ù̂, 0; ù̂, ao)]ÿ 1

2

Xk

q�1

(ao)2,

with ao � ao(ù̂, a). Ignoring terms which are O(nÿ1), and using the de®nition of

pSP
0 (ù̂; ùja) implied by the discussion in Section 4, we have

nÿ1 log
py(ù̂; ùja)g
pSP

0 (ù̂; ùja)

( )
� nÿ1[l (ù, 0; ù̂, ao)ÿ l (ù̂, 0; ù̂, ao)]ÿ m(ù̂, a)� sup

ù̂
m(ù̂, a)

� 1

2

Xk

q�1

(ao
q)2 � sup

ù̂
m(ù̂, a): (5:19)

Now supù̂ m(ù̂, a) � O(nÿ1) in a region of the form (5.18). Therefore, since (2.13)

implies that

1

2

Xk

q�1

(ao
q)2 � 1

2

Xk

q�1

a2
q � O(nÿ3=2)

� O(nÿ1),
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where the error terms are uniformly of the stated order for (ù̂, a) in regions of the form

(5.18), it follows that the absolute value of (5.19) is also uniformly of order O(nÿ1). Hence

the ratio py(ù̂; ùja)=pSP
0 (ù̂; ùja) stays bounded away from zero and in®nity in regions of the

form (5.18), and (3.4) follows. u

5.3. Proof of Theorem 3.2

The set Gã(a�), referred to below, is de®ned analogously to the set Fã(a�) which appears at

the beginning of the proof of Theorem 3.1. Under Assumptions 3.1 and 3.2, we obtain

p(r�ø; ùja�, t 2 Îã) � p(r�ø, a�; ù)�
Gã(a�) p(r�ø, a�; ù) dr�ø

� pSP
1 (r�ø, a�; ù)f1� O(nÿ2(g

f1� O(nÿ2)g Lap1

�
Gã(a�) p(r�ø, a�; ù) dr�ø

� pSP
1 (r�ø, a�; ù)f1� O(nÿ2)g

Lap1

�
Gã(a�) pSP

1 (r�ø, a�; ù)f1� O(nÿ2)g dr�ø

� pSP
1 (r�ø, a�; ù)f1� O(nÿ2)g
pSP

1 (a�; ù)f1� O(nÿ2)g

� pSP
1 (r�ø; ùja�)f1� O(nÿ2)g

� pNSP
0 (r�ø; ùja�)f1� O(nÿ1 r�ø)� O(nÿ2)g: (5:20)

The steps leading to (5.20) are rather similar to the steps leading to (5.10), and the comments

given below (5.10) are also relevant here.

The next step is to show that

pNSP
0 (r�ø; ùja�) � ö(r�ø): (5:21)

Using the argument leading to (5.11), we obtain

pSP
0 (r�ø, a�; ù) � ö(r�ø)

Ymÿd

q�1

ö(a�q)

8<:
9=;

� ö(r�ø) pSP
0 (a�; ù):

Thus pSP
0 (r�ø; ùja�) � ö(r�ø) and, since Lap1

�
f0gö(r�ø) dr�ø � 1, (5.21) follows.

Let z � z(ã, a�) denote the upper end point of the interval Gã(a�) multiplied by n1=2.

Suppose also that y is such that nÿ1=2 y is bounded away from zero, but is `suf®ciently

small'. Then (3.5) is a consequence of the following:

56 O.E. Barndorff-Nielsen and A.T.A. Wood



Pù[r�ø . yja�, t 2 Îã] �
� z

y

p(r�ø; ùja�, t 2 Îã) dr�ø

�
� z

y

pNSP
0 (r�ø; ùja�)f1� O(nÿ1 r�ø)� O(nÿ2)g dr�ø

�
� z

y

ö(r�ø)f1� O(nÿ1 r�ø)� O(nÿ2)g dr�ø

� fÖ(z)ÿÖ(y)gf1� O(nÿ2)g � O nÿ3=2

� z

y

jr�øjö(r�ø) dr�ø
 !

� f1ÿÖ(y)gf1� O(nÿ2)g � fö(y)ÿ ö(z)g3 O(nÿ3=2)

� f1ÿÖ(y)gf1� fM(y)gÿ1O(nÿ3=2)� O(nÿ2)g

� f1ÿÖ(y)gf1� O(nÿ3=2 y)� O(nÿ3=2)g,
since M(y) � f1ÿÖ(y)g=ö(y) is bounded away from zero and in®nity on compact sets, and

is O(yÿ1) as y!1. Note that the second and third lines of the above are consequences of

(5.20) and (5.21), respectively. u

5.4. Proof of Theorem 3.3

The proof of Theorem 3.3 boils down to a careful application of Lemma 5.4. Consider two

alternative representations of the minimal suf®cient statistic (ù̂(k), ç̂(k)): (ù̂, a�) and (ù̂, ao).

As before, ù̂ is the maximum likelihood estimator of ù under the hypothesis H0: ç � ç(0),

and a�, ao are the approximate ancillaries de®ned in (2.11) and (2.12), respectively. Assume

that ù(1) and ù(2) are two values of ù such that

l (ù(2), ç(0); ù̂(k), ç̂(k)) > l (ù(1), ç(0); ù̂(k), ç̂(k)),

and de®ne

R�(ù(1), ù(2)) � R�(ù(1), ù(2); ù̂, a�)
� sign (ù(2)1 ÿ ù(1)1)[2fl (ù(2), ç(0))ÿ l (ù(1), ç(0))g]1=2: (5:22)

Observe that if we put ù(2) � ù̂ and ù1 � ù̂ø, then R� is a directed likelihood. De®ne Ro

in exactly the same way, but as a function of ao rather than a�. Note that the right-hand side

of (5.22) does not depend on the speci®cation of the ancillary, and that

R�(ù(1), ù(2)) � Ro(ù(1), ù(2)) even though they are different functions. Consider also the

`nuisance' scores l �÷ (ù(1)) � l o
÷(ù(1)), viewed as depending on a� and ao, respectively, and

put

í�(ù(1), ù(2); ù̂, a�) � (l �÷(ù(1)), R�(ù(1), ù(2)))
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and

ío(ù(1), ù(2); ù̂, ao) � (l o
÷(ù(1)), Ro(ù(1), ù(2))):

Then

í�(ù(1), ù(2); ù̂, a�) � ío(ù(1), ù(2); ù̂, ao):

Let

H�(ù(1), ù(2)) � H�(ù(1), ù(2); ù̂, a�)
and

H o(ù(1), ù(2)) � H o(ù(1), ù(2); ù̂, ao)

denote the d 3 d matrices of ®rst-order derivatives of í� and ío with respect to ù̂, keeping

respectively a� and ao ®xed. Then it follows from the de®nitions of the quantities concerned

that

u�ø=rø � jH�(ù̂ø, ù̂)j=fj j÷÷(ù̂ø)i j(ù̂)jg1=2 (5:23)

and

uo
ø=rø � jH o(ù̂ø, ù̂)j=fj j÷÷(ù̂ø)i j(ù̂)jg1=2, (5:24)

where u�ø is (2.8) based on a�, and uo
ø is (2.8) based on ao. It follows from (5.23) and (5.24)

that

r�ø ÿ ro
ø � nÿ1 rÿ1

ø flog (u�ø=rø)ÿ log (uo
ø=rø)g

� nÿ1 rÿ1
ø log (u�ø=uo

ø)

� nÿ1 rÿ1
ø log fjH�(ù̂ø, ù̂)j=H o(ù̂ø, ù̂)jg: (5:25)

The theorem will be proved once it has been established that (5.25) is O(nÿ2) uniformly

for (r�ø, a�, ÷̂ø ÿ ÷) 2 B(ã), for some ã. 0. Using Lemma 5.4, noting that repeated

application of Lemma 5.1 implies that ia� ÿ ao i � O(nÿ1), we have

H�(ù̂ø, ù̂) � H o(ù̂ø, ù̂)� nÿ1G(ø)

and

H�(ù̂, ù̂) � H o(ù̂, ù̂)� nÿ1G(ø̂),

where G(ø) � G(ø; ù̂, ao) is O(1). But

H�(ù̂, ù̂) � H o(ù̂, ù̂) � fj j÷÷(ù̂ø)i j(ù̂)jg1=2,

which implies that G(ø̂; ù̂, ao) � 0. Consequently, differentiability implies that each element

of G(ø) is O(jø̂ÿ øj), and therefore

H�(ù̂ø, ù̂) � H o(ù̂ø, ù̂)� nÿ1G(ø)

� H o(ù̂ø, ù̂)fI � nÿ1(øÿ ø̂)G1(ø)g, (5:26)
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where I is the identity matrix, each element of

G1(ø) � (øÿ ø̂)ÿ1fH o(ù̂ø, ù̂)gÿ1G(ø)

is O(1), and we have used the fact that Ho has full rank for (r�ø, ao, ÷̂ø ÿ ÷) 2 B(ã) and

suf®ciently small ã. 0. From (5.26), it follows that

jH�(ù̂ø, ù̂)j
jH o(ù̂ø, ù̂)j � jI � nÿ1(øÿ ø̂)G1(ø)j

� 1� nÿ1(øÿ ø̂ tr fG1(ø)g � Ofnÿ2(øÿ ø̂)2g: (5:27)

The desired conclusion then follows after substituting (5.27) into (5.25), Taylor-expanding the

log, and noting that, as ø! ø̂, rø � (øÿ ø̂)c for some ®xed, non-zero c.

6. Discussion

We conclude this paper with a discussion of the relationship between the results in this paper

and the work of Skovgaard (1990) and Jensen (1992).

Skovgaard (1990) approached the p� approximation from a novel and in some respects

rather illuminating perspective. At the end of that paper he gave a heuristic discussion of

the relative error in p� in large deviation regions when a general approximate ancillary a is

used. His main conclusion was that p� has bounded relative error in a large deviation

region for ù̂ and any normal deviation region for a. His conclusion is con®rmed by our

Theorem 3.1; see (3.4).

However, Skovgaard's (1990) discussion does not allow us to draw clear conclusions

about what happens to the relative error in p� in large deviation regions for the ancillary.

Our ®ndings, given in statements (3.2) and (3.3) of Theorem 3.1, tell us that under

Assumptions 3.1 and 3.2 the relative error in the p� approximation stays bounded in a large

deviation region when either a� or ao is used as the approximate ancillary. This still leaves

open the question of what happens to the relative error of the p� approximation in large

deviation regions for a general approximate ancillary a. We now show that, for any ®rst-

order ancillary a in the class de®ned in Section 2.4, the p� approximation typically (but not

always, and in particular not if a � ao) breaks down when a, rather than ao or a�, is used.

Due to the special cases which can occur, it is a little awkward to specify precise necessary

and suf®cient conditions for p� to break down; for this reason, we shall be content with

giving a simple suf®cient condition.

Consider (5.19) with ao viewed as a function of ù̂ and a. Since supù̂ m(ù̂, a) depends

only on a, it follows from (5.19) that the p�(ù̂; ùja) approximation to p(ù̂; ùja) will have

unbounded relative error in a large deviation region fiù̂ÿ ùi , ã1, iai , ã2g if, for some

®xed a in this region,

sup
ù̂: iù̂ÿùi , ã1

Xk

q�1

(ao
q)2 ÿ inf

ù̂: iù̂ÿùi ,ã1

Xk

q�1

(ao
q)2 > å, (6:1)

for some ®xed number å. 0. In view of (2.13) and the smoothness of the functions
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concerned, a suf®cient condition for (6.1) to occur is the following: for some q 2 f1, . . ., kg
and for some ®xed C 2 (0, 1), �������� @ao

q

@ù̂

��������. Ciai2 (6:2)

for all ù̂ and a which satisfy iù̂ÿ ùi , ã1 and iai , ã2. Further calculations, which we do

not present here, show that under condition (6.2) a suf®cient condition for the p�(ù̂; ùja)

approximation to have unbounded relative error in a region of the form

fiù̂ÿ ùi , nÿä1 C3, iai , nÿä2 C4g (6:3)

is

3ä1 � ä2 , 1: (6:4)

So, to summarize: if (6.2) is satis®ed then the relative error in the p�(ù̂; ùja) approximation

to p(ù̂; ùja) does not stay bounded in regions of the type indicated by (6.3) and (6.4).

Example 2.1 (continued). We now given an example in which (6.2) is satis®ed by the Efron±

Hinkley ancillary. Taylor expansion of (2.16) gives

1
2
(ao)2 � 1

2
a2 ÿ 1

3
a3(Ø̂3

� � Ø̂3
ÿ)� O(a4),

from which we obtain

ao � aÿ 1
3
a2(Ø̂3

� � Ø̂3
ÿ)� O(a3): (6:5)

Finally, differentiating ao(ø̂, a) with respect to ø̂, we obtain

@ao

@ø̂
� ÿø̂(1� ø̂)Ø̂5

�a2 � O(a3)

which establishes condition (6.2), since ø̂ and Ø̂� are both positive.

Pedersen (1981) compared the Efron±Hinkley ancillary, a in (2.15), and the unmodi®ed

directed likelihood ancillary, ao in (2.16), in a detailed numerical study. His main ®nding

was that ao is clearly superior to a in this example, and he reported that ao `is almost

exactly distribution constant, and has more stable conditional likelihood functions'. The

results in this paper provide clear theoretical insight into Pedersen's empirical ®ndings.

We now discuss what happens in Corollary 3.4 if a general approximate ancillary a,

rather than a� or ao, is used. Once again, it is awkward to state precise conditions because

of the special cases which arise. However, suppose that a satis®es

iao ÿ ai � O(iai2)

uniformly on suf®ciently small large deviation regions, as is generally the case for the Efron±

Hinkley or score ancillary; see (2.13) and, for example, (6.5). Let ra denote the modi®ed

directed likelihood obtained by keeping a, rather than a� or ao, ®xed in the required sample

space differentiations. A reworking of Lemma 5.4 and Theorem 3.3 under Assumptions 3.1

and 3.2 and condition (6.2) shows that the analogue of Corollary 3.4 will `typically' be
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Pù[r�ø . ra
øobsja� t 2 Îã] � Pù[ra

øobsja�, t 2 Îã]

3 f1� O(iai2 ra
øobs)� O(nÿ1 ra

øobs)� O(nÿ3=2)g
� f1ÿÖ(ra

øobs)g
3 f1� O(iai2 ra

øobs)� O(nÿ1 ra
øobs)� O(nÿ3=2)g:

Thus the relative error is typically dominated by the term of order O(iai2 ra
ø) on suf®ciently

small large deviation regions.

We now consider the relationship between the ®ndings of this paper and those of Jensen

(1992). His main result, stated in our notation, is that in curved exponential models

Pù(r�ø . r�øobsjao, t 2 Îã) � f1ÿÖ(r�øobs)gf1� O(nÿ1r�øobs)� O(nÿ3=2)g, (6:6)

where we have written r�ø for Jensen's (1992) modi®cation of the directed likelihood. In

general, r�ø will be different to r�ø and ro
ø. Jensen (1995) shows that they are different in

Example 2.1 above.

From a theoretical point of view the standard normal approximation to the distributions

of r�ø, ro
ø and r�ø will have similar accuracy in both normal and large deviation regions;

compare (3.5), (3.6) and (6.6). Moreover, to establish the validity of (6.6) in settings where

conditioning on an ancillary takes place, Jensen's (1992) approach also requires the

introduction of a conditioning set Îã. (Note: we are not claiming that the introduction of Îã

is necessary in a strictly logical sense, but without it there does not seem to be any prospect

of providing fully rigorous justi®cation of either (6.6) or our results stated in Section 3.)

The main difference between the approaches is that in (3.5) and (3.6) the conditioning

statistic is a�, whereas in (6.6) it is ao. Since a� is ancillary to order O(nÿ3=2) on normal

deviation regions and to order O(nÿ1) on large deviation regions, while ao is only ancillary

in a somewhat weaker sense, it follows that conditioning on a� may be more satisfactory

from the perspective of conditional inference. From the point of view of computation, ro
ø

and r�ø seem to be of roughly the same order of dif®culty.

Finally, we mention two very recent papers which have points of contact with this paper.

Skovgaard (1996) introduces a new approximation to the modi®ed directed likelihood, the

signi®cant point being that calculation of this quantity is feasible in general parametric

models. In the process, Skovgaard (1996) derives a result which is essentially equivalent to

(3.3) above. In the other paper, Jensen (1996) derives large deviation properties of the

statistic ro
ø via a different route to the one followed here.
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