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A coding of hierarchical structure in finite directed tree graphs was introduced by Robert Horton in
1945; after a modification by Strahler in 1952, this has become a standard river network code defined
as follows. Edges along a path adjoining a source (valence 1 vertex) to a junction (valence 3 or higher
vertex) are coded as order 1. Such a path of order 1 edges is also referred to as an order 1 stream.
Having defined edges and streams of order i, one now recursively defines edges and streams of order
i+ 1 by the rule that the ‘order 1’ streams of the tree obtained by pruning the streams of order i (and
lower) are assigned order i+ 1. This code has helped to identify a number of naturally occurring
patterns in river network structure as well as in other naturally occurring dendritic structures. Let
T; j(s) denote the number of order j<\i junctions in a stream s of order i and let T;; denote the
sample average over all such streams s of order i Empirically it has been observed that T;; is,
allowing small-sample fluctuations, approximately a function of i— j for large classes of river
networks. A calculation of Ronald Shreve published in 1969 revealed that ET;; = 127~/ for the critical
binary Galton—Watson distribution. This is our starting point. In particular, we introduce a more
general notion of stochastic self-similarity and show that within a class of Galton—Watson trees both
this and the consequent mean Toeplitz property are characteristic of the critical binary offspring
distribution. In addition, we obtain interesting conditioned limit theorems corresponding to the
invariance of the critical binary branching process under a pruning dynamic in the space of finite
rooted trees.
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1. Introduction and statement of results

A labelled tree graph t rooted at ¢ may be coded as a set of finite sequences of positive
integers (i1, iz, ..., iy) € T such that:

(i) @ €7 is coded as the empty sequence;

(ii) if (i1, ..., ix) €T then (i1, ... ) €Vl <j<k;
(iii) if (i1, iay ..., Iy) € T then (i1, ... 10,1, j) €TV < j <,
If (i1, ..., iy) € T then (i, ..., i,—1) € 7 is referred to as the parent vertex to (i, ... iy). A

pair of vertices is connected by an edge (adjacent) if and only if one of them is parent to the
other. In this way edges may also be identified with the (unique) non-parental or descendant
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vertex. A ghost edge is attached to the root ¢ to complete this identification. Also, the tree is
naturally directed by the ‘headward growth’ convention that for u, v € T we write u — v if u
is the parent of v. This specifies the graph structure of 7 and makes 7 a rooted connected
graph without cycles. For simplicity, we shall refer to any such graph as a tree.

Let T be the space of labelled tree graphs rooted at ¢. T may be viewed as a metric
space  with metric d(t, y) = 1/(1 +sup{my|n = t|n}), where zt|n=1{(i,..., i)
€ 7: k< n}. The countable dense subset Ty of finite labelled tree graphs rooted at ¢
makes T a Polish space. The distribution of a random tree .7~ is a probability measure on
(T, .%8), where .7 is the Borel o-field of T. An important class of probability distributions
on T for this paper is the Galton—Watson distribution with single progenitor and offspring
distribution p;, k=0, 1, ..., for which the probability assigned to a closed ball B(z, 1/N),
€Ty, Ne {1,2,...} is

P(B(r, %)) = GW{pk}(B(r, %)) = I rw- (1.1)

ver|(N—1)

where I(v) = #{j: (v, j) € 7|N}. The river network statistics considered in this paper are
based on observations of the bifurcation structure of the network. From this point of view one
may assume p; = 0. In the case of a binary offspring distribution, p, = p, po =g =1— p, we
shall write GW), in place of GW{,,,. The distribution of a critical or subcritical tree is supported
on the denumerable set T,. We shall write .77 € (T, GW) to denote that .7~ is a finite
(subcritical or critical) random tree with Galton—Watson distribution. The condition p; = 0
will be in place throughout without explicit further mention. The random variable L will
represent a generic offspring number distributed as P(L = j) = GW(, (L = j) = p;, j = 0.

Let 7 be a finite tree. The Horton order of T is a non-negative integer-valued function W
defined on the set of edges of t as follows: If 7 = ¢ then define the order of the vertex ¢
to be 1. If u is a vertex of 7# ¢ and either () =0 or /(u)=1 and (uv) €7,
u#¢,=>v=_{(1,1,..., 1), then call u a source-path vertex of order W(u)= 1. While
l(u) =1 is ruled out from randomly occurring by our condition p; =0, the pruning
operation leads naturally to such effects. So certain aspects of trees having vertices # such
that /(u) = 1 need to be included in our preliminary definitions. An order 1 stream is a
maximal path of source-path vertices or, equivalently, edges. Having defined edges and
streams of order i, one inductively defines edges and streams of order i 4+ 1 by the rule that
the ‘order 1’ streams of the tree obtained by pruning the streams of order i (and lower) are
assigned order 7 + 1; see Figure 1.1. The Horton order assigned to each vertex v of 7 may
also be viewed as the Horton order of the subtree of t rooted at v. The order of the tree
7 € Ty, also denoted by W, is then given by W = W(¢). This code has helped to identify a
number of naturally occurring patterns in river network structure as well as in other
naturally occurring dendritic structures; see, for example, Berry and Bradley (1976),
Borchert and Slade (1981), Ershov (1958), Flajolet and Prodinger (1986).

The following is an easily implemented algorithm to compute Horton orders of the edges
and paths of an arbitrary given tree 7. For a vertex u € 7 let e, denote the corresponding
edge; that is, e, is the edge connecting u to its parent. Recall that it is often convenient to
assign ¢ a ghost edge. If u has no offspring then W(e,) =1, else
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Figure 1.1. Edge, stream and network orders.

w if only one child of u has (maximal) order w
o+1 if at least two children of u have (maximal) order w,

W(ey,) = { (1.2)

where @ = maxy.,—., W(eyp).

Remark. While the random variables defined above depend on the parameter 7 € Ty as a
sample point, we follow the usual probability convention of suppressing this dependence.

Each stream s of order i is a maximal path which either consists of a single ferminal
vertex of order i, or contains an initial vertex of the path (that closest to the root, with a
parent of order i+ 1 or higher and at least one offspring of order i and others of lower
order) and a distinct terminal vertex (that farthest from the root, having at least two
offspring of order i — 1). Let T;;(s) denote the number of order j <\i subtrees rooted at the
non-terminal vertices along a stream s in 7 of order i, and let 7;; denote the arithmetic
average of T ;(s)s over all such streams s of order i. Empirically it has been observed that
T;; is, allowing small-sample fluctuations, approximately a function of i—j for large
classes of river networks. Table 1.1 provides sample data on generators for a river network
in Kentucky; see Ossiander ef al. (1997), Peckham (1995), Shreve (1969), Gupta and
Waymire (1998) for other sample data and further river network properties. With this as our
motivation, in this paper we introduce a notion of stochastic self-similarity which we
consider for the class of Galton—Watson trees. This leads to an extension of a calculation of
Shreve (1969) showing that ET; ; = %2i‘«f for the critical binary Galton—Watson distribution.
To be precise, T;; will be defined by T;; = T; ;(ss), where s, denotes the leftmost order i
stream closest to the root of a tree of order i+ 1 or larger. In view of the regenerative
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Table 1.1 Sample generators for a Kentucky River subnetwork

1.13 0.00 0.00  0.00 0.00 0.00 0.00
2.87 1.13 0.00  0.00 0.00 0.00 0.00

6.78 2.70 1.05 0.0 0.00 0.00 0.00

(Tisii=ijew = 1471 5.89 278 116 0.00 0.00 0.00
5112 2000 1075  3.88 1.88 0.00 0.00

8450 2850 1450  6.00 2.50 1.50 0.00

86.00  24.00 8.00  3.00 2.00 1.00 0.00

*The sample values are computed from digital elevation maps using RiverTools software developed by Scott
Peckham, US Geological Survey.

structure of Galton—Watson trees this definition is adequate for the problems concerning
ET;; under the Galton—Watson distribution. For notational simplicity we make the
convention that ET; ; refers to the conditional expectation E[T; ;|W = i+ 1] understood by
this definition without explicit mention, unless required for a particular calculation.

Remark. While our choice of a stream of order i is to make a ‘fixed but arbitrary’ selection,
we condition on trees of order i + 1 or larger so that all streams of order i will have the same
statistical structure. In particular, this definition ensures that there will not be an artificial
truncation of the length of an order i stream by the root. In data analysis truncation at the
outlet presents an additional source of fluctuation in the largest-order stream generator values.

On T, the space of finite trees, define a pruning function 7: Ty — Ty, by 7(¢) = ¢; and
for 7 € Ty, T # ¢, let 7(7) be the tree left after pruning off the order 1 streams from 7 and
then replacing each higher-order stream by a single edge. This last compression of streams
to edges is necessary in order to isolate the effect of bifurcation in the definition of order;
see Figure 1.2.

The definition of the order of 7 € T can be restated in terms of the pruning function as
a (hitting) time to absorption as follows:

Pruning Compression

- T

Figure 1.2. Pruning/compression dynamics.
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W(p) =1+inf{n=0:7" (1) = ¢}. (1.3)

In particular, one may view the successive application of pruning (with compression) as a
discrete-time Markov process {.7,} evolving deterministically in the space of finite trees,
starting at a random initial tree, by .7, =@(7,), n =0, 1, .... The particular case of
interest to us in this paper is that in which .7 has a Galton—Watson distribution.

Remark. Gotz Kersting (personal communication) has pointed out that a similar operation
was considered in Neveu (1986) for a case of continuous-time Galton—Watson processes. The
corresponding discrete-time process induced by constant-rate erasure starting from the tips
corresponds to a random pruning dynamics on the space of trees. It will be of interest to
compare the invariant distributions for these two classes of random versus deterministic tree
evolutions. The example (3.26) cited at the end of this paper shows that there is overlap in
the respective classes of invariant distributions.

Although the measure concentrated at ¢, 8y, is obviously an invariant distribution for
{7,}, analogously to the case of the generation sizes conditioned on non-extinction
(Athreya and Ney 1972; Yaglom 1947), conditioning .7, # ¢ leads to another form of
invariance which we introduce in the form of a stochastic self-similarity as follows.
Definition. We say that a random tree .7 with distribution P on T is stochastically self-
similar if and only if

P(-|7 # ¢)om ' = P().

In particular for a stochastically self-similar initial distribution one has P(7 . =
7|90 # @)= P(7, =1), T € Tp. In Sections 2 and 3 we will show that this property is
equivalent to the Toeplitz symmetry of ((ET;;)) in the following sense.

Theorem 1.1. Let .7 € (Ty, GW). Then .7 is stochastically self-similar if and only if
((ET;)) is Toeplitz.

While this result establishes the relevance of stochastic self-similarity to the observed
Toeplitz structure in the case of the Galton—Watson trees, the following result identifies the
privileged role of the critical binary offspring distribution from this point of view.

Theorem 1.2. Let .7 < (1o, GW). Then (ET;))) is Toeplitz if and only if 7 has the critical
binary offspring distribution.

Although subcritical and critical Galton—Watson trees are almost surely (a.s.) finite,
interesting conditioned limit theorems given non-extinction are well known, dating back to
Yaglom (1947). The invariance under pruning suggests a new conditioned limit theorem
which distinguishes the critical binary offspring distribution. For this we restrict to a.s.
bounded offspring number L in the sense that P(L < b) =1 for some b = 2.
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Theorem 1.3. Let .7 be a critical Galton—Watson tree with bounded offspring number. Let
I1,.72, ... be the pruning sequence of .7y. Then

im P(7 41 = 7.7 # @) = GW1 (1), T € T

To see the tendency toward binary trees under pruning in the subcritical case, we change
the conditioning of Theorem 1.3 accordingly as follows.

Theorem 1.4. Let .7 be a subcritical Galton—Watson tree with bounded offspring number.
Let 7,.7,, ... be the pruning sequence of .7. Then

lim P71 = 17, # ¢) = |
but
nh_{lgc P(T w1 =BT w1 #P) =1,
where 8 = {¢, (0), (1)} is the binary fork rooted at .

Before proving these general theorems in Section 3, we shall first consider the problem in
the context of binary trees in Section 2. The advantage to this is that, first, we prove our
conditioned limit theorem by a reduction to binary trees in the limit and, second, we can
give a simple probabilistic argument to explain the role of criticality in the binary case.

2. Critical and subcritical binary Galton—Watson trees

We begin by considering the distribution of a non-degenerate critical and subcritical binary
Galton—Watson tree under pruning. Throughout this section 7 is viewed as a map restricted
to the space of finite binary trees.

Proposition 2.1. Let 7 € (Ty, GW,,), p < % Let T 1 =T(Ty), n=0,.90=.7. Then
GW (T i1 = |70 # @) = GWDC) = GW 1)),
where GW "V is the Galton—Watson distribution with binary offspring distribution given by

P2

(n+1) _
p(n)2 + q(n)Z >

O_ g

p ’=p q

The proof of Proposition 2.1 will be based on the following lemma and an induction
argument that easily generalizes to higher branching numbers. To simplify notation, let us
write T = (y1, ¥2) to mean there exist y; and y, € Ty such that v = {¢, (1, v1), (2, v2),
v; €y;, i =1,2}, where we continue the convention that identifies (i) with (¢, i).
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Lemma 2.2. Suppose © = (y1, y2). Then, restricting T to the space of binary trees, one has

T ={(s1, )8 €T (i), i = 1,2y U{(s1, 82): iy s, €T (), 55 = b, j # i}

Proof of Proposition 2.1. 1t is sufficient to consider P(7] = ¢|7y # ¢), as the general
assertion will then follow by induction. Since

7 ({oh = {{o} U {{e. (1), @3 U{{e, (1), (). (1, 1), (1, 2)}}
U{{, (1), 2), 2, 1), 2, 2)}}U...,

we have
P71 = @lT0 # ) :lizk—lpquﬂ _ 2612 .
P4 p-t+q
Define
gV = & PV = & .
rP+a P+q

Next let = {¢, (1), (2)} and consider pg = P(7 = |7y # ¢). Using Lemma 2.2, one
obtains

1 1
s =—2p"qps +—p’(q")?
P p

and, solving for pg, it follows that

P = Bl70 # ¢) = pg = pP(g").

Now we will induct on the height of the tree. The theorem has been verified if the height of
the tree is 0 or 1. Suppose that every tree of height less than or equal to /4 satisfies the
theorem. Let 7 € Ty be a binary tree of height # + 1. Necessarily T = (y;, y2) where one of
the two branches has height 4 and the other has height % or less. Again by Lemma 2.2 and a
conventional abuse of notation,

1 2
GWp(@(y) =tly # ¢) = > GWo(@ (yD)GW (T (v2)) + P GWp($)GW, (T~ (1)

Applying the induction hypothesis and solving gives

GWp(T(y) =tly # ¢) = G ()G D (y2)

P+q
= pVGw OGO (y,).

This completes the induction argument. O

At this point it is natural to ask which finite binary Galton—Watson trees remain
(conditionally) invariant under 7(-). One readily has the following corollary.
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Corollary 2.3. 7 € (T, GW),) is stochastically self-similar if and only if p = q = %

In this direction we wish also to consider the asymptotic behaviour of the & dynamics on
subcritical binary trees.

Proposition 2.4. Suppose .7y has a subcritical binary Galton—Watson distribution with
bifurcation probability p. Then

lim P71 =17, £¢)=0, teTo, T#9.

Proof. Observe that p™ is a bounded decreasing sequence and r = lim,_.., p < 1 satisfies
the quadratic equation

72

SR Py

Proposition 2.5. Suppose 7 € (Ty, GW),); then

n—1
GWy(W=n+1)=¢"T[p". n=0,
k=0

where the parameters ¢, p™ are defined inductively by
o g2 pl=2

— , (n) _
p(n—l)Z +q(n—])2

q = 0y g

p

In particular, the distribution of Horton order W is geometric if and only if p =q = %

Proof. Observe first that GW,(W = 1) = g = ¢'”. Now, for m = 2, one has
GWy(W =m) = GWy(@I)" V=¢p, WP £ ¢, k=0,1,..., m—2)
= GW" T = )GW " INT £ ) GWONT £ ¢)

© ... p(m=2) ,(m=1)

=p p q

If pzq:% then, using this and Corollary 2.3, it follows that W has a geometric

distribution. Conversely if W has geometric distribution then it follows that p©® = p by
considering probability ratios. ]

The following theorem provides a new derivation and generalization of Shreve’s formula;
see Shreve (1969). It will follow from the results in Section 3 that the critical binary
offspring distribution is the only case in which ET;; is Toeplitz among all subcritical or
critical Galton—Watson trees; cf. Corollary 3.14.
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Theorem 2.6. Let 7 € (Ty, GW),). Then
_ P =)

ET; ;
) T P(W l)

In particular, ET; ; = f(i — j) if and only if p = 5 and, in this case,
ET;; = f(i—j)=32"".
We will use the following simple lemmas in our proof of Theorem 2.6.

Lemma 2.7. For.7 € (Ty, GW), let e, €.7 be an edge of .7". Then W(e,) and W = W(¢)
are identically distributed under GW.

Lemma 2.8. Let p; denote the probability that an edge of order i in T initiates a stream s of
order i. Let N; denote the length of a stream s of order i. Then N; has a geometric
distribution with parameter p; = P(W = i).

Proof. N; may be viewed as the number of order i edges to inspect in s until termination of
the stream. If one begins inspection of the vertices with the terminal vertex of the stream s,
as defined in Section 1, then the inspection continues independently from vertex to vertex
depending on whether the order of the joining subnetwork is strictly smaller than i or not.
Thus one has 1 — p; = P(W <i). Il

Proof of Theorem 2.6. Since .7 is binary GW it follows that the total number of side
tributaries to a stream s coincides with a geometrically distributed ‘inspection length’ of s
having parameter p; computed in Lemma 2.8. Now let s €.7 be the leftmost stream of order
i closest to the root. Then the number of side tributaries to s having order j (j<<i) is the
same as the number of side tributaries of order 1 to a stream s’ € (.7 )/~! of order
i—(j—1), where s is the image of s under 77(-)’~!. Now observe that, in view of the
compression in 7, if one prunes one more time then ET;; is the difference in the expected
inspection heights. That is,

) 1 1
pz j+1 P, —J
and the result follows from Proposition 2.5 and the following calculations:
PW =i+ k)
Jwhw=pnp=~_—"1" 2.2
W =D=pw=rt1) 22)
i P(W =)
=D ._ U= i — =~ - 7
pisjy = GWY=2(W =i j+1)_P(W>j)'
In particular, observe from Proposition 2.5 that
. P(W =7
g = P =)) (2.4)

PO =)
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To see that critical binary is the only Toeplitz solution, simply note the separation of
variables in the form ET;; = a;b; and note that ratios of the form ETiykt1,i/ETivk; and
ET;;_j—1/ET;;—} are constant functions of i. This leads to geometric solutions from which
one determines that p = % O

There are two simple modifications of Proposition 2.4 which, while trivial in the binary
case, lead to interesting conditioned limit theorems in the general case to be considered in
the next section. Observe that if one replaces subcritical binary with critical binary in
Proposition 2.4 then, in view of Corollary 2.3, the ‘limit distribution’ is GWI On the other
hand, in the subcritical binary case but changing the conditioning in Pr0p051t10n24 to
T ni1 # ¢, one easily observes that the limit tree is a.s. a simple binary fork rooted at ¢.
We will see that each of these simple observations in the binary case continues to hold in
the generality of the next section.

3. General case

In this section .7 will have a Galton—Watson distribution with subcrmcal or critical offspring
distribution py = P(L=k), k=0, 1,2, ..., with p; = 0. We say that .7~ has a.s. bounded
offspring number if and only if P(L < b) =1 for some b = 2. This latter assumption will be
made in connection with the conditioned limit theory. However, we will begin with the mean
Toeplitz problem.

Theorem 3.1. Let .7 € (Ty, GW) and let W be the order of T, and G(s) = Es’ be the
probability generatmg function of L. Then

ET.:l_piw
Y pi  P(W<i)

(E[L|IL>0]—1),

where

o~ D GP(W <D) — po

l=pi=) - —PW<)™ == 3
- (1 — po)P(W <)

The proof of Theorem 3.1 will be carried out via a series of simple lemmas which also

illuminate the content of some related calculations which occur later. Recall the definition
of initial and terminal edges (or equivalently, vertices) from Section 1.

Remark. Note that in the non-binary case there may be contributions to T;; at the initial
vertex of the stream of lower order j. Conditional on W = i+ 1, such contributions cannot
occur in the binary case since the initial vertex must be an order i edge joined by an edge of
order i or higher. In order to be consistent with the identification of vertices and edges
established at the outset, these lower order j<<i contributions to T;; at the initial vertex in
the non-binary case are not counted since this vertex is of order i+ 1.
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Lemma 3.2. Let N; denote the number of edges in the leftmost stream s of order i closest to
the root in 7. Also let T, j(s) be the number of order j subtrees to a non-terminal edge of
order i in s.

@ T i.j(s) and N; are indgpendent.
(ii) E[T;;|N:] = (N: — DET; (s).
(iii) ET; ; = E[N; — 1]ET; ;(s).

Proof. Note that the T ;j(s) are independent and identically distributed for vertices v interior
to s, but for the initial vertex at least one offspring must be order i and at least two must be
order at least i. After this, assertions (ii) and (iii) follow directly from (i). To prove (i), simply
observe that the offspring subtrees generated at each vertex of .7~ are independent and
identically distributed under the Galton—Watson distribution. Il

Lemma 3.3. Let a;; = P(W = j)/P(W <i). Then

ET;;(s) = a;j(E[(1 = po)"'L] = 1) = a; E[L|L>0] — 1).

Proof. To obtain ET (s), write ET} ;(s) = E((ET;(s)|L)) and note that, for / =2,
ET, (9)|L = 1) = (I — Day,.

Thus

EdyW=it1)= (- 1)%% = a; (E[L|L>0] = 1).
=2 -0

O

Lemma 3.4. For v € {W = i+ 1} let s denote the leftmost stream of order i closest to the
root. Let p; denote the probability that an edge of order i in s initiates s, and let N; denote
the length of s. Then N; has a geometric distribution with parameter

LGP <i) - py
pi (1= p)PW <i)

Proof. As in the proof of Lemma 2.8 begin the inspection with the terminal (head) vertex of
the stream. Then the inspection continues independently until the occurrence of a subnetwork
of order i or larger. Thus

= Di ni—1 G(P(W <i)) — po
1—p; = P(W - ,
pi= D T POV < = =

Putting the above lemmas together we obtain Theorem 3.1, namely
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ET;; = ET; ,(s)E(N; — 1)

:1;mmﬁmuL>m—n. G.1)

i
Note that in the binary case this reduces to

L=pi P =)

ET; = =
AT A T}

(3.2)

as proved by another method in Theorem 2.6.
The separation of variables in Theorem 3.1 makes the following result obvious.

Theorem 3.5. Let .7 € (1o, GW). If ET;; = f(i — j) then the order W has a geometric
distribution.

We will see below that Theorem 3.5 implies py :% in the case of bounded offspring
number (Lemma 3.15, p. 19). This in turn will be enough to show that in this case
ET;; = f(i — j) if and only if the offspring distribution is critical binary (cf. Theorem 3.16).
For now, we turn our attention to our general notion of stochastic self-similarity and
conditioned limits.

Theorem 3.6. Let .7~ € (To, GWy,,y), 71 = (1), 7o =7 . Let G(t) = 3.7 ypit!, GI(1) =
G =D G-kt Dp;t/=%, k= 1. Then

GW () (T1 = |70 # ¢) = GWD() = GW 0, (),
where
G(po) — po 1
(1) (1)
p = ! > p = 09
(1= po)(1 = G'(p)) !
1 — p)—1Go
o0 (1—p)'G (Po)’ =

k(1 = G'(po))

The proof of Theorem 3.6 is an extension of the proof of Proposition 2.1. However, the
following lemma is used to handle the possibility of non-binary branches. Some notation is

needed to simplify matters. If 0 =(01,...,0;) is a tree in Ty, then let Vy(o) =
{ie{l,..., k}:0:={¢}}. Then, define the subsequence ij(0) by i; =min{ie {1,
o, k}ii¢ V(o)) and i; =min{i € {i;_y, --- k}: i ¢ Vg(0)}. Note that i; may not exist,

and more generally, i;,; may not exist if i; does.
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Lemma 3.7. Suppose y = (y1, ..., yn)- Then
——1 o > SN o e o . .
7' = J{o1 ....o0: Mi.os €T (y). 07 =, j # i}
k=2

U {0 =(01, ..., 0p): #(V¢(O’)) =m—N, Oi0) € ﬁ_l(j/j)Vj S {1, N}}
m=N

Proof of Theorem 3.6. First, we will derive the conditional probabilities for the root and
height 1 trees. Lemma 3.7 does not apply directly to the root; however,

@) = (o1 Ut (0o 0} UH©1 o 00: 3 00 € 7' (@). 0, = 6 # ).
k=2 k=2
Thus,
1 o0 (o}
AT =9l70# )= D P + > kp(po)* (1= po) P71 = pL.70 # )| -
k=2 k=2

Note that G(po) = > Px(po)* and G'(po) = D7, kpi(po)*~!. Now solve for the desired
probability to obtain

G(po) — po

D) _ pr7 _
Py =P =9 0= po)(1l— G'(po))’

T0F @)

If v is a height 1 tree, then y = {¢, (1), ..., (N)} for some N. Using the lemma gives

1
PTi =70 )= [Z kpe(po) (1 = po) P(T1 = V7% # )
k=2

s m
+y ( )(poy"Npm(l - )" ("N
m=N N
Solving for p(z\l,) = P(J1 =1|7y # ¢) gives the desired result. The proposition is now
verified for the root and height 1 trees. Again, we proceed by induction on tree height to
complete the proof. Assume that all trees in T, of height /4 satisfy the proposition. Let y be a

tree of height 2+ 1. Then y = (1, ..., yn) for some N, there is an i such that y; has height
h, and the height of y; < & for all j € {1, ..., N}. The lemma gives
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0 m
> < >Pm(P0)m_N(1—Po)N_1 N

AN _
P71 = y| 70 # ¢) = "2 - [ P@©) =vilo # )
> kpe(po)*! =
k=2
N
=V [ Po).

=1

O

Iteration of the result in Theorem 3.6 yields the conditional distribution of .77, given
I n # ¢ as Galton—Watson with offspring distribution given by

G, (n) (")
anJrl) — ()p ) Ore p(ln) — 0’ (33)
(1= py ) - G' (p "))

ety _ (L= pg" 'GP ")

k=2, (3.4
‘ k(1= Gi(py”) )
where
Gu(t)=>_ p\"t. (3.5)
j=0

As an alternative check that (3.3), (3.4) define a probability distribution, note that non-
negativity is clear by inspection, and normalization follows by expanding G(f) in a Taylor
series about = py and induction on n. That is,

G (k)
G(1) = G(po) + G (po)t — po) + Z )y, (3.6)
so that
1= G(1) = G(po) + G'(po)(1 = po) + (1 — po)(1 = G’ (po»z Py (3.7)
k=2
Similarly, by expanding G'(¢) in a Taylor series about ¢ = py, one has
G* (o) "
G'(1) = G'(po) + G"(po)(t — po) + ZT( O (3:8)
k=2 )
so that
m=G'(1)=G"(p)+(1-G' (po»Z i) (3.9)

k=2
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Proposition 3.8. If {pi} is critical then { p(k")} is also critical. Moreover, the means of the

offspring distributions m™ = C,)Cozzkp(k") are strictly decreasing in n if and only if {py} is
subcritical.
Proof. Simply apply (3.9) together with induction. l

Theorem 3.9. If .7 € (T, GW) s stochastically self-similar with 5. k*pr <oc, then
1
Po = p2 = >

Proof. If .7 € (Ty, GW) is stochastically self-similar then, as noted earlier, it follows from
(3.9) that {p} is critical. It also follows that J < py <1 since

(o @] o0
1= ; kpi =2 > e =2(1— po). (3.10)

Expanding G(7) in a Taylor series about ¢ = pj, one has

_ : = GO(po) k
G(t) = G(po) + G'(po)(t — po) + Y o (o) (3.11)
k=2 :
Thus, using self-similarity (3.3) and (3.4), it follows that
t
G(t+ po) = C+ G'(po)t + (1 — po)(1 — G'(po))G(l_—pO), (3.12)

where C does not depend on ¢. Now, from criticality we have G'(1)=1 and thus,
differentiating G(¢ + pp) with respect to t, we have

G’(t+po)/'LG’(1)+(1/1)G’( ! ) (3.13)
1 — po

where 0 <A = G'(pp) <1. Note that ¢/(1 — pp)<t+ po<1 for t<1— py. Thus, since
G'(0)=0, G'(1) =1, G(1) =1, and G"(1) < oo, we have, upon taking another derivative in
(3.13) at t =1 — py, that G'(py) = py. Thus

1 o0 B o0
L=—-Gp) = S kps T <D ke =1,
k=2

with strict inequality unless py = p, = % O

For the convergence problem we restrict our attention to the case of bounded number of
offspring. In particular, assume
b =max{j: p; >0} <oo. (3.14)

Writing a,(i) = pgf)l, i=1,...b+ 1, equations (3.3), (3.4) may be expressed as a nonlinear
dynamical system of the form
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Ayl = mF(Gn(l))an, n = O, l, 2, ey (315)

where the matrix F(#), defined and continuous for ¢ € [0, 1], is given by

£l = {g{})(l — gyt fﬂ{ez: 3, ori=1andj=3 G.16)
and the scalar I'(c), defined and continuous for ¢, is given by
() = (1 —c()d = - y(c(1)) (3.17)
and
y(1) = (0, 0,21, 3¢%, ..., (b + 1)t"). (3.18)
In particular, we have
Apyl = %F(a,,(l)) -+ F(ap(1))ay. (3.19)

[1rc@)
i=0

Note that the eigenvalues of F(f) are given by A;(¢) =A(1) =0, Ai(t) = (1 — )"},
i=3,...,b+ 1. In particular, A3(¢#) is the largest eigenvalue. Now observe that the
stochastically self-similar distributions coincide with eigenvectors of F(f), t = py(1), with
eigenvalues of the form (3.17). From this perspective our previous calculations (Corollary
2.3) show for the binary case that the only (normalized) non-negative eigenvectors have
po=1and py=p, = % These two eigenvectors may be distinguished by subcriticality and
criticality, respectively. We will reduce the general calculation to showing that whenever the
limits lim,_ p(k") exist then these limits yield such an eigenvector, the selection being
determined by subcriticality or criticality.

Remark. While it is obvious that one has tightness and therefore selection of convergent
subsequences in the case of bounded offspring number, it is not obvious that the limit is an
eigenvector in view of the shift on the left-hand side of (3.15). Thus a simple compactness
and uniqueness argument seems to be ruled out.

While for the critical case we shall see that

Y -1 asn— oo, (3.20)

the next results indicate a delicate difference between this and the subcritical case. In
particular, in the subcritical case we will show, as in the binary case (cf. Proposition 2.4), that

p”—1  asn— oo (3.21)

Unlike the conditioned limit theorems of Yaglom (1947) in which one can identify a certain
monotonicity, numerical Matlab calculations show that the convergence need not be
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monotonic (see Tables 3.1, 3.2), though it seems to be eventually monotonic. In any case, we
will see that, conditional on .7, # ¢, convergence to a fixed binary fork is obtained.

Remark. One can easily check by inspection of the non-negative triangular matrix F(f) that
regardless of the initial zeros between the first and last terms, after one iteration all of the
terms, with the exception of the second, will become positive. Moreover, one can also check
by examining the ratio p(k'le / p(k") that once the decreasing order of terms occurs then it will

be preserved throughout the evolution.

As noted above, it is not enough to extract convergent subsequences, so the plan is to
reduce the limits to the binary case by direct calculation. The calculation rests on a
convexity inequality for the size-biased distributions jpy')/ m”, j=0,1,...,b.

Table 3.1. Critical example (m = 1)

(1) (n) (n) (n) (n)

n Po 4 P P Py

0 0.7273 0 0 0.0909 0.1818
1 0.1564 0 0.3671 0.0800 0.0064
2 0.5196 0 0.4422 0.0370 0.0011
3 0.5092 0 0.4728 0.0178 0.0002
4 0.5044 0 0.4868 0.0088 0.0001
5 0.5022 0 0.4935 0.0043 0.0000
6 0.5011 0 0.4968 0.0022 0.0000
7 0.5005 0 0.4984 0.0011 0.0000
8 0.5001 0 0.4998 0.0001 0.0000
9 0.5000 0 0.5000 0.0000 0.0000
Table 3.2. Subcritical example (m = 0.7)

n pg") p(ln) P(zn) pgn) piﬂ)

0 0.8000 0 0 0.1000 0.1000
1 0.7693 0 0.3671 0.0800 0.0013
2 0.8945 0 0.1027 0.0028 0.0000
3 0.9856 0 0.0144 0.0000 0.0000
4 0.9998 0 0.0002 0.0000 0.0000
5 1.0000 0 0.0000 0.0000 0.0000
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Theorem 3.10. For bounded offspring number we have, for each j =3, ..., b, that
lim p'"” = 0.
n—oo

Proof. First let us observe that

"

j—1
Y = = m g,

b
L= Gupy) =1-m">"
j=2

since ( pg"))z*l is the largest term in the average under the size-biased distribution. Now, in

view of the calculations (3.3) and (3.9), we have m(” < 1 and, as in (3.10), p{" = 1, so that
for k = 2 we have from (3.4) that

wey _ (L= g1 GP ")
’ k(1 = Gu(pl"))

_ (=g
k!

b (]
< )2 Z( >p5.”’, 3<k<h.
=k \ k

Now start with k¥ = b, and do a backward induction as follows. First, we have by iteration on
n that

G O(py")

P <27 —o(1)  as n— oco.
Now if p(i") =o(l)as n — oo for j=k+1, ..., b, then since there are no more than a fixed

number b of o(1) terms in the sum, we have

b .
n _ n _ J n - n
p(k +1) < (%)k 2p(k)+(%)k 2 §k (k)p(] ) :(%)k Zp(k)_i_o(l)
J=k+1

Iteration on n now yields for 3 < k£ < b that
PV =@ a0 G = o(D).
i=0
O

Having reduced the calculation to binary distributions, the following results are obtained.

Theorem 3.11. Suppose .7~ has a critical Galton—Watson distribution with bounded offspring
number. Then

lim P(J 1 = T|7 0 # @) = GW%(r), T € Ty.
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Proof. Using Theorem 3.10 and Proposition 3.8, we see in the critical case that any
convergent subsequence is binary critical so that there is only one limit point. O

Theorem 3.12. Suppose .7~ has a subcritical Galton—Watson distribution with bounded
offspring number. Then

Jim P71 = 7701 # §) = 04y (D), t €T,
where = {¢, (1), (2)} is the binary fork rooted at ¢.

Proof. In view of Theorem 3.10 it is enough to show that

(n)(n)\2
lim 22 (70 (nf =1 (3.22)
n—00 1 PO

Observe from Proposition 3.8 that the means are strictly decreasing and bounded below by

zero. Thus lim,_,.m™ exists and therefore in VleW of Theorem 3.10, so does lim,, ., p}".

So it also follows that lim,_, po = lim,_o(1 — )) exists. So the full limit distribution

exists and, in view of (3.15), is a subcritical blnary elgenvector with eigenvalue of the form

(3.17). The result follows since there are only two such eigenvectors, a; =1, a; =0,

2$j$b+1anda1:a3:%,azzaj:0,4$j$b—|—l. O
The following result generalizes Proposition 2.5.

Proposition 3.13. Suppose .7~ € (To, GWy,,1); then

n—1
Gww =n+1)=p"[[a-p). n=0
k=0

Proof. Observe first that GW, (W = 1) = py = ¢'©. Now, for m = 2, we have
GW{P/;}(W = m) = GW{P/:}(H(*?)(mil) = ¢’ ”(L(/‘)(k) 7& ¢, k= 05 17 cee, M— 2)

= WL = PGP #9074

(0) (m=2) (m—1)

=D - D q

O

Corollary 3.14. If .7 € (To, GW{,,,) is stochastically self-similar then the order W has a
geometric distribution.

Lemma 3.15. If .7 € (Ty, GW) has bounded offspring number and the order W is

geometrically distributed then the offspring distribution is critical and p, () — po =
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Proof. If P(W =j)=(1—-0)y"10, j=1,0<0<1, then § = P(W = 1) = py. In view of
Proposition 3.13, we have by induction that p” = py, n = 0. Now use Theorems 3.11 and
3.12 to obtain that the offspring distribution must be critical and py = lim,_ p(()") = % O

Theorem 3.16. For .7~ € (Ty, GW) with bounded offspring distribution,
ETi;=f(i—))
if and only if py = py = 5.

Proof. If .7 is the critical binary tree then the Toeplitz property was shown in Section 2.
Conversely, if the Toeplitz property holds then Theorem 3.5 and Lemma 3.15 yield that

pg") = py =4 for n=0, 1,2, .... In particular, we have
> =3 (3.23)
=2
and
> kpe=1. (3.24)
k=2
Multiply (3.23) by 2 and subtract from (3.24) to obtain
> (k—=2)pr=0. (3.25)
=3
By non-negativity of the terms in (3.25), it now follows that p, = 0 for all £ = 3. ]

While some of our results are proven more generally than for bounded offspring number,
the following theorem is a summarizing statement of the main results of this paper within
this setting.

Theorem 3.17. Let .7 € (T, GW{,,;) with bounded offspring number. Then .7~ is
stochastically self-similar if and only if py= p» :% if and only if the order W is
geometrically distributed if and only if ET;; is Toeplitz.

In closing, let us remark that while it is possible to construct deterministic self-similar
trees naturally for arbitrarily prescribed generators (see Peckham 1995), the corresponding
construction of stochastic self-similar trees is more difficult. Examples indicate that one
may obtain stochastic self-similar solutions by relaxed conditions on the moments of the
offspring distribution. For example, the distributions of Zolotarev (1957), defined by the
family of probability generating functions

1
Go(1) = t+ (1 -1, 0<r=<I, (3.26)

for fixed parameters 6 € (1, 2), are easily checked using Theorem 3.6 to be infinite-variance
critical offspring distributions of stochastically self-similar Galton—Watson distributions.
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However, it is of greatest interest to river network applications to see what other possible
stochastic self-similar trees with bounded offspring number may be constructed as
conditioned limits by considering random initializations other than by Galton—Watson trees.
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