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Let an estimated function belong to a Lipschitz class of order á. Consider a minimax approach where

the in®mum is taken over all possible estimators and the supremum is taken over the considered

class of estimated functions. It is known that, if the order á is unknown, then the minimax mean

squared (pointwise) error convergence slows down from nÿ2á=(2á�1) for the case of the given á to

[n=ln (n)]ÿ2á=(2á�1). At the same time, the minimax mean integrated squared (global) error

convergence is proportional to nÿ2á=(2á�1) for the cases of known and unknown á. We show that a

similar phenomenon holds for analytic functions where the lack of knowledge of the maximal set to

which the function can be analytically continued leads to the loss of a sharp constant. Surprisingly, for

the more general adaptive minimax setting where we consider the union of a range of Lipschitz and a

range of analytic functions neither pointwise error convergence nor global error convergence suffers

an additional slowing down.
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1. Introduction

It is known that for the problems of ®ltering, density estimation or nonparametric regression,

when the estimated function belongs to a Lipschitz class of a given order or a class of

analytic functions admitting an analytic continuation onto a set of the complex plane, the

minimax mean squared (pointwise) error and the minimax mean integrated squared (global)

error have the same rate of convergence as the sample size tends to in®nity. Moreover, for the

case of analytic functions, even sharp constants are the same (Ibragimov and Khasminskii

1981, 1984; Golubev and Levit 1996; Efromovich 1994).

However, it is also well known that for the case of a range of Lipschitz classes the

convergence of the minimax pointwise error slows down up to a logarithmic factor of the

sample size while the convergence of the minimax global error remains the same

(Efromovich and Pinsker 1984; Lepskii 1990; Brown and Low 1996a; BirgeÂ and Massart

1996).

The focus of this paper is twofold. First, we would like to explore the same adaptive

phenomenon for analytic functions. Second, we would like to understand what kind of
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penalties we are to pay for the natural case where the estimated functions belong to the

union of Lipschitz and analytic functions.

We show that the former problem resembles the case of Lipschitz functions but here we

lose only a sharp constant (and not rate!) of the minimax pointwise error convergence. The

solution of the latter problem reveals that there are no additional penalties for consideration

of this union. This is slightly surprising because the known adaptive lower bounds of

Lepskii and Spokoiny (1994) indicate such a possibility. The suggested estimator is also of

practical interest because a unique and very promising Lepskii adaptive procedure is based

on the assumption that a range of the orders á of Lipschitz classes is ®nite and given

(Lepskii 1990; Lepskii and Spokoiny 1994). Therefore, the suggested adaptive procedure

shows how to relax this assumption.

The scope of the paper is as follows. The statistical framework and notation are given in

Section 2. Section 3 is devoted to adaptive estimation of analytic functions. The case of the

union of Lipschitz and analytic classes is explored in Section 4. All proofs are deferred to

the Appendix.

2. Statistical framework and notation

The following model of ®ltering a signal from Gaussian white noise can be considered as a

canonical example for many other statistical models including nonparametric regression and

density estimation (Brown and Low 1996b; Nussbaum 1996). On the interval [0, 1] we

observe the random processes Yn(t) having stochastic differential

dYn(t) � f (t) dt � nÿ1=2 dW (t), 0 < t < 1, (2:1)

where W (t) is a standard Brownian motion. Thus for brevity we restrict our attention only to

this model.

The following notation will be used throughout the paper. The inner product and norm in

L2([0, 1]) we denote by h f , gi and i f i, i.e., h f , gi � � 1

0
f (x)g(x) dx and i f i � h f , f i1=2.

Here we use an orthogonal series approach and therefore, to make our approach con-

crete, we employ the classical trigonometric basis in L2[0, 1]: j0(x) � 1, j2 jÿ1(x) �
21=2 sin (2ð jx) and j2 j(x) � 21=2 cos (2ð jx), j � 1, 2, . . . . We refer to è j � h f , j ji as the

jth Fourier coef®cient of f. The parametric estimator è̂ j �
� 1

0
j j(t) dYn(t) � è j � nÿ1=2î j,

where î0, î1, . . . are independently and identically distributed (i.i.d.) standard normal

random variables, will be used for estimating è j. By Nã we denote the minimal even

positive integer which is larger than ãÿ1 ln (n).

We consider two classical families of functions. The former is a Lipshitz class Lipá
of m-fold continuously differentiable and 1-periodic functions satisfying the inequality

maxu,v j f (m)(u)ÿ f (m)(v)j < Ljuÿ vjá� where L ,1. Here á � m� á� where m is

integer and á� 2 (0, 1], f (k) denotes the kth derivative and f (0) � f . We assume that

á. 1=2.

The latter is a class Aã of analytic functions. Following Bary (1964), we de®ne this class

via Fourier coef®cients by
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Aã � f f : jè2 jÿsj < M exp (ÿã j), s � 0, 1, j � 0, 1, . . . , 0 , M ,1g: (2:2)

Analytic functions have been intensively studied in both approximation and statistical

literature. For instance, the case where f has an analytic continuation onto a strip is

considered by Timan (1963) and Golubev and Levit (1996). In this case, ã is de®ned by the

width of that strip. On the other hand, DeVore and Lorentz (1993), following the famous

results of Bernstein, explored the best polynomial approximation of functions that have an

analytic extension onto some elliptic discs; Ibragimov and Khasminskii (1984) suggested an

asymptotically minimax pointwise estimator of such f. Note that different bases may be

employed. The approach of Bary (1964) employed here to de®ne an analytic function is

especially convenient for exploring adaptive settings where neither smoothness of f nor a

set to which f can be analytically continued is given.

We shall use the following estimators: truncated orthogonal series estimator f̂ n(J , t) �P
0< j<J è̂ jj j(t) which is employed for pointwise estimation of analytic functions; the de La

ValleÂe Poussin sum ~f n(J , t) � è̂0 �
PJ

j�1

P1
i�0è̂2 jÿij2 jÿi(t)�P2Jÿ1

j�J�1(2ÿ j=J )
P1

i�0

è̂2 jÿij2 jÿi(t), which is employed for pointwise estimation of Lipschitz functions; the

smoothed orthogonal series estimator �f n(S, t) � è̂0 �
P

1<k<SË̂(k, n)
Pk(k�1)

j�(kÿ1)k�1è̂ jj j(x),

used for global estimation. Here Ë̂(k, n) � È̂(k, n)[È̂(k, n)� nÿ1]ÿ1 I[È̂(k, n) .
1=n ln(k � 3)], È̂(k, n) � (2k)ÿ1

Pk(k�1)
j�(kÿ1)k�1(è̂2

j ÿ nÿ1) and I(:) is the indicator function.

The data-driven cut-off sequence Ĵ � Ĵ (fYn(t)g) for the adaptive pointwise estimator
~f n(Ĵ , t) is de®ned as follows. Set J�s to be the integer part of [ln(n)]2ds where d . 2 is a

®xed constant and s � 0, 1, . . . ; set K to be the maximum integer satisfying the inequality

J�K , n1=2[ln(n)]ÿ3; set âs to be a solution of equation [n=ln(n)]1=(2â�1) � J�s ; set Js to be

equal to J�m which is closest to J�s [ln(n)]1=(2âs�1); set ~I(i, j) � ~f n( j, 0)ÿ ~f n(i, 0),
~k � min fl: j~I(J�l , J�s j2 < 6 ln(n) J�s nÿ1, l < s < K; 0 < l < Kg. Then we denote Ĵ � J~k .

The following procedure de®nes an adaptive pointwise estimator for the case of analytic

functions. Let Qn be a minimal integer larger than ln(n) and let q be a positive real

number. Set bk � 1 for k � 1, 2, . . ., Qn and bQn�1 � 1, T (r) � f j: rq ln(n) < j ,
(r � 1)q ln(n)g and de®ne

k̂ � min s: max
s<r<Qn

���� X
j2T (r)

è̂ j

����2 < br�1 rq ln(n) nÿ1, s � 1, 2, . . . , Qn

 !
: (2:3)

Then f̂ n(qk̂ ln(n), t) is the adaptive pointwise estimator for analytic functions.

For the case of the union of Lipschitz and analytic functions we employ the estimator
~f n(t); it is equal to ~f n(J~k , t) if ~k . 0 and to ~f n(qk̂ ln(n), t) if ~k � 0.

We also use generic notation C and o(1) for postitive constants and vanishing sequences

in n, respectively. Both C and o(1) may depend on á, L, ã or M.

3. Adaptive estimation of analytic functions

The following ef®cient (sharp) lower bounds are known for some particular settings:
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inf sup
f 2Aã

E f f[ f n(0)ÿ f (0)]2g > ãÿ1 ln(n) nÿ1[1� o(1)], (3:1)

inf sup
f 2Aã

E f [i f n ÿ f i2] > ãÿ1 ln(n) nÿ1[1� o(1)], (3:2)

where the in®mum is taken over all estimators based on the observation fYn(t), 0 < t < 1g,
n, M and ã (Ibragimov and Khasminskii 1984; Efromovich 1994). We give a simple proof of

these lower bounds in the Appendix and also show that they are attained by the same estimate

f̂ n(Nã, t) (see Lemma A.1).

If the parameter ã is unknown, then the global lower bound (3.2) remains sharp and it is

attained by the adaptive estimator �f n(ln(n), t) (see Lemma A.1 in the Appendix). At the

same time, the following theorem establishes that there is no adaptive (data-driven)

estimator which attains the pointwise lower bound (3.1).

Theorem 3.1. Let b be a real positive number such that 1
8

ln(b) . 1 and let f̂ n be an adaptive

estimator which is based only on data fYn(t), 0 < t < 1g and which is ef®cient for the class

Abã, i.e.,

sup
f 2Abã

E f f[ f̂ n(0)ÿ f (0)]2g < (bã)ÿ1 ln (n) nÿ1[1� o(1)]: (3:3)

Then, this adaptive estimator is not ef®cient for the class Aã. Moreover,

sup
f 2Aã

E f f[ f̂ n(0)ÿ f (0)]2 > 1
8

ln (b) ãÿ1 ln (n) nÿ1[1� o(1)]: (3:4)

Thus, we lose the sharp constant ãÿ1 for the case of unknown ã. At the same time, the

following assertion shows that we do not lose the optimal rate ln(n) nÿ1. Recall that owing

to Lepskii (1990) we lose the optimal rate nÿ2á=(2á�1) for the case of the Lipschitz

functions and unknown á.

Theorem 3.2. The adaptive estimator f̂ n( k̂qln(n), t) is pointwise rate optimal, i.e.,

sup
f 2Aã

E f f[ f̂ n( k̂q ln(n), 0)ÿ f (0)]2g < C ln(n) nÿ1: (3:5)

4. Union of Lipschitz and analytic functions

Let the only given information about an estimated f be that it belongs to the union fLipá,

á. 1
2
g [ fAã, ã. 0g. The following assertion shows that we can suggest adaptive estimators

which perform as well as optimal adaptive estimators for each of these classes.

Theorem 4.1. The adaptive estimator �f n(n1=4 lnÿ1(n), t) is globally rate optimal for the case

of Lipschitz functions and globally ef®cient for the case of analytic functions, i.e.,
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sup
f 2Lipá

E f fi �f n(n1=4 lnÿ1(n), :)ÿ f (:)i2g < Cnÿ2á=(2á�1), (4:1)

sup
f 2Aã

E f fi �f n(n1=4 lnÿ1(n), :)ÿ f (:)i2g � ãÿ1 ln(n) nÿ1[1� o(1)]: (4:2)

The adaptive estimator ~f n(t) is pointwise rate optimal, among all data-driven estimators,

for both Lipschitz and analytic functions, i.e.,

sup
f 2Lipá

E f f[ ~f n(0)ÿ f (0)]2g < C
n

ln(n)

� �ÿ2á=(2á�1)

, (4:3)

sup
f 2Aã

E f f[ ~f n(0)ÿ (0)]2g < C ln(n) nÿ1: (4:4)

Appendix

Lemma A.1. The lower bounds (3.1) and (3.2) hold and are attained by f̂ n(Nã, t).

Moreover, (3.2) is attained by the data-driven estimate �f n(ln(n), t).

Proof. First, we establish the pointwise lower bound (3.1). Let J be the minimal positive even

integer which is greater than ãÿ1 ln(n) f1ÿ 1=ln[ln(n)]g and set D � f f : f (t) �PJ
j�1è jj j(t), jè jj < ln(n) nÿ1=2g. Then straightforward algebra shows that D � Aã for

suf®ciently large n.

Now we employ the traditional method of estimating a minimax risk via a Bayes risk and

Rao±Blackwell theorem. Let È j, j � 1, 2, . . . be i.i.d. uniform random variables on the

interval [ÿln(n) nÿ1=2, ln(n) nÿ1=2]. We write

inf
f n

sup
f 2Aã

E f f[ f n(0)ÿ f (0)]2g > inf
f n

sup
f 2D

E f f[ f n(0)ÿ f (0)]2g

> E
XJ

j�1

(EfÈ jjæ jg ÿÈ j)j j(0)

0@ 1A2
264

375
� Ef[EfÈ1jæ1g ÿÈ1]2g

XJ

j�1

[j j(0)]2

� J Ef[EfÈ1jæ1g ÿÈ1]2g:
Here æ j �

� 1

0
j j(t) d~Yn(t) � È j � nÿ1=2î j, d~Yn(t) � [

PJ
j�1È jj j(t)] dt � nÿ1=2 dW (t), and

î1, î2, . . . are i.i.d. standard normal variables which are independent of È1, È2 . . . .

Note that Ef[EfÈ1jæ1g ÿÈ1]2g � nÿ1[1� o(1)] owing to Lemma 2 of Pinsker (1980).

This yields (3.1).

The global lower bound (3.2) is established similarly and even more simply:
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inf
f n

sup
f 2Aã

E f fi f n ÿ f i2g > inf
f n

sup
f 2D

E f fi f n ÿ f i2g

>
XJ

j�1

Ef[EfÈ jjæ jg ÿÈ j]
2g

� J Ef[EfÈ1jæ1g ÿÈ1]2g

� ãÿ1 ln(n) nÿ1[1� o(1)]:

Now we are in a position to show that these lower bounds are sharp and attained by the

same estimate f̂ n(Nã, t). We write f̂ n(Nã, t)ÿ f (t) � nÿ1=2
PNã

j�0î jj j(t)ÿP j.Nãè jj j(t).

Owing to (2.2) we get jP j.Nãè jj j(t)j, 4Mãÿ1 nÿ1=2 � o(1)[ln(n)=n]1=2 and therefore

sup
f 2Aã

E f f[ f̂ n(Nã, 0)ÿ f (0)]2g � sup
f 2Aã

E f fi f̂ n(Nã, :)ÿ f (:)i2g[1� o(1)]

� ãÿ1 ln(n) nÿ1[1� o(1)]:

This yields the sharpness of (3.1) and (3.2). The fact that the adaptive estimate
�f n(ln(n), t) attains the lower bound (3.2) follows from (2.2) and Lemmas 1±3 of

Efromovich and Pinsker (1984). Lemma A.1 is proved. u

Note that similarly to Tsybakov (1997) the case of general loss functions may be

considered as well.

Proof of Theorem 3.1. The proof is based on the following known parametric result.

Proposition (Brown and Low (1996a). Let Z be distributed according to the density pè1
or

the density pè2
with respect to a measure ì. For any estimator ä(Z) de®ne its risk by

R(è, ä) � � (èÿ ä(z))2 pè(z)ì (dz). Also denote I � Eè1
f[ pè2

(z)=pè1
(z)]2g and è � è2 ÿ è1.

Assume that R(è1, ä) < E2 and 0 , E, jèjIÿ1=2. Then, R(è2, ä) > jèj2(1ÿ EI1=2jèjÿ1)2.

To apply this result to our nonparametric setting we set è1 � è1(0) and è2 � è2(0) where

è1(t) � 0 and è2(t) � kn

PJ
j�0j j(t). Here J is the minimal even integer which is greater

than ãÿ1ln(n), kn � cf2ã=n ln(n)g1=2 and c � [ln(b)=2]1=2.

Denote by Pn
è1

and Pn
è2

the probability measures associated with the processes

dYn(t) � nÿ1=2 dW (t) and dYn(t) � è2(t)dt � nÿ1=2 dW (t), 0 < t < 1, respectively. The

suf®cient statistic for the family of probability measures (Pn
è1

, Pn
è2

) is the random variable

Z � ln[(dPn
è2
=dPn

è1
)(Yn)] that is well de®ned (see Appendix II of Ibragimov and

Khasminskii (1981)). Moreover, using the results of that Appendix we get that the

distribution of Z is normal N (ÿa2
n=2, a2

n) or N (a2
n=2, a2

n) under Pn
è1

and Pn
è2

, respectively.

Here a2
n � nk2

n J .

Note that the function f (t) � è1(t) belongs to Abã and therefore the given inequality

(3.3) may be rewritten as R(è1, ä) < E2
n where E2

n � (bã)ÿ1ln(n) nÿ1[1� o(1)].
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Now we can calculate I and è:

I � e a2
n � expfnc22ã[n ln(n)]ÿ1ãÿ1 ln(n)[ (1� o(1)]g � expf2c2[1� o(1)]g,

è � è2 ÿ è1 � kn21=2 J

2
� cãÿ1=2 ln(n)

n

� �1=2

[1� o(1)]:

We also note that è2(t) belongs to Aã for suf®ciently large n and therefore, applying the

Proposition, we obtain

sup
f2Aã

E f f[ f̂ n(0)ÿ f (0)]2g

> R(è2, f̂ n(0))

> c2ãÿ1 ln(n)

n
1ÿ ln(n)

n

� �1=2

exp(c2)
ã1=2

(bã)1=2c[ln(n)=n]1=2

" #2

[1� o(1)]

� ãÿ1 ln(n) nÿ1c2[1ÿ exp (c2)bÿ1=2cÿ1]2[1� o(1)]

� ãÿ1 ln(n) nÿ1 ln(b)

2
1ÿ 2

ln(b)

� �1=2
" #2

: (5:1)

By assumption ln(b) . 8 and this yields (3.4). Theorem 3.1 is proved. u

Proof of Theorem 3.2. Let k � k(ã, q) be the minimal positive integer which is greater than

(ãq)ÿ1. Note that k , Qn for suf®ciently large n and therefore we assume that the last

inequality holds.

The inequality (3.5) obviously holds for the cases k̂ � k and k̂ � k � 1. For the case

k̂ . k � 1, where the variance term is increased, the following relations hold:

sup f 2Aã j
P

j2T ( k̂ÿ1)è jj2 , o(1)kq ln(n) nÿ1 and jP j2T( k̂ÿ1)è̂ jj2 . ( k̂ ÿ 1)q ln(n) nÿ1. They

follow at once from (2.2) and (2.3), respectively. Also recall the elementary equality���� X
j2T (r)

è̂ j

����2 � ���� X
j2T (r)

è j

����2 � 2
X

j2T (r)

è j

 !
nÿ1=2

X
j2T(r)

î j

 !
� nÿ1

���� X
j2T (r)

î j

����2: (5:2)

Thus, the inequality k̂ . k � 1 implies the inequality jP j2T ( k̂ÿ1)î jj2 . C( k̂ ÿ 1)q ln(n).

Using this, the well-known inequality

P(î2
1 . a2) , C exp ÿ a2

2

� �
, (5:3)

and denoting by I(:) the indicator function, we write

sup
f2Aã

E f fI( k̂ . k � 1)j f̂ n( k̂q ln(n), 0)ÿ f (0)j2g

< C
XQnÿ1

r�k�1

E f I( k̂ � r � 1)rq ln(n) nÿ1 I

���� X
j2T (r)

î j

����2[q ln(n)]ÿ1 . Cr

 !( )
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< C[kq ln(n) nÿ1]
XQnÿ1

r�k�1

rq

kq
exp(ÿCr)

, Cãÿ1 ln(n) nÿ1: (5:4)

Consider the case k̂ , k where the bias term is increased. Using the inequality

jPk
l�1alj2 < k

Pk
l�1a2

l we get

sup
f2Aã

E f fI( k̂ , k)j f̂ n( k̂q ln(n), 0)ÿ f (0)j2g

< kq ln(n) nÿ1 � k
Xkÿ1

r�1

���� X
j2T (r)

è j

����2 I

���� X
j2T (r)

è j

����2 < 4rq ln(n) nÿ1

 !
� k

Xkÿ1

r�1

���� X
j2T(r)

è j

����2

3 I

���� X
j2T (r)

è j

����2 . 4rq ln(n) nÿ1

 !
E f I( k̂ � r)I

���� X
j2T(r)

è̂ j

����2 < rq ln(n) nÿ1

 !( )
: (5:5)

Note that the inequalities jaj. 2c and ja� bj, c imply that jbj. 3
8
jaj. Thus

I

���� X
j2T(r)

è j

����2 . 4rq ln(n) nÿ1

 !
E f I

���� X
j2T (r)

è̂ j

����2 < rq ln(n) nÿ1

 !( )

< E f I

���� X
j2T (r)

î j

����2�[q ln(n)] . C

���� X
j2T (r)

è j

����2�[q ln(n) nÿ1]

 !( )
:

Applying the last relation and (5.3) to the right-hand side of (5.5) we obtain

sup
f2Aã

E f fI( k̂ , k)j f̂ n( k̂q ln(n), 0)ÿ f (0)j2g < C(ãÿ1 � ãÿ3) ln(n) nÿ1 � k
Xkÿ1

r�1

���� X
j2T (r)

è j

����2
3 I

���� X
j2T (r)

è j

����2 . 4rq ln(n) nÿ1

 !
exp ÿC

X
j2T (r)

è j

����2�[q ln(n) nÿ1]

 !

< C(ãÿ1 � ãÿ3) ln(n) nÿ1:

This together with (5.4) yields (3.5). Theorem 3.2 is proved. u

Proof of Theorem 4.1. We begin with establishing (4.1) and (4.2). Consider a truncated

projection estimate f̂ n(n1(2á�1)). This plainly satis®es (4.1), which follows from Parseval

identity and Lemma 12 in Chapter 12 of Devroye and GyoÈr® (1985). Thus, speci®c truncated

projection estimators are optimal for Lipschitz and analytic functions. It is well known that a

smoothing pseudo-estimator �f �n that is de®ned as �f n only in place of estimates È̂(k, n) (we

use È(k, n) � (2k)ÿ1
Pk(k�1)

j�(kÿ1)k�1è
2
j) has a smaller mean integrated squared error

(Efromovich and Pinsker 1984). Note that in the modern statistical literature �f �n is referred

to as oracle with the smoothing weights Ëk � Èk=(Èk � nÿ1) that are applied to Fourier

coef®cients è j, (k ÿ 1)k � 1 < j < k(k � 1).

Note that Efi�f �n (n1=4=ln(n, :)ÿ f (:)i2g � nÿ1
P

1<k<n1=4=ln(n)2kËk �
P

k .n1=4=ln(n)2kÈk .
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According to Lemma 1 of Efromovich and Pinsker (1984),

E

�������� �f n

n1=4

ln(n)
, :

 !
ÿ f (:)

��������2
( )

< E

�������� �f �n
n1=4

ln(n)
, :

 !
ÿ f (:)

��������2
( )

� Rn, (5:6)

where, using the inequality

E f (2k)ÿ1
Xk(k�1)

j�(kÿ1)k�1

(è̂2
j ÿ nÿ1 ÿ è2

j)

0@ 1A8
8><>:

9>=>; < Ckÿ4 nÿ4 kÿ1
Xk(k�1)

j�(kÿ1)k�1

è2
j � nÿ1

0@ 1A4

in the place of the last inequality in the Appendix of Efromovich and Pinsker (1984), we

obtain, via Lemma 3 of the paper,

Rn < o(1) E

�������� �f �n
n1=4

ln(n)
, :

 !
ÿ f (:)

��������2
( )

� Cnÿ1
X

1<k<n1=4=ln(n)

(2k)ÿ2[ln(k � 3)]6: (5:7)

This yields (4.1) and (4.2).

Now we prove (4.3). The proof is primarily based on results of Efromovich and Low

(1994). If ~k . 0, then (4.3) is proved in Theorem 4 of that paper. Thus, we are to consider

the case ~k � 0. Set k � k(n, á) to be the maximum integer satisfying J k < n1=(2á�1).

According to (3.29) in that paper we get

EfI(~k � 0)[̂f n(qk̂ ln(n), 0)ÿ f (0)]2g

< EfI[~I2(J0, J�k ) < 6 ln(n) J�k nÿ1][(̂f n(qk̂ ln(n), 0)ÿ ~f (J k , 0))� ( ~f (J k , 0)ÿ f (0))]2g

< C[ln(n) J�k nÿ1 � Jÿ2á
k ] , C

n

ln(n)

� �ÿ2á=(2á�1)

:

This yields (4.3).

(4.4) for the case ~k � 0 follows from Theorem 3.2. Consider the case ~k . 0. Then, by

de®nition of ~k, we get I(~k . 0) < I(j~I(J�0 , J�s )j2 . 6 ln(n) J�s nÿ1) for some s . 0. On the

other hand, sup f 2Aã

P
J .J�0 jè

�
j j, C expfÿã ln2(n)]=2g � o(1)nÿ1. Using these results and (5.3)

we obtain

sup
f 2Aã

EfI(~k . 0)g < sup
f 2Aã

XK

s�1

E I

����nÿ1=2
XJ�s
j�J�0

î jj j(0)

����2 > 6 ln(n) J�s nÿ1[1� o(1)]

0@ 1A8<:
9=;

< CK expfÿ3 ln(n)(1� o(1)g

� o(1)nÿ2:

Using the last inequality and the Cauchy±Schwarz inquality we get
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sup
f 2Aã

EfI(~k . 0)[~f n(J~k , 0)ÿ f (0)]2g < [EfI(~k . 0)g]1=2[ sup
f 2Aã

Efj~f n(J ~k , 0)ÿ f (0)j2g]1=2

� o(1)nÿ1(Cnÿ1 J K K)1=2

� o(1)nÿ1:

This yields (4.4). Theorem 4.1 is proved. u
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