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We prove a Taylor expansion of the density p®(y) of a Wiener functional F¢ with Wiener-chaos
decomposition F* = y+ > > &"[,(f4), € € (0, 1]. Using Malliavin calculus, a precise description of
the coefficients in the development in terms of the multiple integrals /,(f),) is provided. This general
result is applied to the study of the density in two examples of hyperbolic stochastic partial
differential equations with linear coefficients, where the driving noise has been perturbed by a
coefficient e.
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1. Introduction

Let (7,.7,u) be an atomless measure space with a o-finite measure u. Set
H = I1T,.7,u) and let W ={W;, h €. 7%} be a Gaussian zero-mean process with
E(Wy, Wy) = (h, h') 5 defined on some probability space (L2, .4, P). Let .7 be the o field
generated by W, We consider a measurable mapping F: Q — R belonging to L*(Q,.7, P)
with Wiener-chaos decomposition F = E(F) + > " I,(f,). Let {F*, & € (0, 1]} be defined
by F¢ =E(F)+ Y, ,&"1,(fx). We assume that the probability law of each F* is absolutely
continuous with respect to the Lebesgue measure on R¢. The purpose of this paper is to study
the Taylor expansion of the density p®(y) of the probability law of F* at ¢ =0, where
v = E(F) = E(F?). A similar problem has been widely studied for diffusion processes (see,
for example, Molchanov (1975), Azencott (1984), Bismut (1984) and Ben Arous (1988)) for
the family F¢, ¢ € (0, 1], obtained by changing the time ¢ into &z. In this case, because of the
scaling property of the Brownian motion, we obtain by probabilistic methods the behaviour of
the density p,(y) of the diffusion X, for small ¢. For general families of Wiener functionals
the problem has been addressed by Watanabe (1987) and Takanobu and Watanabe (1993).
Our main goal is to give a precise description of the coefficients of the expansion using the
Wiener-chaos decomposition of F and the particular structure of the family {F*, € € (0, 1]}.
They correspond to densities of completely explicit Radon measures. First we prove
differentiability of the mapping ¢ — F?¢ on appropriate derivation spaces related with the
Sobolev spaces DV of Malliavin calculus. The derivatives are expressed in terms of the
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multiple integrals /,(f,). Then, using the approach of Léandre (1988) and Léandre and Russo
(1992), we obtain in Theorem 2.4 the Taylor expansion for the density via the expansion of
f(F?), for smooth f, and integration by parts. As for diffusions, the odd-order coefficients of
the expansion vanish and the non-null coefficients belong to a finite Wiener-chaos diffusion.

The paper is divided into two sections. Section 2 is devoted to the proof of the main
result described before; Section 3 contains two examples of hyperbolic stochastic partial
differential equations where this result can be applied. As usually, all constants will be
denoted by C independent of its value. We refer the reader to Nualart (1995) for the
notation and notions on Malliavin calculus used in this paper.

2. Expansion of the density

Let F be a RY-valued random vector defined on the abstract Wiener space (Q,.7, P),
belonging to L?(Q). Let F = > ola(fn) be its Wiener-chaos representation. For any
e € (0, 1] we define

Fi@) =) " 1u(fa). @.1)
n=0

Clearly, the series defining F¢(w) converges in L?*(2). The purpose of this section is to
obtain an asymptotic expansion of the density of F?, p*(y) at y = E(F) = E(F?), whenever
it exists. We shall follow some ideas introduced by Léandre (1988) (see also Léandre and
Russo (1992)). The first result establishes the smoothness of F'¢ with respect to €. To this end
we first introduce some derivation spaces, which are related to the classical Sobolev spaces
D*? of the Malliavin calculus.

For any j € Z*, set

2
e {Fem) z( =) k!||fk||§<oo},

where || f¢|» denotes the norm of f; in L?>(T*). Note that A%? = L?(Q) and A/? decreases as
J increases.
In the next proposition, d = 1. For d>1 the result applies componentwise.

Proposition 2.1. Fix j =1, and assume that F € N*'?. There exists a version of
{F¢, &€ (0, 1)} which is of class ¢ /. Moreover,

dFE S M
dsf:Z(k ) TL(f)-

Proof. Consider first the case j = 1. For ¢, § with 0<e 4+ & <gp <1 we have

e+E o k-1 i ; 2
o {Z (llf)e’é:k_’lk(fk)}/f = A5 + EAY”, 2.2)

k=1 i=0
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with
AL =Y ke (),
=1
oo k=2 . )
45 =3 ( )e’é’“ *1(fi)
k=2 i=0

Since F € A2, the series defining 4% converges in L*(€2). In addition,

sup|Aé§| CXy,

with X == [372, K2(k — 1> {1(f©)}*]"/2. Indeed, by the Schwarz inequality,

A£§|<§:

k=2 i=0

i

k=20 bk 1 o
( ) (k- z;(k - ,-)— st Il

<> k(k = 1)(e + & 1(fo)]

k=2
12 / o 1/2
<HD e+ (D FUk— D {L(f}
k=0 k=2
= l;Xl .
2(1 —ed)l2
Since F € A*?, X is finite a.s. Consequently, from (2.2) we obtain
) FE+E _ F¢ .
lim=—p—— =4, as
Let j>1 and assume that the statement holds for any &k € {1, ..., j — 1}. Set
&/ Fe - k! ,
————— "L ().

€ = =
D1 = "gei < (k—j+ 1)

Then,

e -
J— EjlfB‘g‘i»&B;&:

with

259



260 D. Marquez-Carreras and M. Sanz-Solé

> k! .

B} = — "),
,;(k—f)!

By® = _ ETNL(fD).
Loy A =gt )] ;

The series defining B% converges in L*(RQ), because F € A’2. As for 45%, we have

1

¥
B |<szn

with X, = [3200 {k!/(k — j — DY IL(f0}] 1/2_This random variable is finite a.s., since
F e A’“z Therefore
A5t — d°
lim L "7l _ pe .S.
&0 & b

and the proof is complete. Ol

Remark. For j € 7+, the Sobolev spaces [/ can be characterized as follows:

k 2
D2 {FGLZ(Q) z((k_ ) <kj>!||fk||§<oo}-

Using the quotient criterion for comparison of series, one easily checks that D*»2 = A/2,
Vj € Z*. Hence, the preceding proposition can be formulated in a more handy way, as
follows.

Corollary 2.2. Let F € ﬂ;io D/2. There exists a version of {F¢, ¢ € (0, 1)} which is > in
& and

iFe & k! ,
N ) 23)
=y :

j € Z*, where the series in (2.3) converges in L*(Q).

In the proof of the main result of this section we deal with the random vector

. Ft_E(F)

Fé= 0<e=<l.

>

&

Corollary 2.2 yields the following.

Corollary 2.3. Let F € (2, D/2. There exists a version of {F*, e € (0, 1)} which is " in
€ and '
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dEE X (k=)

k=)

-= € 1(fo), 24
dei 2 (k=G + D)

d/Fe Jfe

d&‘j o . 13{{)1 d(?j ]'Ij+1(_f]+1)9 (25)

jeZ*. In particular, setting F° = limg o F¢, we have F° = I,(f}).

Equation (2.4) can be checked by induction, using the same arguments as in the proof of
Proposition 2.1.
Let f:RY =R be a #> function with compact support. Fix a multi-index a €
{1,...,d}, a=(ay, ..., a;), k= 1. The Leibniz formula yields, for j = 1,
dj R (}) B . ﬂ . ﬂ N
. & _ & 1 &A1 kK EO0k
S TEN =D (Ve YEONPEr Ve, (2.6)
W)
with VX .= 0% /ox,, ... Ox,,, VP := dPi/dePi, where the symbol Z is a shorthand for

Z Z Z ci(Bis -5 Br)

k=1 Bi+..+Br=j ac{l,..d}*
LesBe=l a=(ay,...,ax)

and the coefficients ¢;j(fi, ..., fx) are obtained recursively, as follows:

k
Brs - B =D ciaBr - Bi— 1. B
i=1

with ¢(1)=1; for ;=1 and i<k, ¢, 1(B1,....,B:i—1,...,Br)=0; for B, =1,
ciciBry - B — D =c;a(Br, -, Bro).

In the sequel we denote by I'; the Malliavin matrix of a Wiener functional G: Q — RY.
Let ® € D*(R?) with detT'y' € M) =117, W € D*; for a multi-index a € {1, ..., d},
a=(ay,...,ay), k=1, we define H, (P, W) recursively, as follows:

d
Hp(®, W) =Y oWy D),
=1

J 2.7

Ha(q)a III) = H(uk)(q)a H(a] ,,,,, ak,])(q)a lII))’

where 0 denotes the Skorohod integral, which is the adjoint of the Malliavin derivative
operator D.
This notation is appropriate to state the following version of the integration-by-parts formula:

E{(Vig)(®)¥} = E{g(D) H (D, W)}, (2.8)

where g is any smooth function defined in R.
A slight modification of Proposition 3.2.2 of Nualart (1998) yields the following estimate:
for any k € N, p € [1, o©0) there exist k', b, b’ € (1, ), a, a’, d, d' € N such that
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1Ha(®, W)k < Clk, p, )T 14 1PlG 1P 15 ), 29)

where |||/, denotes the norm of the Sobolev spaces D*7 in the Malliavin calculus.
Let F € D*®(R?). The family of R?-valued random vectors {F¢, & € (0, 1]} defined by
(2.1) is said to be uniformly non-degenerate if the next condition is satisfied:

T3], < Ce72, (2.10)

for any € € (0, 1], p € [1, c0).

Remark. Consider the Ornstein—Uhlenbeck semigroup {7}, t = 0}, which is a contraction
operator with respect to any Sobolev norm |||, (see, for example, Nualart (1998)). Then
T,F =% e "1,(f,) and therefore F®=T_jz F. It follows that {F*, &€ (0, 1]} C
D> (RY).

Remark. Set 0% = det[cov{/{(f1)}]. The uniform non-degeneracy condition (2.10) implies
that 62 > 0.

Indeed, let

o0

M‘; = Zgn_ln[nfl(‘fn('a I")), re Ta

n=1

and denote by H® the matrix ((M®', M®/)21))1<ij<q. Then D,F® =¢eM* and (2.10) is
equivalent to

sup [(HS)7Y, < C, Vpell, ), (2.11)
£€(0,1]

Next we prove that

L' — lif(r)l HE = cov{I,(f1)}. (2.12)

Then, the Fatou lemma and (2.11) yield 62 > 0. For simplicity we suppose that d = 1. Then
E|H® —var{,(f)}| < T{ + T5,

with
AR DO RS
n=2 r
TS = EJ ST e 2wl (fus P (fnls ) dr.
T n,m=1
n#m
We have

o0
T < ¢? z w2 (n — DI[|fl3.
n=2
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Analogously, T5 = eT%,, with

T, =E

n#m

Fix a > 1. The Schwarz inequality implies that

00
§ en+m—3 nm

n,m=1

n#m

TS5, <E

= E{i n(JT{Inl(fn(-, D)S dr) 1/2}2

n=1

o0

<CY ' n—1)

n=1

1/2
<J {[nfl(fn('y r))}zdr> (J {]mfl(fm('s r))}2 dr)
T T

2
1£all>-

J , S el (P (il )
n,m=1

Since F € D™, the series S2°°  n®"(n — 1)!||£,|[; converges. Therefore

lim(T$ + T5) = 0,
€|l0

proving (2.12).

We now give the main result of this section.

Theorem 2.4. Let {F*, ¢ € (0,11} be uniformly non-degenerate. The density

v = E(F?) = E(F), has the Taylor expansion

1

o) =—

&

1

(2m)d/20

N

1 N
+ Z ejﬁpj +eM B
=

The coefficients p; are null for odd j. For even j € {1,2,..., N},

pi =En¢y>0 b)),

with P; belonging to @iﬂ)d.%’k, Iy being the kth Wiener chaos, and

()

Pj:ZH(l .....

In addition, if for any j € ZF, ke N, p € [1, c0),

then SUpec(,11|Py+1| is finite.

) <11(fl): Ho(11(f1),

sup
£€(0,1]

& .
—F*¢
de/

k.p

/

<

k

ﬁ/! Iﬁ/+1(fg:+]))> .
1

=< C,
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1/2

pE(y), for

(2.13)

(2.14)

(2.15)

(2.16)
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Remarks

(1) The identities (2.14) and (2.15) express the fact that p;, j=1,..., N, are the
densities at x = 0 of the Radon measures defined by

)

g~ ES g(1i(f1) Y Ha (Il(fl) Hﬂ/'lﬁ/+l(fﬁ/+1)> )

for any smooth g (see, for instance, Corollary 3.2.1 of Nualart (1998)).

(2) As will become clear from the proof of Theorem 2.4, p% _ , is also the density of a
Radon measure depending on &. The last assertion of the theorem gives a sufficient
condition ensuring the uniform boundedness of this density. In this case, the last term in the
expansion (2.13) is O(eV*!) as ¢ | 0.

Proof of Theorem 2.4.Let p¢ denote the density of F¢ = {F¢— E(F)}/e. Clearly
P°(y) = (1/e9)p¢(0). Therefore we shall find an expansion for p*(0). Let f: R — R be a
7 function with bounded support. The mapping ¢ — f(F¢) is £ >, a.s., therefore

_|_ €N+IJI (1 - gy

dr.

n=te

JES) = f(F )+Z—e/ N agee VED)

Next, we take expectations of both sides of the preceding equality; we use (2.6), (2.5) and the
integration-by-parts formula (2.8) to obtain

(@)

E{/(F)} = E{f(lM))HZ—efE SN He (wo Hﬂ/uﬂ/ﬂ(fﬂ/ﬂ))

ds.
n=et

The assumptions of the theorem ensure (see Remarks directly after (2.10)) that the

Radon measures defined by E{f(F®)}, E{f(1\(f1)}, E{f(Li(/1)O}, j=1,...,N,
E{f(ﬁvet)QNJrl,s}’ with

V+1) B frmas
N-H (1 t)N et et a"F
e T ALy |

(2.17)

[€))

=> H, (h(fl) Hﬂ/ Iﬁ/+l(.fﬁ/+l)>
Vite _ N ‘
Q = Z H (F Hdﬂﬂ/ F” ‘ ,7_8,)’

possess Z *° densities. Moreover, a new integration-by-parts in (2.17) yields (see Corollary
3.2.1 of Nualart (1998))

(2.18)
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N 1 > 1 j
p(0) :m+2ﬁ51 E(nin=0B) + e i,
=
with
~¢ 1(1*t)N et R fret & d [0 11,0
By = | B Lm0 Hoa | F Y Ho| FL [ g FY ar
o 1 s an n=ct

Consider the Wiener-chaos decomposition

Fe _ Zgn—lln(fn)
n=1
and an even smooth function f. The Wiener measure is invariant under the transformation
Z(w) = —w. Thus, f (1:“ %) and f (15 ?) have the same law and the odd coefficients in the
Taylor expansion are zero.

The fact that FP; has a finite Wiener-chaos decomposition, more precisely, P; €
73J+d = @1"%’17/’;(, follows from Lemma 2.5. Indeed, for any k€ {l,..., }, W:=
1., 8! Iﬁ/+1(fﬁ/+1) € 7y, since i + ...+ B = j. Consequently O; € .73, because the
length of a is k. Finally, since P; = H(l ,,,,, d)(ll(fl) 0;), Lemma 2.5 yields P, € .73;.4.

We now want to give a uniform bound for p%_; (see (2.19)). Set G* =
T 5 _(dP /deP)Ee. Clearly, it suffices to show that

sup E{|H(1 d)(FE H (F£ Gg))|} =C, (220)

0<e<l
forany a € {1,...,d}* Bi+...+Bi=N+1,k=1,..., N+1, and some finite C>0.
The estimate (2.9) yields, for some k, b, b’ € (1, 0) and a, a', d, d' € N,
g 5)-

Therefore, the non-degeneracy condition ||T}£ »<Ce 2% Vpe(l,oo) together with
condition (2.16) yields (2.20). This finishes the proof of the theorem. O

,,,,, o(F*, Ho(FF, G9)| < C(IT:! | llFe

Lemma 2.5. Let @ be a non-degenerate d-dimensional random vector belonging to the first
chaos 7, We.7, /=0. For any multi-index o= (ay,...,a,)€{l,...,d}, the
random variable H, (®, W) belongs to .7 ,,.

Proof. We shall proceed by induction on the length of a. Set (b'/); ;=14 = (cov @)~ and
® = [,(f). Then, for any i € {1, ..., d},

.....

d
Hy(®, W) =Y bIo(Wf) €70

J=1

Assume that the statement holds for any multi-index of length »—1. Let a=
(a1, ..., a,)€{l,...,d}". By (2.6),
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d
Hy(®, W) = Hio, (@, W) = Y 66T ),
j=1

with W € 7, ,_;. Thus H (P, W)€ .7,,, and the proof is complete. ]

Remark. Let ®(h) =E(F)+ > 0", [ nfu(s1, ..., sn)dhy, ... dhg,, he 7. Note that the
series defining ®(/) is absolutely convergent, owing to the condition Y - n!|| fn||§ < 4o00.
Assume that there exists a sequence {w”, n € N} C % such that P —lim, ., ®(w") = F
and, moreover, for any 4 € .7, n € N, there exists an absolutely continuous transformation
TZ: Q — Q such that P—Ilim, . Fo Tﬁ = ®(h). If, in addition F*¢eD>* and
[detTt]|, <+o0, Vp € (1, o0), Theorem 3.41 of Aida et al. (1993) establishes the
following characterization for the points of positive density for F®:

{P’() >0} ={y: Fhe 7: ®(h)=y and DD(h) surjective}.

Assume that the family {F%, € € (0, 1]} possesses the approximating property described
before and is uniformly non-degenerate. Then, for y = E(F), p®(y)>0. Indeed,
®(0) = E(F) = y and, for any k € .7,

DOO)(K) = ijl (5)k(s) du(s).

Thus, since 02 := det[cov{/;(f1)}] >0, DP(h) is surjective.

3. Applications

We devote this section to study two examples where Theorem 2.4 can be applied.

3.1. A hyperbolic stochastic partial differential equation

Let 7 = [0, 1]?> and {W,,, (s, £) € T} be a Wiener sheet. Consider the hyperbolic stochastic
partial differential equation

0* X, 8Xs,t+ ( t)aXs,t
s 01 os DT

with deterministic initial condition X, =x if (s, ) € T, s+t = 0. We refer to Farré and
Nualart (1993), and especially to Rovira and Sanz-Solé (1996) for results on this equation
used in this section.

Here we shall deal with the particular situation made precise in the following set of
assumptions.

(H1) a;: T — R, i=1, 2 are differentiable and bounded with bounded first partial
derivatives.
(H2) ai: RX T — R, i =3, 4 are linear in the space variable, which means that

= a3(Xs,t7 s, t)WS,t + a4(XS,Z‘9 S, t) + a](s, t) (31)

ai(x, s, 1) = a;|(s, Hx + ap(s, 1).
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In addition, as;, a3, a4; and a4y are supposed to be continuous.
A solution of (3.1) is a stochastic process {X;;, (s, #) € T} satisfying

Xs,t =Xp + J ys,t(us U){a3(Xu,vy u, U) qu,v + a4(Xu,Uy u, U) du dU}, (32)
Rs.:

where R,, denotes the rectangle [0, s] X [0, ¢] and vy, (u, v) is the Green function associated
with the second-order differential operator

Pr(s, 1) df (s, 1)
Os Ot Os

Here are some properties of the Green function; their proofs are given in Rovira and Sanz-
Solé (1996):

Lf(s, £) = ai(s, 1)

W —ax(s, 1)

boundedness:
sup  sup |y,.(u, )| < C;
(5,)ET (u,0)<(s,t)

Lipschitz property:

sup ‘ys,t(ﬁa Z_J) - ys,t(u’ v)' = C{‘l’_l - u| + |Z_] - vl}a (ﬁ, Z_])) (ua 'U) = (Sa t)a

(s,)eT

sup ‘yi,f(us U) - Vs,t(u9 U)' < C{‘E - S| + |Z - ZL|}5 (5’ i)’ (S> t) = (U, U)a
(u,0)eT

positivity:

t
Vs.1(S, V) = exp <J ar(s, w) dw> , O0=sv=1,

4
Vsi(U, 1) = exp (J ai(r, t) dr), O=su=<s.

Theorem 2.1 of Rovira and Sanz-Solé (1996) proves the existence and uniqueness of a
continuous and adapted process { X, (s, #) € T} bounded in L?, for any p = 2. Moreover,
X €D>, V(s, f) € T. For any ¢ € (0, 1] set

X5, =x0 + J Vst V){eas(X, , u, 0) dWyp + aa( X5, 5 u, v) dudo} (3.3)
Ry,

and, for any & € .7, the Cameron—Martin space associated with { W, (s, 1) € T},

u, v

S, =%+ J Vil ©){az(Sk,, u, v)dhyy + as(Sh,, u, v)dudo}.

Proposition 3.1. Assume (H1) and (H2). For any z€ T, z = (s, t), st # 0, let

o0
X =EX.+ ) L(f)
n=1
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be the Wiener-chaos decomposition of the solution of (3.2) at z = (s, t). Then, for any
g€ (0, 1],

o0
X: =EX. + Z e"L(f).
n=1

Proof. By a result proved by Stroock (1987), fu(a) = (1/n)E(D2X.), a = (ai, ..., 0y).
Thus, if X¢=EX:+> " 1,(f%), it suffices to prove EX,=EX! and E(DlX%) =
e"E(D)X:), n= 1.

Taking expectations in (3.2) and (3.3) by uniqueness of solution we immediately
obtain

EX, =EX:=S"

Fix NEN, aj,...,ay €R.. Denote by a the vector (aj,...,ay); set o =
(ap, ..., Ai—1, QUit1, -, ay), N=2, supa =a,;V ...V ay. The particular form of the
coefficients a;, i = 3, 4 and the rules of Malliavin calculus yield the following expressions for
N =2:

N
D;VXZ = Z a3,1(Oti)‘yz(ai)Dé\zil)(a1
i=1
+ J[ ]72(77){“3,1(77)D5X17 awy, + a4,1(77)D£[X17 dn},
sup &,z
N
D‘]Zin = Z ea3,1(a,»)yz(ai)D2[i_1Xfxi
i=1

| ynteas oDy xg 4, + asnn D)X an).
[sup a,z]
Let UY(z), N = 1, be the solution of the equation

U¥) =1 +J v (Dasa (U Y ) dy.

[sup a,z]

Then, clearly

N
E(Dy X.) = (Z as 1 (a)y(a;) E(Déx-lxa,)) Ux (),
i=1

3.4
N
E(Dy X?) = (Z eas 1 (a;)y=(at;) E(DéX-‘Xi,)) Uy (2).

i=1
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For N =1,

E(DoX) = y=(a){a31(0) EXo + a3.2(c)} Uy (2),

E(DoX?) = ey(a){as1(@) EX;, + a32(a)} Ug(2)-

Thus, E(D,X%) = e E(D,X:), because EX, = EX?. This fact and (3.4) allow us to finish the
proof using a recursive argument. O

In the sequel we fix z € T not belonging to the axes. The following notation will be
used. Set

Loxe— 50 &/ . &
& __ ¥4 ¥4 & — & 8 — &
Xt = =, X(2) 5 X, X2 57 X

; 5 XL JeN.

By Corollary 2.2 applied to F' = X, we know that these derivatives exist. One easily checks
that

Xi(2) = JR y=D{as (X, + asp()} AWy + eas 1 (X[ 07) AWy + as1 () Xi(n) dnl, (3.5)

Xi(z) = JR v(m{jas (X5 (n) AWy, + eaz , 0D X50p) AWy + aa s (X i}, j = 2.

(3.6)

Let X9(z) = limeo X%(2), j = 1. Then X)(z) satisfies the following stochastic differential
equations:

X)) = L y=(D{az1(n)S,) + as 200} AW,y + aa 1) X () dig), (3.7
X9(z) = JR Yo {as DX (7) Ay + as, ()X °0n) d}. (3.9)

Lemma 3.2. We assume (H1) and (H2). Then

1
Xi(z2) = ]% <X2+1(Z) + EJO(I — §j+1)Xfiz(Z) d5>, (3.9)

Jj € Z*", where, by convention, )A(g(z) = )?;

Proof. For j =0 the identity (3.9) follows from a Taylor expansion of X¢ around & =0,
taking into account that X° = S(z). An easy recursive argument establishes (3.9) for any
j=1. Il

In the next proposition we check assumption (2.16) of Theorem 2.4 for F¢ = X £
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Remark. We know that there exists a version of {X (2), z € T} which is continuous in e.
From the previous lemma and (2.5) we obtain

X0(2)

n=1.
n!

L.(fn) =

b

Proposition 3.3. Suppose that (H1) and (H2) are satisfied. For any jeZ%t, keN,
p e, 00),

& e

= C.
de/ ?

k,p

sup
0<es=l

Proof. Because of (3.9) the proof follows from the following facts:

Sul;’”X?‘(Z)”k,p <C, (3.10)
ze
sup sup E(|X(2)|”) < C, (3.11)
0<e<l zeT
sup sup sup E(|DjX%2)") < C, (3.12)

0<esl zeT a:supa <z

for any j, k € N, p € (1, co) and some positive constant C.

From the remark following Lemma 3.2, one clearly gets X' ‘}(z) € Hj, for any j € N This
yields (3.10).

We know (Rovira and Sanz-Solé 1996) that

sup supE(|X¢|P) < C, pe(l, x).

0<e<l] zeT
Then, the standard arguments based on the Burkholder, the Holder and the Gronwall
inequalities applied to (3.5) and (3.6) yield (3.11) by a recursive argument.

Finally, for the proof of (3.12) we first write the equations satisfied by DﬁX i(z), JjEN;
this can be done using (3.5), (3.6) and the rules of Malliavin calculus. Then we proceed as
for the proof of (3.11). This estimate allows use of the recursive argument which is
needed. Il

We finish the study of this example by checking the uniform non-degeneracy property.
We need the following additional assumptions on the coefficients:

(H3) |asj(s, ) —azi(s’, )| < C{|s —s'| + [t = 1'|},

J=1L2(,0,(',)eT,
(H4) supco,iy]aa(s, ©) —asj(s’, )| < Cls —s'|, j=1,2,(s,5") €T,

Sup(~Y,t)€T|a%a3j(Sﬁ t)| < C, ] =12,
(H5) a31(0, )xo + as(0, £) #0, t+#0,
(H6) a31(0, v)xg + a3»(0, v) =0, Vov e (0, 7],

t
d1a31(0, 1)xo + 01a3(0, 1) + a31(0, 7) [; 70,:(0, w){as1 (0, w)xo + as(0, w)} dw # 0,
for some positive constant C and where 9; means the derivative with respect to the variable s.
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Proposition 3.5 of Rovira and Sanz-Solé¢ (1996) establishes X, € D* under (H1) and
(H2), for any (s, t) € T.

Proposition 3.4. Let z = (s, t) € T, st # 0 be fixed. One of the following set of conditions
implies that ||F}(1 » < Ce™2, for some positive constant C and every ¢ € (0, 1], p € (1, o0):
(a) (H1) to (H3) and (HS);
(b) (H1) to (H4) and (H6).

Proof. 1t suffices to check that the inverse of the random variable ¢~2 e |DaX £|?da has
moments of any order. Consider the stochastic differential equation

Yi(@) = yu(a) + J

(a

y:(mY,(a){eas () dWy + as () dn}, O0<asz
¥
Then, D, X¢ = ea3(X%, a)Yi(a). Consequently we need to show that

P([ toste, v ae <) <o
R.
for any p € (1, o0) and 7 < #,.

This has been proved in Propositions 3.6 and 3.7 of Rovira and Sanz-Solé (1996). We
point out that although assumptions (H3) and (H4) in this reference are stronger, they can
be relaxed to the situation of our statement. O

Propositions 3.1, 3.3 and 3.4 establish all the necessary ingredients to apply Theorem 2.4
to the family {X%, ¢ € (0, 1]} defined by (3.3) with z= (s, /) € T, st # 0.

3.2. An Ito equation on the plane
Consider a one-dimensional Wiener process {W,, (s, t) € T}, T =[O0, 177, vector fields
_ (™ _ [ *
A = (xz), Ao(x) = (xl)
and the stochastic differential equation on R?:

Z,=xp+ J {A(Z,)dWy, + Ao(Zy)dn}, z€eT, (3.13)
R:

0
Let {Z¢, z € T} be the solution of

with initial condition Xy = <1 >

78 =xo + J {eA(Z})dW), + Ao(Z,) dn}
R:

and {¥(z), z € T} be given by
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W) = 0+ JR Ao(P () d.

In the sequel, z will be a fixed point in 7 not on the axis. The analogue of Proposition 3.1 for
the solution of (3.13) can be proved by the same arguments, owing to the linearity of the
coefficients 4 and A4,. Thus,

o0
Zi=EZ+) "1(fa),
n=1

where Z. =EZ. + Y7 | I,(f,) is the Wiener-chaos decomposition of the L?-functional Z,.
Let 78 = {Z% — II’(z)} /¢&. Following the ideas of the proof of Proposition 3.3 we obtain

& z|

Sup des ©7

0<e<l

=C,

forany j€ ZT, ke N, p € (1, ).

In Nualart and Sanz-Solé (1989) we have proved that Z. € D* and [T, < C for any
p €[1, 00). By considering the coefficient ¢4 instead of 4 we have (ha: zllp < Ce,
p €1, o), for some constant C, depending on ¢ € (0, 1]. Moreover, the Malliavin
derivative of Z¢ satisfies the stochastic differential equation

D,Zt = A(ZY) + Ja Z]{e VA(Z,) Dy Z, AWy + VAW(Z;) Do Z, d}. (3.14)
We close this section by checking that ||F}1,» » =< Ce? for any ¢ € (0, 1], p € (1, o0) and
some positive constant C. Clearly, it suffices to show that

sup E(ldety, ') < C, pe(l, o),
£€(0,

with y, = 6’2FZ; . This property will follow from

sup sup P{o*y.v <n} < C(pm”, (3.15)
£€(0,1] [o|=1

for any p € (1, co) and # small enough. Using (3.14) we easily obtain

v? :J Viz, NANZE (2, nAY (z8)dr, 1<i,j<2,

Z

where {&%(z,7),0<r <z} is an R?® R%-valued process solution to the stochastic
differential equation

EGzr=1 +J {eVA(Z)E (m, r)dWy + VAN(Z,) E(n, r)dn}.
(r,2]
Then, as in Nualart and Sanz-Solé (1989), the proof of (3.15) is reduced to that of

sup sup P{J [0 4'(ZE ))? do < 77} < C(p)n?*.
£€(0.1] | r=1 0
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Let & = {4, AjA} where AJA denotes the covariant derivative of 4 in the direction of

()

is R?. Consequently, there exists R >0, ¢>0, such that

Ap. Clearly the span of &/ at

S =e, (3.16)

Ve

for any |v| =1 and y € Br(x).
Let S¢ = inf{o = 0: supz<, 1=/ |ZE, — Xo| = R} As. Then

SS
P(L [0;4'(Z;, ) do < 77) < piOp + p5(n) + p50n),

with

SS Sé'
pi0n) = P(J |0:4'(Z5 ) do <, J 045 A)'(Z; ) do <%, 5° = nﬁ>,

0 0

p5() = P{S* <y},

S

;
P = P(J A '(Z5 )P do <1, j 04T A)(Z )P do = 77“>,

0 0

where 0 <f<a<l.

Property (3.16) and the choice of 8, a yields pi(y7) =0 for 5 sufficiently small. The
Chebyshev inequality together with the Burkholder and the Hoélder inequalities ensure that
SUpPee(o,1] P2(17) < CnP1?. The term p5(n) demands a careful analysis. This has been done
by Nualart and Sanz-Solé (1989, p. 15) and corresponds to the term A, in this reference
with V =4, X,. = Z¢, e"V"D =9, a = m(j)/m(j — 1). As a hint for the reader, we point
out that span (A4(x), AOVA(xo)) = R? implies the validity of assumption (H2) of Theorem 2.2
of Nualart and Sanz-Solé (1989). Indeed, using the notation in this article,

1

A(xo) = A'(x0),  AJ A(xo) = (J (4o * A)(x, 1)dr> (%0)-

0

Since all the estimates in the above-mentioned proof can be obtained uniformly in the
parameter &, we conclude. [
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