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2Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain.

E-mail carles.rovira@ub.edu

We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional

Brownian motion with Hurst parameter H . 1
2
. We prove an existence and uniqueness result for this

problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is

bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders,

we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.
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1. Introduction

A general theory for stochastic differential equations (SDEs) driven by a fractional

Brownian motion (fBm) has not yet been established and in fact only a few results have

been proved (see for example, Nualart and Rascanu 2002; Nualart and Ouknine 2003;

Coutin and Qian 2000) for various approaches to the problem. Moreover, even the definition

of stochastic integration with respect to fBm is not yet completely established. Several

approaches have been proposed in recent years (see, for example, Alòs and Nualart 2003;

Carmona and Coutin 2000; Coutin and Qian 2002). Given the rudimentary status of the

general theory, an attempt to study the class of stochastic delay differential equations

(SDDEs) might appear somewhat rash. Indeed, these equations are typically an infinite-

dimensional problem, and so are much more difficult to solve than the usual SDEs.

Nevertheless, they also include some problems that are more easily solved than SDEs, but

which are still of great interest in applications, for example, to finance (see Arriojas et al.

2003; and, more generally, Hobson and Rogers 1998).

In the present paper we shall consider the Cauchy problem for an SDDE

dX (t) ¼ b(X (t))dt þ � (X (t � r))dB(t), t 2 [0, T ],

X(s) ¼ �(s),s2[�r,0], where � 2 C([�r, 0]) and the noise process fB(t), t > 0g represents

an fBm with Hurst parameter H . 1
2
. As a solution to this problem, we shall define a process

fX (t), t 2 [�r, T ]g satisfying
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X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

� (X (s� r))dB(s), t 2 [0, T ],

X (s) ¼ �(s), s 2 [�r, 0],

where � 2 C([�r, 0]). The stochastic integral that appears in this equation is the

Stratonovich integral with respect to the fBm, introduced by Russo and Vallois (1993) (see

Definition 1 below). Nevertheless, all the results presented in this paper can also be obtained

via Skorohod integrals. To this class of problems belongs, for example, the Langevin

equation with fBm, whose solution is the fractional Ornstein–Uhlenbeck process thoroughly

studied in Cheridito et al. (2003) – since the diffusion coefficient is constant, the equations

with and without delay coincide.

To obtain the solution, we shall first solve the equation within the interval [0, r]; then we use

this solution process as the initial data to solve the equation within the interval [r, 2r] , and so

on. This procedure allows us to construct a solution step by step, demonstrating at each stage

its uniqueness and its regularity. With the same approach, we can prove, under the customary

assumption of non-degeneracy of the diffusion coefficient, that the law of the solution at any

time t admits a density with respect to Lebesgue measure on R. Note that we use the classical

techniques of stochastic calculus combined with some special properties of fBm. The delay

allows us to use classical methods – such as Picard’s iterations – and to avoid some of the usual

problems connected with fBm.

The paper is organized as follows. In the next section we introduce the basic notation for

fBm and recall some results from Nualart (2003) and Alòs and Nualart (2003). Section 3 is

devoted to studying the existence of a unique solution to our SDDE driven by fBm. Finally,

in Section 4, we obtain the smoothness of the density of the solution.

2. Fractional Brownian motion

Let us start with some basic facts about fractional Brownian motion and the stochastic

calculus that can be developed with respect to this process.

Fix a parameter 1
2
, H , 1. The fBm of Hurst parameter H is a centred Gaussian

process B ¼ fB(t), t 2 [0, T ]g with the covariance function

R(t, s) ¼ 1
2
(s2H þ t2H � jt � sj2H ):

Let us assume that B is defined on a complete probability space (�, F , P). One can show

(see, for example, Alòs and Nualart 2003) that

R(t, s) ¼
ð t^s
0

K(t, r)K(s, r)dr, (1)

where K(t, s) is the kernel defined by

K(t, s) ¼ cH s
1
2
�H

ð t
s

(r � s)H�3
2 r H�1

2 dr,

for s , t, where
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cH ¼ H(2H � 1)

B(2� 2H , H � 1
2
)

" #1=2

and B(Æ, �) is the beta function. We assume that K(t, s) ¼ 0 if s . t. It is worth noting that

equation (1) implies that R is non-negative definite and, therefore, there exists a Gaussian

process with this covariance.

Let us denote by E the set of step functions on [0, T ]. Let H be the Hilbert space

defined as the closure of E with respect to the scalar product

h1[0, t], 1[0,s]iH ¼ R(t, s):

One can show that

R(t, s) ¼ ÆH

ð t
0

ð s
0

jr � uj2H�2 du dr,

where ÆH ¼ H(2H � 1). This implies that

hj, łiH ¼ ÆH

ðT
0

ðT
0

jr � uj2H�2j(r)ł(u)du dr,

for all j and ł in E. The mapping 1[0, t] ! B(t) can be extended to an isometry between H
and the first chaos H1 associated with B. We denote this isometry by j ! B(j). The

elements of H may not be functions, but just distributions of negative order. Hence it is

convenient to introduce the Banach space jHj of measurable functions j on [0, T ] satisfying

kjk2jHj :¼ Æ

ðT
0

ðT
0

jj(r)j jj(u)j jr � uj2H�2 dr du , 1:

One can prove (Pipiras and Taqqu 2000) that the space jHj equipped with the inner product

hj, łiH is not complete. It is isometric to a subspace of H, which we will therefore identify

with jHj. The continuous embedding L1=H ([0, T ]) � jHj has been proved in Mémin et al.

(2001).

2.1. Malliavin calculus and stochastic integrals for fractional Brownian

motion

To construct a stochastic calculus of variations with respect to the Gaussian process B, we

shall follow the general approach introduced by Nualart (1995), among others.

Let S be the set of smooth and cylindrical random variables of the form

F ¼ f (B(�1), . . . , B(�n)), (2)

where n > 1, f 2 C1
b (Rn) ( f and its partial derivatives of all orders are bounded), and

�i 2 H. The derivative operator D of a smooth and cylindrical random variable F of the

form (2) is defined as the H-valued random variable
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DF ¼
Xn
j¼1

@ f

@xj
(B(�1), . . . , B(�n))� j:

The derivative operator D is then a closable operator from Lp(�) into Lp(�; H) for any

p > 1. For any k > 1, let Dk be the kth iteration of the derivative operator. For any p > 1,

the Sobolev space Dk, p is the closure of S with respect to the norm

kFk p
k, p ¼ EjFj p þ E

Xk
i¼1

kDiFk p

H�i

 !
:

Proceeding as before, given a Hilbert space V , we denote by D1, p(V ) the corresponding

Sobolev space of V -valued random variables.

The divergence operator � is the adjoint of the derivative operator, defined by means of

the duality relationship

E(F�(u)) ¼ EhDF, uiH,
where u is a random variable in L2(�; H). We say that u belongs to the domain of the

operator �, denoted by Dom �, if the mapping F 7! EhDF, uiH is continuous in L2(�). A

basic result says that the space D1,2(H) is included in Dom �.
Two basic properties of the divergence operator are the following:

(i) For any u 2 D1,2(H),

E�(u)2 ¼ Ekuk2H þ EhDu, (Du)�iH�H,

where (Du)� is the adjoint of (Du) in the Hilbert space H�H.

(ii) For any u 2 D2,2(H), �(u) belongs to D1,2, and for any h in H,

hD�(u), hiH ¼ �(hDu, hiH)þ hu, hiH:
Let us now consider the space jHj � jHj � H�H of measurable functions j on [0, T ]2

such that

kjk2jHj�jHj :¼ Æ2
H

ð
[0,T]4

jj(r, s)j jj(r9, s9)j jr � r9j2H�2 js� s9j2H�2 dr ds dr9 ds9 , 1:

Let us denote by D1,2(jHj) the space of processes u such that

Ekuk2jHj þ EkDuk2jHj�jHj , 1:

Then D1,2(jHj) is included in D1,2(H), and for a process u in D1,2(jHj) we can write

Ekuk2H ¼ ÆH

ð
[0,T]2

u(s)u(r)jr � sj2H�2 dr ds

and

EhDu, (Du)�iH�H ¼ Æ2
H

ð
[0,T]4

Dru(s)Dr9u(s9)jr � s9j2H�2jr9� sj2H�2 dr dr9ds ds9:

The elements of D1,2(jHj) are stochastic processes; we will make use of the integral notation
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�(u) ¼
Ð T
0
u(t)�B(t) and we will call this integral the Skorohod integral with respect to the

fBm. Moreover, if u 2 D1,2(jHj) one can also define an indefinite integral process given by

X t ¼
Ð t
0
u(s)�B(s).

Let us now define a Stratonovich type integral with respect to B (we put B(t) ¼ 0 if

t =2 [0, T ]). Following the approach by Russo and Vallois (1993), we have:

Definition 1. Let u ¼ fu(t), t 2 [0, T ]g be a stochastic process with integrable trajectories.

The Stratonovich integral of u with respect to B is defined as the limit in probability as �
tends to zero of

(2�)�1

ðT
0

u(s)(B(sþ �)� B(s� �))ds,

provided this limit exists. When the limit exists, it is denoted by
Ð T
0
u(t)dB(t).

It has been shown in Alòs and Nualart (2003) that a process u 2 D1,2(jHj), for which it holds

almost surely that ðT
0

ðT
0

jDsu(t)j jt � sj2H�2 ds dt , 1,

is Stratonovich integrable and thatðT
0

u(s)dB(s) ¼
ðT
0

u(s)�B(s)þ ÆH

ðT
0

ðT
0

Dsu(t)jt � sj2H�2 ds dt: (3)

On the other hand, if the process u has º-Hölder continuous trajectories almost surely, with

º . 1� H , then its Stratonovich integral
Ð T
0
u(s)dB(s) exists and coincides with the pathwise

Riemann–Stieltjes integral.

When pH . 1, we define the space L
1, p
H of processes u 2 D1,2(jHj) such that

kuk p,1 ¼
ðT
0

E(ju(s)j p)dsþ E

ðT
0

ðT
0

jDru(s)j1=H dr

� � pH

ds

 !" #1= p
, 1:

It is known (see Nualart, 2003) that

E sup
t2[0,T]

����
ð t
0

u(s)�B(s)

����
p

 !
< Ckuk p

p,1,

where the constant C . 0 depends on p, H and T .

2.2. Some useful results

In the next section we shall need some additional results which provide sufficient conditions

for processes Z ¼ fZ(t), t 2 [0, T ]g to belong to the space D1,2(jHj). Let us recall once

more that these results hold in the case H . 1
2
.
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Lemma 1. Let Z ¼ fZ(t), t 2 [0, T ]g be a stochastic process such that, for any t 2 [0, T ],

Z(t) 2 D1,2 and

sup
s

E(jZ(s)j2) < c1 and sup
r,s

E(jDr Z(s)j2) < c2:

Then the stochastic process Z belongs to D1,2(jHj) and

EkZk2jHj þ EkDZk2jHj�jHj , cH ,T (c1 þ c2):

Proof. The proof follows the computations given in Nualart (2003). For instance, we can

compute

EkDZk2jHj�jHj ¼ E Æ2
H

ð
[0,T ]4

jDr Z(s)j jDr9 Z(s9)j jr � s9j2H�2 js9� rj2H�2 dr ds dr9 ds9

� �

< E Æ2
H

ð
[0,T ]4

jDr Z(s)j2 jr � sj2H�2 js9� rj2H�2 dr ds dr9 ds9

� �

< Æ2
H

T 2H�1

H � 1
2

 !2ð
[0,T ]2

E(jDr Z(s)j2)dr ds < cH ,T c2:

h

Lemma 2. Let Z ¼ fZ(t), t 2 [0, T ]g be a stochastic process such that for any t 2 [0, T ],

Z(t) 2 D1,2 and

sup
s

E(jZ(s)j2) < c1 and sup
r,s

E(jDr Z(s)j2) < c2:

Then given r . 0 and f a deterministic continuous function, the stochastic process

V ¼ fV (t), t 2 [0, T ]g defined as

V (t) ¼ Z(t � r), if t . r,

f (t), if t , r,

�

belongs to D1,2(jHj).

Proof. It is clear that V belongs to D1,2(H) and that

DsV (t) ¼
Ds Z(t � r) , if t . r,

0, if t , r:

�

Then it is enough to apply Lemma 1. h

Given s ¼ (s1, . . . , sk) 2 [0, T ]k , we denote by s the length of the finite sequence s, that

is, k. For a random variable Y 2 Dk, p and s 2 [0, T ]k, we denote by Dk
s Y the iterated

derivative Dsk Dsk�1
� � � Ds1Y . If f 2 C

0,1
b (R), the space of infinitely differentiable functions

defined on R with bounded derivatives, we set
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ˆs( f ; Y ) ¼
Xjsj
m¼1

X
f (m)(Y )

Ym
i¼1

Dj pij
pi

Y ,

where the second summation extends to all partitions p1, . . . , pm of length m of s.

Finally, we need the following lemma, an extension of a result proved in Rovira and

Sanz-Solé (1996).

Lemma 3. Let fFn, n > 1g be a sequence of random variables in Dk, p, k > 1, p > 2.

Assume that there exists F 2 Dk�1, p such that fDk�1Fn, n > 1g converges to Dk�1F in

L p(�; [0, T ]�(k�1)) as n goes to infinity and that, moreover, the sequence fDkFn, n > 1g is

bounded in L p(�; [0, T ]�(k�1)). Then F 2 Dk, p.

3. Existence and uniqueness

Let B ¼ fB(t), t 2 [0, T ]g be a one-dimensional fractional Brownian motion with Hurst

parameter H . 1
2
.

Let us define the following stochastic delay differential equation driven by an fBm:

X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

� (X (s� r))dB(s), t 2 [0, T ], (4)

where r . 0 and � 2 C([�r, 0]). For simplicity, let us assume T ¼ Mr. The stochastic

integral in (4) must be understood as the Stratonovich type integral defined above (see

Definition 1).

We shall assume that b and � are real valued functions that satisfy the following

conditions:

(H) b and � are M-times differentiable functions with bounded derivatives up to

order M. Moreover, � is bounded and jb(0)j < c1 for some constant c1.

Theorem 4. Under hypotheses (H), the SDDE (4) admits a unique solution X on [0, T ].

The proof of this theorem is based on the following lemmas and propositions.

Lemma 5. Let M ¼ fM(t), t 2 [0, T ]g be a quadratic integrable stochastic process. Assume

that b is a Lipschitz function defined on R, such that jb(0)j < c1 for some constant c1. Then,

for any T1 < T, the stochastic integral equation

X (t) ¼ xþ
ð t
0

b(X (s))dsþ M(t), t 2 [0, T1], (5)

with X (t) ¼ 0 if t . T1, admits a unique solution X on [0, T ].

Proof. In order to prove the existence and uniqueness, we can prove that the classical Picard–

Lindelöf iterations converge to a solution of (5). Consider
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X (nþ1)(t) ¼ xþ
Ð t
0
b(X (n)(s))dsþ M(t),

X (0)(t) ¼ xþ M(t),

(
(6)

for t 2 [0, T1], and X (n)(t) ¼ 0 for any t > T1 and all n. Notice that we only need to deal

with t 2 [0, T1]. We have

E(jX (1)(t)� X (0)(t)j2) < K2E

ð t
0

(x2 þ jM(s)j2)ds
� �

þ K2 < K2

uniformly in t. For a generic n, we thus have

E(jX (nþ1)(t)� X (n)(t)j2) < K2

ð t
0

E(jX (n)(s)� X (n�1)(s)j2)ds

< Kn�1
2

ð t
0

ð s1
0

� � �
ð sn�1

0

E(jX (1)(s)� X (0)(s)j2)dsn . . . ds1 <
KKn�1

2

n!
:

From this we can easily prove that the Picard–Lindelöf iterations converge in L2(�) to a

solution for equation (5) on [0, T1] . A similar argument gives the uniqueness. h

Let us introduce some new notation. For fixed m > 1 and p > 2, we will say that a

stochastic process Z ¼ fZ(t), t 2 [0, T ]g satisfies condition (D(�,m, p)) if Z(t) belongs to

Dm, p for any t 2 [0, T ], and

E

�
sup
t

jZ(t)j p
�

< c1, p and E

�
sup
t

sup
u,juj¼k

jDk
u Z(t)j p

�
< c2,k, p,

for any k < m and for some constants c1, p, c2,k, p. Notice that if Z satisfies condition

(D(�,m, p)), then Lemma 1 yields that Z belongs to D1,2(jHj).

Proposition 6. Let M ¼ fM(t), t 2 [0, T ]g be a stochastic process satisfying condition

(D(�,m, p)). Assume that b has bounded derivatives up to order m and that jb(0)j < c1, for

some constant c1.

Then, given T1 < T, the stochastic integral equation

X (t) ¼ xþ
ð t
0

b(X (s))dsþ M(t), t 2 [0, T1], (7)

with X (t) ¼ 0 if t . T1, admits a unique solution X on [0, T ]. Moreover, the stochastic

process X ¼ fX (t), t 2 [0, T ]g satisfies condition (D(�,m, p)).

Proof. The existence of a unique solution was proved in Lemma 5, where we proved that the

Picard–Lindelöf iterations converge to a solution of (7). A simple computation gives

E

�
sup
r<t

jX (r)j p
�

< K p E sup
r<t

����
ð r
0

b(X (s))ds

����
p� �

þ E

�
sup
r<t

jM(r)j p)þ x p

� �
,

so
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E

�
sup
r<t

jX (r)j p
�

< K p 1þ
ð t
0

E

�
sup
r<s

jX (r)j p
�
ds

� �

and, finally, using a Gronwall’s lemma argument, one finds that

E sup
t

j(X (t)j p
� �

, c1, p , 1:

In order to check that, for all k < m, X (t) belongs to Dk, p for every t 2 [0, T ] and that

E

�
sup
t

sup
u,juj¼k

jDk
u X (t)j p

�
< c2,k, p,

we will use the Picard–Lindelöf iterations defined in (6). We consider the induction

hypothesis ( ĤHk), for k < m:

(a) For all n > 0, X (n)(t) 2 Dk, p for all t.

(b) Dk�1X (n)(t) converges to Dk�1X (t) in Lp(�, [0, T ]k�1) when n tends to 1.

(c) supn sup t supu,u¼k E(jDk
u X

(n)(t)j p) < K p,k , 1.

Notice that hypothesis ( ĤHk) implies that X (t) 2 Dk, p and that we need only study the case

t 2 [0, T1] , since for t . T1 all the results are obvious.

Step 1. We prove ( ĤH1), that is, the case k ¼ 1. Since X (n)(t) converges to X (t) in Lp(�),

when n tends to 1, we know that (b) is true. In order to prove (a) and (c), we will proceed

with a second induction to prove, for all n > 0, the hypothesis ( ~HHn):

(i) X (n)(t) 2 D1, p for all t 2 [0, T ].

(ii) sup t supu E(jDuX
(n)(t)j p) < Kn, p,1 , 1.

By its very definition, it is clear that X (0)(t) 2 D1, p for all t and that, for t 2 [0, T1],

DuX
(0)(t) ¼ DuM(t):

So ( ~HH0) is proved. Assume now that the hypothesis of induction ( ~HHn) is true. Then, from the

definition of X (nþ1), it follows that X (nþ1)(t) 2 D1, p and, for any t 2 [0, T1],

DuX
(nþ1)(t) ¼

ð t
0

b9(X (n)(s))DuX
(n)(s)dsþ DuM(t):

Moreover, since M satisfies condition (D�,m, p), we have

sup
u

E(jDuX
(nþ1)(t)j p) < K p

ð t
0

sup
u

E(jDuX
(n)(s)j p)dsþ sup

u

E(jDuM(t)j p)
� �

< Knþ1, p , 1:

From this, ( ~HHnþ1) can be easily proved. Furthermore, we have the inequality

sup
u

E(jDuX
(nþ1)(t)j p) < K p

ð t
0

sup
u

E(jDuX
(n)(s)j p)dsþ K p:

Iterating this inequality n times, we obtain
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sup
u

E(jDuX
(nþ1)(t)j p) < (K p)

2

ð t
0

ð s
0

sup
u

E(jDuX
(n�1)(v)j p)dv dsþ K2

p t þ K p

<
Xn
k¼0

(K p)
kþ1 t

k

k!
< K p exp(K p t):

Thus we have that

sup
n

sup
t

sup
u

E(jDuX
(n)(t)j p) < K p exp(K pT ) , 1

and ( ĤH1) is proved.

Notice now that by applying Lemma 3 we obtain that, for all t 2 [0, T ] , X (t) 2 D1, p.

Moreover, we can also conclude that

DuX (t) ¼
ð t
0

b9(X (s))DuX (s)dsþ DuM(t),

and we easily see that

E

�
sup
t

sup
u

jDuX (t)j p
�

, 1:

Step 2. Let us assume that ( ĤHi) holds for i < k < m� 1. We wish to check ( ĤHkþ1). We

will prove (a) again by induction on n. Let us consider, for all n > 0, the hypothesis ( ~HHn):

(i) X (n)(t) 2 Dkþ1, p for all t 2 [0, T ].

(ii) sup t supu,juj¼kþ1E(jDkþ1
u X (n)(t)j p) < Kn, p,1 , 1.

Since M(t) 2 Dkþ1, p for all t, from the definition of X (0) it is clear that X (0)(t) 2 Dkþ1, p

for all t and that, for juj, with u ¼ k þ 1,

Dkþ1
u X (0)(t) ¼ Dkþ1

u M(t),

for any t 2 [0, T1]. Thus ( ~HH0) is true. Assuming now that ( ~HHi) is true for i < n, from the

definition of X (nþ1) it follows that, for all t, X (nþ1)(t) 2 Dkþ1, p and for u, juj ¼ k þ 1,

Dkþ1
u X (nþ1)(t) ¼

ð t
0

ˆu(b; X
(n)(s))dsþ Dkþ1

u M(t),

for any t 2 [0, T1]. The proof of (b) can now be obtained easily from the expressions for

Dk
u X

(n)(t) and Dk
u X (t). Finally, to prove (c), set

˜u(b; X
(n)(s)) ¼ ˆu(b; X

(n)(s))� b(kþ1)(X (n)(s))Dkþ1
u X (n)(s):

Using the inductive hypothesis, we obtain

sup
u,juj¼kþ1

sup
s

E(j˜u(b; X
(n)(s))j p) < K p:

Then
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Dkþ1
u X (nþ1)(t) ¼

ð t
0

˜u(b; X
(n)(s))ds

þ Dkþ1
u M(t)þ

ð t
0

b(kþ1)(X (n)(s))Dkþ1
u X (n)(s)ds:

Reproducing the same calculations as in the proof of ( ĤH1), we can complete the proof of ( ĤHkþ1).

Notice now that by applying Lemma 3 once again, we have that X (t) 2 Dkþ1, p for every

t and we easily obtain that

E

�
sup
t

sup
u,juj¼kþ1

jDkþ1
u X (t)j p

�
< K p:

h

The following proposition studies the behaviour of the stochastic integral.

Proposition 7. Let Y ¼ fY (t), t 2 [0, T ]g be a stochastic process satisfying condition

(D�,mþ1, p). Then the stochastic Stratonovich integral

M(t) :¼
ð t
0

Y (s)dB(s), t 2 [0, T ],

is well defined and the stochastic process M ¼ fM(t), t 2 [0, T ]g satisfies condition

(D�,m, p).

Proof. Clearly, Y is Stratonovich integrable, but the Stratonovich integral and the divergence

operator do not coincide and we haveð t
0

Y (s)dB(s) ¼ �(Y1[0, t])þ ÆH

ð t
0

ðT
0

DvY (s)js� vj2H�2dv

� �
ds:

We have

E

�
sup
t

jM(t)j p
�

¼ E sup
t

����
ð t
0

Y (s)dB(s)

����
p� �

(8)

< K pE

�
sup
t

j�(Y1[0, t])j p
�
þ K pE sup

t

����ÆH

ð t
0

ðT
0

DvY (s)js� vj2H�2dv

� �
ds

����
p� �

< K pkYk p
p,1 þ K pcHE

�
sup
s,v

jDvY (s)j p
�����
ðT
0

ðT
0

js� vj2H�2 dv

� �
ds

����
p

< K p , 1:

As a consequence of this, we find that

E sup
t

jM(t)j p
� �

< K p:
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Applying an induction argument again, it is easy to check that M(t) 2 Dk, p for any t and

k < m, and that

Dk
(u1,...,uk )

M(t) ¼
Xk
i¼1

Dk�1
(u1,...,ûui,...,uk )

Y (ui)1[0, t](ui)þ �(Dk
uY1[0, t]),

where (u1, . . . , ûui, . . . , uk) denotes the vector u without the component ui.

By the same arguments used in (8), we obtain that for all k < m,

E sup
t

sup
u,juj¼k

jDk
uM(t)j p

 !
< K p:

Proof of Theorem 4. To prove that equation (4) admits a unique solution on [0, T ] , we shall

first prove the result for t 2 [0, r]. Then, by induction, we shall prove that if equation (4)

admits a unique solution on [0, Nr] , we can further extend this solution to the interval

[0, (N þ 1)r] and that this extension is unique.

Actually our induction hypothesis, for N < M, is the following:

(HN ) The equation

X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

� (X (s� r))dB(s), t 2 [0, Nr],

with X (t) ¼ 0 if t . Nr, has a unique solution. Moreover, for all p > 2, X (t)

satisfies condition (D(�,M�N , p)).

For simplicity, we omit the dependence on N of the solution X . Notice that at each step we

loose one degree of regularity.

Check (H1). Let t 2 [0, r]. Equation (4) can be written in the following easy form:

X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

� (�(s� r))dB(s): (9)

Let us define the process

M(t) :¼
ð t
0

� (�(s� r))1f t,rg dB(s),

for t 2 [0, T ]. Since � is deterministic, it is immediately evident that � (�(� � r)) 2 D1,2(jHj)
and that D� (�(s� r)) ¼ 0. For this reason the stochastic integral in (9) is well defined and,

in view of (3), coincides with the divergence operator. Again, since � is a deterministic

continuous function, we have that M(t) 2 Dk, p for all k > 1, p > 2. Moreover,

DuM(t) ¼ � (�(u� r))1fu, t,rg,

and DkM(t) ¼ 0, when k > 2. Then, for all k > 1, p > 2, we have that
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E sup
t

jM(t)j p
� �

< k� (�(:� r))k p
p,1 < c3,1, p

and

E sup
t

sup
u,juj¼k

jDk
uM(t)j p

 !
< c4,k, p,

for some constants c3, p, c4,k, p. We have thus proved that M satisfies condition (D(�,k, p)) for
any k > 1.

From Proposition 6 we have that there exists a unique solution X and that this solution

satisfies condition (D(�,M�1, p)).

Induction. Assume that (Hi) is true for i < N, with N , M . We wish to check (HNþ1).

Consider the stochastic process fZ(t), t 2 [0, T ]g defined as

Z(t) ¼
j(t � r), if t < r,

X (t � r), if r , t < (N þ 1)r,

0, if t . (N þ 1)r,

8<
:

where X is the solution obtained in (HN ). Set Y (t) ¼ � (Z(t)).
Thus, for t 2 [0, (N þ 1)r], our problem has become the equation

X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

Y (s)dB(s): (10)

Let us define the process

M(t) :¼
ð t
0

Y (s)1f t,(Nþ1)rg dB(s), t 2 [0, T ]:

and prove that the Stratonovich integral is well defined. To this end, we must prove that (as

pointed out in the previous section):

1. Y 2 D1,2(jHj);
2.
Ð T
0

Ð T
0
jDuY (s)j js� uj2H�2 ds du , 1

These two conditions can be obtained from Lemma 2 and the following facts: � is a bounded

function with bounded derivatives, Z is in D1,2(jHj), sup t supuE(jDuZ(t)j p) < c2, p, and

DuY (t) ¼ � 9(Z(t))DuZ(t):

Since the stochastic process Z satisfies condition (D(�,M�N , p)) and � has derivatives up to

order M, it is clear that Y (t) 2 Dk, p for any t 2 [0, T ] and k < M � N, with

DuY (t) ¼ � 9(Z(t))DuZ(t), Dk
uY (t) ¼ ˆu(� , Z(t)):

Furthermore, Y will also satisfy condition (D(�,M�N , p)).

By Proposition 7 we obtain that M satisfies condition (D(�,M�N�1, p)). Finally, from

Proposition 6 and using the same arguments as in step 1, we complete the proof of this

theorem. h
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Remark 1. In order to define the stochastic integrals appearing in the previous Picard

iterations, we need only study the Malliavin derivatives up to order M. For this reason, we

have to assume that the coefficients � and b have bounded derivatives up to order M, which

is unnecessary in the case of SDEs driven by a standard Brownian motion. As a by-product

of our method, we can easily prove that if the coefficients � and b have bounded deriva-

tives of any order, then the solution X (t) belongs to D1. Moreover, assuming the non-

degeneracy of � , we can also prove the smoothness of the density.

4. Regularity of the density

Let us consider now a different set of hypotheses:

( ĤH) b and � are real functions with bounded derivatives of all orders. Moreover, � is

bounded and jb(0)j < c1 for some constant c1.

Theorem 8. Assume Hypotheses ( ĤH). If there exists a positive constant c0 such that

j� (x)j . c0 for all x, then, for any t 2 (0, T ] the solution X (t) of the SDDE (4) has an

infinitely differentiable density with respect to Lebesgue measure on R.

Proof. Fix t 2 (0, T ]; to apply the Malliavin criterion for the existence of a smooth density,

we have to check:

1. X (t) 2 D1;

2. (
Ð T
0
jDuX (t)j2 du)�1 2

T
p>1 L

p(�).

Following the same lines as in the proof of Theorem 4, we obtain that X (t) 2 D1 for

any t 2 [0, T ]. In order to prove the second condition it is enough to check that for any

p > 1 there exists �0 . 0 such that

P

ðT
0

jDuX (t)j2 du < �

� �
< � p,

for all � < �0.
From equation (4) we can write

X (t) ¼ �(0)þ
ð t
0

b(X (s))dsþ
ð t
0

� (X (s� r))�B(s)

þ ÆH

ð t
0

ðT
0

Dv� (X (s� r))js� vj2H�2dv

� �
ds:

So, for any u < t � r, we obtain
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DuX (t) ¼
ð t
u

b9(X (s))DuX (s)dsþ � (X (u� r))

þ
ð t
uþr

� 9(X (s� r))DuX (s� r)�B(s)

þ ÆH

ð t
uþr

ð s�r

0

DuDv� (X (s� r))js� vj2H�2dv

� �
ds,

and, when u 2 (t � r, t), we have

DuX (t) ¼
ð t
u

b9(X (s))DuX (s)dsþ � (X (u� r)):

Then, again using a Gronwall’s inequality argument, we have that

E sup
u2( t�r, t),s2( t�r, t)

jDuX (s)jq
 !

< Kq:

On the other hand, we can write

P

ðT
0

jDuX (t)j2 du
� �

< p1,� þ p2,�,

with

p1,� ¼ P

ð t
t��Æ

����
ð t
u

b9(X (s))DuX (s)dsþ � (X (u� r))

����
2

du < �,

 

sup
u2( t��Æ, t)

ð t
t��Æ

jb9(X (s))DuX (s)jds < ��
!

p2,� ¼ P sup
u2( t��Æ, t)

ð t
t��Æ

jb9(X (s))DuX (s)jds . ��
 !

:

Since j� (x)j . c0 for all x, when Æ , 1 we clearly have that p1,� ¼ 0. However, using

Chebyshev’s inequality, for any q . 1,

p2,� <
1

��q
E sup

u2( t��Æ, t)

����
ð t
t��Æ

jb9(X (s))DuX (s)jds
����
q

 !

< �(Æ��)qKE sup
u2( t��Æ, t),s2( t��Æ, t)

jDuX (s)jq
 !

:

So, choosing � , Æ , 1, the proof is complete. h
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Rovira, C. and Sanz-Solé, M. (1996) The law of the solution to a nonlinear hyperbolic SPDE.

J. Theoret. Probab., 9, 863–901.

Pipiras, V. and Taqqu, M.S. (2000) Integration questions related to fractional Brownian motion.

Probab. Theory Related Fields, 118, 251–291.

Russo, F. and Vallois, P. (1993) Forward, backward and symmetric stochastic integration. Probab.

Theory Related Fields, 97, 403–421.

Received June 2004 and revised May 2005

100 M. Ferrante and C. Rovira


	1.&X;Introduction
	2.&X;Fractional Brownian motion
	Equation 1
	2.1.&Y;Malliavin calculus and stochastic integrals for fractional Brownian motion

	Equation 2
	Equation 3
	2.2.&Y;Some useful results

	3.&X;Existence and uniqueness
	Equation 4
	Equation 5
	Equation 6
	Equation 7
	Equation 9
	Equation 10
	4.&X;Regularity of the density
	Acknowledgements
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15

