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Multivariate prediction
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The problem of prediction is considered in a multidimensional setting. Extending an idea presented by
Barndorft-Nielsen and Cox, a predictive density for a multivariate random variable of interest is proposed.
This density has the form of an estimative density plus a correction term. It gives simultaneous prediction
regions with coverage error of smaller asymptotic order than the estimative density. A simulation study is
also presented showing the magnitude of the improvement with respect to the estimative method.
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1. Introduction

We consider the problem of prediction of an unobservable m-dimensional absolutely
continuous random vector Z =(Zy, ..., Z,), on the basis of an observed sample
v=O1,..., yy) from a further n-dimensional random vector Y = (Yy,..., ¥,). We
assume that the density of Y, p(y; 0), and the conditional density of Z given Y =y,
g(z; 0]y), are known except for the d-dimensional parameter § € @ C R?. A prediction
statement about Z is often given in terms of prediction regions, i.e. regions Ry(Y) C R”
such that

Py{Z € Ry(Y)} =a,

for every 6 € ® and for any fixed a € (0, 1). The above probability is usually called the
coverage probability and is calculated with respect to the joint density of Z and Y.

An easy way of making predictions about Z is by means of the so-called estimative
predictive density g(z; 0| »), where 6 is any asymptotically efficient estimator of 6, usually
the maximum likelihood estimator (MLE) 6. However, prediction regions based on the
estimative density are usually imprecise, having coverage error of order O(n~'). This is a
well-known result in the case of Z being a unidimensional random variable. Indeed,
Barndorff-Nielsen and Cox (1996) and Vidoni (1998) suggest a way to correct the quantiles
of the estimative density, thus obtaining prediction limits with a coverage error of order
o(n~"). Unfortunately, their result does not apply to the multidimensional case since it does
not take into account the possible dependence between the components of Z nor the
interaction among the prediction limits of each component of Z. Thus, prediction regions
based on the corrected prediction limits of each component of Z separately still give
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coverage error of order O(n~!). A resampling approach to the multivariate problem is
discussed in Hall et al. (1999), using bootstrap calibration of estimative prediction regions.
However, no analytical solution is provided by this method.

Here we extend the idea in Barndorff-Nielsen and Cox (1996) to the case when Z is an
absolutely continuous m-dimensional random vector.

2. Improved prediction regions

We assume for simplicity that Z is independent of Y, so that its conditional density can be
written as

m
gz 0) = g'(zi; O [ [ &'z 02071,

i=2
where z\ is the value of Z) = (Zy, ..., Z;), the first i components of Z, g'(z; 0]z~ V) is
the conditional density of Z; given Z(~D =z0-D ;=2 . m, and g'(z; 6) is the
marginal density of Z;. We denote by G(z;; 0|z~V) the conditional cumulative distribution
function of Z; given ZU™D =z0"D i=2 ... m, and by G'(z;;0) the cumulative
distribution function of Z;. We also assume that g’ and G/, i =1, ..., m, are sufficiently
smooth functions of the parameter 6.

Let us suppose that a previous reduction of the data is possible and that (é, A) is a
minimal sufficient statistic, with 6 the MLE and 4 an ancillary statistic. In this context we
can apply the conditionality principle and keep the value of 4 fixed in the evaluation of the
long-run properties of the results. Thus, in what follows, any function of the data will be
written as a function of the MLE, avoiding writing the dependency on ar A explicitly.

The aim of this work is to find regions Ra(é) C R™ such that

Po{Z € Ry(0)} = a,

for every 8 € © and for any fixed a € (0, 1), where = means that an equality holds with
error terms of order o(n~') or o,(n"'), depending on the context. The above coverage
probability is calculated with respect to the joint density of Z and 6 conditioned on the
observed value of the ancillary statistic A.

We assume that Ra(é) can be expressed through the system of inequalities

a'(0) <z < b'(0),

2(zV; 0) < z, < PA(=V; 6),

a"(z" Y, 0) < z,, < b" ("D, 0),

so that the m-dimensional integral of g(z; 6) over Ra(é) reduces to m successive integrals in
R. Thus, our problem becomes that of finding functions ¢'(0), c2(z\V; 0), ..., ¢"(z""V; 6)
such that
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P{Zi < c\0), Z,<A(ZV;0), ..., Zp=<c"(Z"D; 0)} = a,

for every 6 € ®. We call a set of such functions a system of approximate simultancous
prediction limits for Z.

In the following we use the Einstein convention so that whenever an index appears twice
in an expression, summation on that index is intended.

We have the following result:

Proposition 1. Let ¢'(0), ¢'(zV="; 0), i =2, ..., m, be a system of simultaneous prediction
limits for Z, such that

Po{Z1 < ¢'0), Z, < g2 0), ..., Z < ¢"(Z"V; 0)} = .
Then, under the usual asymptotic behaviour of the MLE. 6,
PAZi<q'0). Zo<q*(Z"; 0), ... Zn=<q"(Z""; 6)}

i m

m q' q
ia—Zb’J J g’,dzi...J
i=1
1 m . ql qi—l i+1
_5;1 ([2]J J

o . (90 a6
g’ 9\2“’”)612] J
q q q"
j+1

1< » q' ¢ Go1) (95 ai al
_522[2]1 J J g/(q’; 0|z~’ )qJYJ J g;(j)dzi,_,J

i1 i+1

q ¢ A i [0 90
+J J gldz; ... J g'(q'; 0]z~ ))qij J
q' ¢ g q"
+J J gﬁdzj...J g’rdzi...J ,

where  [1 = [1gidz;, 20V =@V, ¢z, ), gl =4'E 0, [0 =
[0 g'(z;; 9\28)_1))dz,», g = &' 0|28)_1)), subscript v and s denote derivatives with respect
to the corresponding components of the parameter, [2] indicates the sum of two terms
obtained by permutation of the indices r and s, and b" and i"* are the asymptotic bias and
variance—covariance matrix of 0:

b’(6) = Eo{(6 — 0)"}
and

i"(0) = E¢{(0 — 0)"(6 — 0)°}.
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Proof. Let Ra(é) be the region in R™ given by z < g'(0), z < ¢*z";0), ...,
Zm < q"(z""V; 6), where [ &) g(z; 0)dz = a. Then

J e e)dzzj ol é)dz+j (9= 6) — g(z B)dz
R,(0) R,(0) R,(0)

N 1 4 A )
a=O-0F| g6 0@~ 0)5JR“(9) gn(z: Oz

Ru(6)

R 1 ~ ~ )
o« (6 0)’] £1(2: 0z — 56— )0 0)5] (2 O)dz

R.(0) R,(0)
- er(j oz )z J 0 e)dz).
R.(0) R,(0)

Moreover,
m ql qi ) qm
g:(z; 0)dz = J J g’dzi...J ,
J Ru(6) ; '

1 i m

m_ prq q q
2,5(z; 0)dz = J e J g.dz; ... J
JRa(g) Z

i=1

and

(é—eyq e 0>dz—j 0 9)dz>
R.(0)

Rq(0)
) q q q' q"
g’rdzi...J —J J g’rdzi...J

:(é—e)"ioql r

=000 -0 (i Jql Jq gi(q" e|z<f*”>qirﬁ) . J '

i=1

i qm 1 i

m q' o : (4 “W a0
-I-Z;ZJ J 2 (q’; 9\2(171))%] . J gy dzi ... J

i j<i

m—1 q' q ) q/! . R . q(/tl q(m)
+ZZJ J ghdz; ... J g'(q’; 9\2("”)61§J L J -

=1 j>i

Thus, after substituting and taking expectations, we obtain the result. O
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Corollary 2. Let q' be the a;-quantile of g', i =1, ..., m, with a =" a;. Then
Po{Z1 < q"(0), Zo < *(ZV; 6), ..., Zy < ¢"(2"; 6)}

" q' gt .
S Zbrj . J Gi(q'; 620 —%—
ap ... 0o

1 i—1

1 q q gi(q’; 9|Zi71))Gi (q; 6]z0-D) o . a
-y i ... 2]t — L — G (¢ 0207V ) ——
4_2,‘2:1:1 J J <[ ] g'(q"; 0]z(-b w5 0120 ap ... a;
1 & .7 ¢ . J( ) G- qu;;l q(ijl) i(g? (i=1) @
T D) D | O B ] O s

=2 j<i

Proof. By definition we have that
G'(q": 0]="") = a.

Since ¢’ is a function of both z~! and 6, by taking the total derivative with respect to the
components of 6, we have

Gi(q"; 012" + g'(¢"; 6] g, = 0,

where

Gi(q"; 0)2/7") = 09, G'(z5 0]z V)|, =y
Thus, by substituting ¢’ = —G" /g’ in the expression obtained in Proposition 1, the last two
summands cancel and we have the result. U

Corollary 3. Let q' be the a;-quantile of g', i =1, ..., m, with a = N!" a;. Then a system
of approximate simultaneous prediction limits is given by

M6y = 46 1@ 0)
g'(4'(0); 6)
and, for i=2,...,m
_H(g'(6), 27D 0) <~ hi(g'(6), 2 V; 6)
gi(q'(0); 620-D) = g'(q'(0); 01z¢-1)
where the terms hi(z;, zU"V; 0) and h¥(z;, z07V; 0) are of order O,(n~') and, for

i=1,...,mand j<i, are given by

Wiz, 20 6)

(25 0) = ¢'(6)

(1

gi(zi; 0]217Y)

= —b"(0)G'(z;; 0]z207V) +Zi"(0) | [2]=2 .
DOz 0 + 5700 (1215

Gi(zi; 0129 Y) = Gl(zs; 0|z<f1>))

and
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hi(z;, 29705 0)
(Gl(zj; 0|29 g/ (2415 0]29) ... g N (zimy; 0]2072)Gizs; 6|207D))
g.f(Zj; 0|Z(j—1)) . gi_l(zl;l; B‘Z(i_z))

71-r39 ) azf
=i O12]

3. The predictive density

The previous result can be expressed in terms of a predictive density g(z; y) for Z, such

that
) A0 (2D,
J J T J g(z; y)dzy -+ dzadzy = a.

—00 —00 —00

In fact we can write

. 1T il PG 2D 0) Wiz, 207D; 6)
gan=]]e|a+——F7+>) ——2:0
i1 gi(zi; 0|z07D) = gi(zi; 0]z07D)

hi(z;, 20-D; 6 hi(z,, 20-D: @
xJ1qo, M2 00 o WG 200
gi(zi; 0|207D) = T gi(zi; 0]207Y)

This is easily shown by a change of variable in

51 52 5m

q' 4 q .
J J e J g(w; @)ydw,, - - - dwrdwy = a,

putting

Hiew 20705 8) W 2050
w; =2z + FZ ZA - )JFZ A(Z ZA - )
gz 02070) | 4= gi(z; B0

After some calculations, we obtain

8z ) = gz é){l + i K(zi, 2705 0) + VZ: > ki, 2070 é)}, 2
i=1

=1 j<i
where
gi(z;, 20D, 6)
and

0, hi(z;, 21 0)
gz 20°D; 0)

Ki(z;, 20°D; 6) =

It is important to notice that the terms k' in (2) are exactly those needed in the
unidimensional case, considering the conditional densities. They correct the uncertainty
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introduced when 6 is replaced by 6 in the estimative density. The terms k7 correct for the
additional dependency introduced among the components of Z, after estimating 6 in each
conditional density g’ with the same data.

Moreover, we have that

> Kz, 2705 0) = = b(0)0, log g(z; 0) — %i”(e)a,s log g(z; 0)
i=1

Gir(zl-; 0]z

1 Z ; :
Lo 219. z-l i i (i—1) r i
O ([ 10,0 log g'(zi; 0122 20 s

+ 05 log g'(zi; 0)2D)d, log g'(z;; 6|z D) )
and
Ki(z;, 20705 0) = Ei’S(G)[Z]{as log g/(z;; 0|zY"1)0, log g'(z;; 0]z).

G{;(zj; 9|Z(Ai—1))

i . (i-1) JHle, . . )
2(ors 0120y O log &' 012 ) (0, log 87 (213 0127)

+...+ 0, log gz 9|z(i_2)))

Gl(z;; 0|zV7D) azl.gf.(z,-; 0]z
g/(zj; 012U7D)  gi(z;; 0]z2071) [

Thus, we can finally write

. R 1 .
8z y) = gz 0){1 —b"(0)0, log g + Ei”(ﬁ)( 9, log gdslog g — 0,5 log g.. 3)
+ i [2]0,0.. log g'(z;; é|z(i_l))7Gir(Zi; Ol)
e R T ED)

Gl O ()
]2 2 2 (9,1 i(z:: (i-1) . JHUL L iy,

0:,8(z;; 0]z17D)
gy )) [

Remark. Note that g(z; y) depends on the factorization we use for the joint density
2(z; 0) =M, g7V (z; 0|2°D7D), where o is a permutation of m elements. If the
components of Z are exchangeable, g,(z; ¥) = &(zo(1), ---» Zo(m); ¥), but in general
&o(z; ¥) # go'(z; y) if 0 # o', as we can see in the following example.
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7= (2, Zz)~N2<O, (/1) f))
(z2 — pz1)?

1 1 1
e = e~ w0 = S en- )

there is a non-symmetric term in expression (3), given by

Example 1. Suppose that

If we take

Go(22; pl21)  (pza — 2)((1 + pP)z1 — 2pz)
(223 plzr) (1—-p%? '
This shows that, in this case, g(zi, z2; ¥) # &(22, z1; V)-

Moreover, it is easy to see that the marginal densities of g(zj, zp; y) are
g'(zi; ) = g'(z1) and &(z; ) = g3 (z)(1 +4i”(p)(z5 — 1)/(1 — p*)). This latter density
does not give correct prediction limits for Z, since it differs from g?(z;). This means that,
for some regions in R?, g(z, z;; y) may give a coverage error of order O(n~").

0,0, log g*(z2; plz1)

The above situation should not be surprising because the predictive density (3) is
constructed to give correct coverage probabilities for prediction limits (1). This limits are

the quantiles of g'(z; ) and g'(z;|z0~Y; y), i =2, ..., m, for a prescribed order of the
components of Z. Thus, to find a predictive region of approximate confidence a =M, a;,
we have to find ¢'(0), ¢'(z"D; 0), i =2, ..., m, such that
(6 ci(z1:0) 4
J &'(z1; y)dz = ay, J &(zilz"Y; y)dz; = ay, i=2,...,m
Then,
21 =< c'(6),

) = cz(z(l); é),
Zy < Cn1(Z(m71); é)

define a predictive region of approximate confidence a, in the sense that
Pol{Z < c'(0), Zo<cHZW;0), ..., Z, < c™(Z"D; 0)) = a.

We can look at the joint predictive density (3) as a sequence of conditional predictive
densities with increasing uncertainty in the prediction of successive variables. In this sense
the factorization chosen should depend on the interest in controlling the different
components of Z. For instance, the most convenient ordering will be clear for panel data
or for a Markovian process. As an alternative, in the case of no interest, we can take
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5 ) = =3 gl )
g H y T m| g(i H y
o

as a predictive density, but in general the associated coverage error is of order O(n~!). In fact
each permutation of the variables gives rise to a predictive density that gives correct coverage
probabilities for ‘certain’ regions (note that, in any case, the prediction limits are always
correct up to order n~!). Then, if we take an average of the different predictive densities, we
obtain a predictive density that gives good coverage probabilities only if the previous regions
are the same in each case. So we cannot, in general, use this averaged predictive density to
obtain good prediction limits.

Nevertheless, when a predictive density with correct coverage probability for any region
exists, the proposed predictive density captures the first terms of its development in powers
of n~'/2. This can be appreciated in the example of the next section.

Remark. In the particular case where the components of Z are independent the calculations
simplify considerably:

W(z;; 0) = —b"(0)Gl(z; 0) +"(0)B)(z;; 0),
with

gli(z; 0)
gi(z; 0)

h(z;, z5 0) = i"(0)G'(z;; 0)

Gi(z ) — Giy(z: 6)),

g/ 0)

; 1
Bz 0) =3 <[z]
)

and therefore

gi(zi; 0) gl(z;; 0)
gi(zi; 0) g/(z;; 0)

kj(zza Zjs 0) =i"(0)

It is easily seen that these quantities are invariant with respect to changes in the
parametrization. The correction terms involving the A’ are the same as those proposed by
Barndorff-Nielsen and Cox (1996) and Vidoni (1998). Moreover, we can write

8z y) = gz é){l —b"(6)d, log g + %i“@( 9, log gdslog g — Oy log g..
G (zi; 0)
+ 210,0-. lo i )
Z[ 10,0:, log g'(z;; 0) o 0)>}

Thus, when the components of Z are identically distributed g(z; y) is a symmetric function
of (z1,z2, ..., Zm).
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4. A touchstone example

Consider a sample yy, ..., y, from a random vector (Y1, ..., ¥,)T ~ N(XBT, 0%1,). We
try to predict a further random vector (Zi, ..., Z,)T ~ N(AB’, 0?1,,), where X and A are
known matrices of full rank, 8 is a p-dimensional unknown parameter, p < n — 1, and
o > 0 is also unknown. We need to calculate the quantities involved in expression (2). The

parameter € is such that 0; =f;, i=1,2,..., p, and 0,,; = 0, but instead of p+ 1 we
use the index o and reserve the indices 7, s, ... to indicate the components of . The
asymptotic variance and bias of 0 are (see Barndorff-Nielsen and Cox 1994)
XTx
o2 0 o
i= , b" =0, b’ = ——(1+2p).
2n 4n
0 3
o

Let u; = 4,87, where A; = (An, Aia, ..., Asp) is the ith row of A, i=1,..., m. Then, for

i=1,...,m,

: 1 1 Zj — iZ
gl(Zi; 9) = \/Z?'EO’ exp{_z(o.izﬂ)}a

! i — M ! 1 i i2
& _Zi—Hi, & _ 1 G-w

gl 2 gz o o3 ’

i i i Zi Ui
Gr - _g/lira Gg - o g,

; Zi— Ui ; 2@ —w)  (z—w)
Grs = o2 glir/ll‘s’ GOO =g { o2 - o4 .

Putting A; = (z; — u;)/o and assuming (XTXf1 = I'/n, we have that
i gi i gi 3
B = — > Aikihis, B, =——=—A;,
rs 20_ o0 20 i

W= (4 2p)g A — - ATA A~ - gAY,

S| ATAT —1 1
k’:—<p+—'A,2.+—A;‘)+C,
n 2 4
gi =1 /1~I“/1TA~A~+1A2A2—1A2 A2
_I’l 1 jeiEg 2 i=j 2( i+ j) )

where C is a constant term. Hence, up to order n~!, the predictive density is given by

m T m
8(z; y) o eXp{Z < % + W) A2 + %Z > (2,1,-1%}&,-&- + A,?Ai) }
i=1

i=1 J<i
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Table 1. Comparison of coverage probabilities for the estimative, univariate corrected and multivariate
corrected prediction limits. Results are based on 20000 replications and estimated standard errors are
always smaller than 0.004.

a Estimative Univariate Multivariate
n=10 m=>5 0.1 0.123 0.135 0.095
0.2 0.203 0.235 0.193
0.3 0.292 0.338 0.298
0.4 0.373 0.444 0.406
0.5 0.448 0.533 0.502
0.6 0.528 0.623 0.606
0.7 0.609 0.712 0.704
0.8 0.699 0.805 0.808
0.9 0.799 0.894 0.902
n=20 m=10 0.1 0.115 0.137 0.096
0.2 0.209 0.247 0.202
0.3 0.288 0.340 0.297
04 0.375 0.443 0.406
0.5 0.450 0.527 0.502
0.6 0.548 0.633 0.614
0.7 0.631 0.721 0.714
0.8 0.724 0.809 0.811
0.9 0.828 0.898 0.906
n=30 m=15 0.1 0.109 0.130 0.093
0.2 0.208 0.247 0.201
0.3 0.294 0.346 0.302
0.4 0.380 0.443 0.404
0.5 0.466 0.538 0.510
0.6 0.551 0.629 0.609
0.7 0.640 0.718 0.708
0.8 0.735 0.809 0.808
0.9 0.845 0.901 0.907
n=40 m =20 0.1 0.111 0.131 0.095
0.2 0.209 0.245 0.201
0.3 0.293 0.342 0.299
0.4 0.386 0.441 0.408
0.5 0.465 0.531 0.504
0.6 0.560 0.628 0.613
0.7 0.655 0.724 0.717
0.8 0.747 0.809 0.810

0.9 0.853 0.900 0.908
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with A; = (zi — fi;)/0, i=1, ..., m. This is equivalent to saying that, up to order n~!,

N2
(” P ) A~ 130, In + AXTX) AT, 1 — p),
n

where A = (Al, cee Am), as one can prove by expanding this density in powers of n. On the
other hand, it is a well-known result (see, for instance, Wang and Chow 1994) that this is the
exact distribution of the pivotal quantity (1 — p/m)!/ 2A and it is then recovered by our
predictive density.

Unfortunately, closed-form expressions for approximate predictive densities are rarely
available. Thus, the performance of different methods should be evaluated through the
behaviour of the corresponding approximate simultaneous prediction limits.

Here a simulation study has been performed for the case when Yi,..., Y, and
Zi, ..., Z, are independent and identically distributed random variables having normal
distribution N(u, 62) with unknown parameters. This is a particular case of our example
with p=1, f=u , X =1} and A =17, where 1; denotes the k-dimensional row vector
with all components equal to 1. In Table 1 we compare the behaviour of three systems of
prediction limits: the quantiles of the estimative marginal densities (estimative), the
univariate corrected estimative quantiles obtained by disregarding terms ar AY in (4)
(univariate), and those with multivariate correction given in (4) (multivariate). The results
show that the proposed multivariate prediction limits improve on both the estimative and the
univariate solutions.
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