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This paper studies rare events simulation for the heavy-tailed case, where some of the underlying

distributions fail to have the exponential moments required for the standard algorithms for the light-

tailed case. Several counterexamples are given to indicate that in the heavy-tailed case, there are

severe problems with the approach of developing limit results for the conditional distribution given the

rare event; this is used as a basis for importance sampling. On the positive side, two algorithms

having a relative error which is almost bounded are presented, one based upon order statistics and the

other upon a different importance sampling idea.
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1. Introduction

Estimation of small probabilities by simulation is one of the key issues of today's simulation

literature. The reason is two-fold: the topic is of major practical importance in areas such as

reliability, telecommunications systems and insurance risk; it also presents considerable

challenges from a methodological point of view.

The most established approach for rare events simulation is importance sampling via

exponential change of measure. The present paper deals with the case where this technique

is intrinsically impossible because the required exponential moments do not exist: some

underlying distribution G is heavy-tailed, for example

· lognormal, the distribution of eì�ó U where U is standard normal;

· Weibull with decreasing failure rate, �G(x) � eÿxâ
with 0 , â, 1, where �G(x) �

1ÿ G(x) is the tail;

· regularly varying, �G(x) � L(x)=xá, where L is slowly varying, L(tx)=L(x)! 1 as

x!1 for all t . 0 (this covers Pareto, stable and log-gamma distributions).
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We return to a more general mathematical de®nition in Section 2, but the three examples just

given are the key ones.

The relevance of heavy-tailed modelling has recently been argued strongly in areas such as

telecommunications and insurance risk. In insurance risk, heavy-tailed behaviour occurs

mainly as result of claims with a heavy-tailed distribution, as thoroughly discussed in the

recent book by Embrechts et al. (1997). In telecommunications, it may arise in a traditional

queueing model because heavy-tailed service-time distribution; see Abate et al. (1994) for a

recent study and references. In a ¯uid model, it may result from a heavy-tailed distribution of

the period of the individual sources ± when suf®ciently many sources are at the same time,

the buffer content will build up, and this build-up period then has a heavy-tailed distribution;

see Boxma (1996; 1997), Choudhury and Whitt (1997), Heath et al. (1997; 1998), JelenkovicÂ

and Lazar (1995; 1996) and Rolski et al. (1999). This situation can alternatively be viewed

as an instance of long-range dependence, for which empirical evidence is presented in

Willinger et al. (1997; 1998), Crovella and Bestravros (1996) and Cunha et al. (1995).

In application areas such as these, explicit or easily computable solutions are only

available in light-tailed setting, imposing conditions such as phase-type distributions of

claims, service times or periods; see, for example, Asmussen and Rolski (1991) and

Asmussen (1992; 1995). Approximations are available in quite a few cases in the heavy-

tailed case but are notoriously mostly imprecise, as documented numerically in Abate et al.

(1994), Asmussen and Binswanger (1997) and Kalashnikov (1999). Thus, simulation may be

required even for quite simple problems.

The formal set-up of the paper is that of a family fA(x)g of events de®ned on a

probability space (Ù, F , P) and rare in the sense that z(x) � P(A(x))! 0, x!1. An

estimator for z(x) is a random variable Z(x) such that z(x) � EZ(x). The simulation is

performed by the Monte Carlo method: produce N independent and identically distributed

(i.i.d.) replications Z1, . . . , Z N of Z � Z(x), estimate z � z(x) by the empirical average

(Z1 � � � � � Z N )=N and form a con®dence interval based upon the empirical variance of

the Zi.

The dif®culty in rare events simulation is to produce estimators which have not only a

small variance var(Z(x)) but also a small relative error
�������������������
var(Z(x))
p

=z(x). Asymptotically, the

best performance which has been observed in realistic situations is a bounded relative error

in the limit x!1. Following the general custom of the literature (see, for example,

Sadowsky 1993), we use a slightly weaker criterion,

var(Z(x)) <
log

z(x)2, (1:1)

and call fZ(x)g asymptotically ef®cient if (1.1) holds. Here a(x) <
log

b(x) means that a, b are

functions converging to 0 in such a way that limjlog a(x)j=jlog b(x)j > 1. We refer to

Heidelberger (1995) or Asmussen and Rubinstein (1995) for surveys of the area of rare

events simulation with particular emphasis on such complexity issues.

In the light-tailed case, many examples of estimators statisfying (1.1) are known. A

general method is importance sampling, simulating not Z(x) � I(A(x)) from P as in the

crude Monte Carlo method but rather Z(x) � I(A(x))L from ~P, where ~P is a different

probability measure on (Ù, F ) and L is the likelihood ratio in the sense that
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P(B) � ~E[L; B], for all B � A(x): (1:2)

How do we choose ~P? It follows by general results on importance sampling that the optimal ~P
is the conditional distribution P(x) � P(:jA(x)) given the rare event (in fact, this choice even

gives a zero variance). However, this choice is infeasible because L � I(A)z(x) involves z(x),

which is unknown. Nevertheless, one obtains some form of guidance: if ~P is not too far from

P(x), we can hope that the variance is small. Thus, one looks for a probability measure ~P(x)

which, in an appropriate asymptotic sense, is close to P(x). This can often be obtained by a

large-deviations argument, and the result is typically that ~P(x) is chosen via an exponential

change of measure; see Section 3 for a simple example.

In the heavy-tailed case, exponential change of measure is intrinsically impossible, and

also the relevant results on the asymptotic form of P(x) are recent (see the survey in Section

2). In view of this, it is not surprising that a more sophisticated approach to rare events

simulation for heavy-tailed distributions is only in its infancy at present. The present paper

surveys the current state of the area by presenting some asymptotically ef®cient algorithms

and discussing some of the dif®culties. We do not claim to have any general approach with

the promise of eventually applying to complex practical situations. Rather, it is our hope

that the paper will stimulate further research in the area.

In Section 2, we give the necessary background on heavy-tailed distributions, introducing

the class S of subexponential distributions. We also brie¯y summarize some of the known

results on rare events behaviour which are relevant for discussing the approach via the

conditional distribution given the rare event. In Section 3, we consider the rare event

fSn . xg, where Sn is a sum of i.i.d. positive random variables. Two asymptotically ef®cient

algorithms are presented, one from Asmussen and Binswanger (1997) which uses a

conditional Monte Carlo idea and order statistics, and a new one using importance sampling.

Section 4 then contains a discussion of the method of identifying P(x) and simulating ~P(x)

which is the obvious route inspired by the light-tailed case. Our analysis contains, however,

several counterexamples and indicates severe dif®culties with this approach. The more

technical proofs, basically variance calculations, are deferred to the Appendix.

2. Heavy-tailed distributions and their rare events behaviour

2.1. Subexponential distributions

Let G be a distribution on (0, 1) and let Y1, Y2 . . . be i.i.d. with common distribution G. An

established common framework for the heavy-tailed setting is that G 2 S , the

subexponential class introduced by Chistyakov (1964) and de®ned by the requirement

lim
x!1

P(Y1 � � � � � Yn . x)

P(Y1 . x)
� n (2:1)

for all n (actually, it suf®cies that (2.1) holds for n � 2). Since, for any distribution G,

P(max(Y1, . . . , Yn) . x) � nP(Y1 . x) (here and in the following, � means that the ratio is

one in the limit x!1), this formal de®nition contains what is the crucial intuition behind
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heavy tails: the only way the sum can get large is by one of the summands getting large (in

contrast, in the light-tailed case all summands are large if the sum is so). See Feller (1971)

and Bingham et al. (1987) for the regularly varying case, and Embrechts et al. (1997) and

Goldie and KluÈppelberg (1998) for the general subexponential class.

For a distribution F on the whole line, we write F 2 S if �F(x) � �G(x), x! �1, for

some G 2 S which is concentrated on (0, 1).

A property that is often used is

lim
x!1

�G(x� y)
�G(x)

� 1 (2:2)

uniformly for y in compact sets.

>The class S splits naturally into two, the class of distributions with a regularly varying

tail and the rest. This classi®cation is closely related to extreme value theory. Recall that

G 2 MDA(H) (maximum domain of attraction) if there exist constant an, bn such that

an(max(Y1, . . . , Yn)ÿ bn)!D H . Since subexponential distributions have unboudned support,

H must be either the FreÂchet law Öá or the Gumbel law Ë. Further, G 2 MDA(Öá) is

equivalent to regular variation with index ÿá, and if G is subexponential but not regulary

varying, then G 2 MDA(Ë) subject to some weak smoothness conditions; see Goldie and

Resnick (1988). A further fundamental result (a sharpening of (2.2)) is that then there exist

constants ã(x)!1 (which can be taken as E[Y ÿ xjY . x], the mean residual lifetime)

such that

P
Y ÿ x

ã(x)
. yjY . x

� �
�

�G(x� ã(x)y)
�G(x)

! P(Vá . y), (2:3)

where Vá is Pareto with mean one when G 2 MDA(Öá) with á,1 and standard exponential

when G 2 MDA(Ë) (á � 1). This fact is often the crucial one for rare events behaviour

rather than the equivalent characterization G 2 MDA(H).

2.2. Some basic probabilistic results

The framework is that of a random walk fSngn�0,1,2,... in discrete time, Sn � X 1 � � � � � X n

where X 1, X 2, . . . are i.i.d. with common distribution F and mean ì, 0. Also the re¯ected

version fWngn�0,1,2,... given by W0 � 0,

Wn � (Wnÿ1 � X n)� � Sn ÿ min
k�0,:::,n

Sk

is of interest because if X n is the difference between a service time and an independent inter-

arrival time, then fWng is the GI=G=1 actual waiting process. For this reason, rare events for

fSng are benchmark examples in the simulation literature. A random variable with the

limiting stationary distribution is denoted by W1 and has the same distribution as

M � maxn�0,1,2,...Sn; see Asmussen (1987, Ch. III.7). We write ô(x) � inffn . 0 : Sn . xg.
Consider, ®rst, the rare event A(x) � fM . xg, where x is large, or, equivalently, the

event of a large steady-state waiting time. In insurance risk, A(x) can also be interpreted as
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the event of ruin with initial reserve x. It is a classical fact (Embrechts and Veraverbeke

1982, and references therein) that

P(M . x) � P(W1. x) � P(ô(x) ,1) � 1

jìj
�1

x

�F(y) dy, (2:4)

where �F(y) � 1ÿ F(y), whenever
�1

x
�F(y) dy is a subexponential tail; in practice, this is the

case at the same time as F 2 S but none of the conditions imply the other.

How does fSng attain a large value x? That is, what does the conditional distribution P(x)

given M . x look like? The heavy-tail intuition predicts exceedances of level x to occur as

the consequence of one big jump. Thus, what remains is to ®nd the asymptotic distribution

of the time of the big jump and to make precise the fact that the random walk behaves in

its typical way except for this one big jump. The answer to these questions was recently

obtained by Asmussen and KluÈppelberg (1996). In particular:

Proposition 2.1. Assume that F 2 MDA(H) \ S . Then the P(x)-distribution of ô(x)=ã(x)

converges weakly to that of Vá=jìj.

Remark 2.1. Asmussen and KluÈppelberg (1996) also give a number of results which show

that the large-deviations path fSngn�0,1,:::,ô(x) in an appropriate sense is `typical' of the

random walk. For example, the empirical distribution function ô(x)ÿ1
Pô(x)ÿ1

1 I(X n < :)
converges in P(x)-probability to F(:).

We will discuss a simulation algorithm inspired by these results in Section 4. For light tails,

the large-deviations path is described in Asmussen (1982) ± see also Anantharam (1988) ±

and explains the ef®ciency of the exponential change of measure in Siegmund (1976).

Another rare event related to fSng which is often studied is buffer over¯ow within a

cycle. The precise de®nition is A(x) � fM C . xg, where

C � minfk � 1, 2, . . . : Wk � 0g � minfk � 1, 2, . . . : Sk < 0g
is the regenerative cycle and M C � maxk�0,:::,Cÿ1Wk the cycle maximum.

The asymptotic form of the rare event probability was given in Iglehart (1972) for light tails,

but was only recently found in the heavy-tailed case (Asmussen 1998; see also Heath et al. 1997):

Proposition 2.2. If F 2 S , then P(M C . x) � EC . �F(x), x!1.

This is intuitive since the probability of making a big jump above x is �F and the expected

time the process has to do it in a cycle is EC. The proof in Asmussen (1998) is, however,

surprisingly tricky. It shows also that indeed the level Sô(x)ÿ1 before the big jump is O(1).

Remark 2.2. Some further relevant references in the area of approximations and conditioned

limit theorems for rare events behaviour in the presence of heavy tails are Asmussen and

Hùjgaard (1996), Asmussen et al. (1999), Durret (1980) and KluÈppelberg and StadtmuÈller

(1998), but there are still many open problems. We mention in particular that steady-state tail

asymptotics is not at present available for the following random variables:
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1. The buffer content in a ¯uid model with i.i.d. on±off sources with a heavy-tailed on

period. All of the references Boxma (1996; 1997), Choudhury and Whitt (1997),

Heath et al. (1997; 1998), JelenkovicÂ and Lazar (1995; 1996) and Rolski et al. (1998)

impose some special condition which allows one reduction to reduce to random walks

but which are not the most natural ones from the point of view of ¯uid models. The

problem is that in general for a build-up of the ¯uid queue, it is required that more

than one source is on, so that one expects that for large buffer contents to arise,

several sources must have simultaneous long on periods. This heuristic easily gives a

lower bound (see Choudhury and Whitt 1997), which one expects to be asymptotically

correct, but no proof of this is available: the problem is to show that simultaneous

long on periods are asymptotically the only way that a build-up can occur.

2. The waiting time in a GI=G=c queue (c . 1) with heavy-tailed service distribution.

The problem is similar to that for the ¯uid queue, that service times at more than one

server must be long at the same time for a build-up (again, one can easily derive a

lower bound).

3. Sojourn times in a queueing network with heavy-tailed service times distributions at

one or several nodes. A conjecture is given in Asmussen (1996).

3. Heavy-tailed sums

In this section, we consider a problem which is simpler than the random walk problems

considered in Section 2: that of producing a simulation estimator which is ef®cient for

z(x) � P(Sn . x) in the limit x!1 (n is ®xed!), where X 1, . . . , Xn are non-negative and

heavy-tailed with common distribution F. The crude Monte Carlo estimator is Z1(x) �
I(Sn . x) and has variance F(x) �F(x) � �F(x).

The light-tailed case. Earlier, Bucklew et al. (1990) considered the problem of estimating

P(Sn . x) in a rare events setting. However, in their set-up x � n(ì� å), where ì � EX and

the limit is n!1, so that the rare event occurs as a consequence of large deviations in the

law of large numbers. The algorithm is based upon the saddlepoint technique (see Jensen

1995, for a survey): let d ~F=dF � eèx=F̂[è], where F̂ is the moment generating function of F

and è � è(E) is chosen such that ~EX � ì� E (i.e. ~ESn � x), and use the estimator

Z2(x) � eÿèSn F̂[è]n I(Sn . x),

where X1, . . . , Xn are simulated as i.i.d. with distribution ~F. This algorithm is

asymptotically ef®cient in the sense of (1.1), and, in fact, this particular choice of measure

is the unique one with X1, . . . , Xn i.i.d. for which (1.1) holds.

If instead, as in the situation we consider here, n is ®xed and x!1, the exponential

change of measure with ~ESn � x quite often also works well. For example, one has

asymptotic ef®ciency if the tail of F is either asymptotically exponential, �F(x) � ceÿäx, or

normal-like, �F(x) � ceÿäz2

(we know of no precise reference for these results, but they can

be veri®ed by straightforward variance calculations).
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The conditional Monte Carlo idea. The ®rst and obvious idea when using conditional Monte

Carlo is to condition upon X1, . . . , X nÿ1, which leads to

Z3(x) � P(Sn . xjX 1, . . . , X nÿ1) � �F(xÿ Snÿ1):

Thus, we generate only X 1, . . . , X nÿ1. As a conditional Monte Carlo estimator, Z3(x) has a

smaller variance than Z1(x). However, asymptotically it represents no improvement: the

variance is of the same order of magnitude �F(x). To see this, just note that

EZ3(x)2 > E[ �F(xÿ Snÿ1)2; X 1 . x] � P(X1 . x) � �F(x)

(here we used the fact that, by positivity of the X i, Snÿ1 . x when X1 . x, and that
�F(y) � 1, y , 0).

The reason why this algorithm does not work well is that the probability of a single X i

becoming large is too big. This problem has arisen in many of the algorithms we have tried

to implement: it quite often happens that the probability that Sn `by itself' exceeds x is so

large that its contribution to the variance is O( �F(x)) rather than O( �F(x))2 as one would have

hoped.

An algorithm involving order statistics. Asmussen and Binswanger (1997) suggested avoiding

the problem we met for the naõÈve implementation of the conditional Monte Carlo idea by

discarding the largest X i and considering only the remaining ones. For the simulation, we

thus generate X1, . . . , X n, form the order statistics

X (1) , X (2) , � � � , X (n)

(assuming for simplicity that F has a density f ), throw away the largest one X (n), and let

Z4(x) � P(Sn . xjX (1), X (2), . . . , X (nÿ1)) �
�F((xÿ S�nÿ1) _ X )(nÿ1)

�F(X (nÿ1))
,

where S�nÿ1 � X (1) � X (2) � � � � � X (nÿ1) � Sn ÿ X (n). To check the formula for the

conditional probability, note ®rst that

P(X (n) . xjX (1), X (2), . . . , X (nÿ1)) �
�F(X (nÿ1) _ x)

�F(X (nÿ1))
:

We then obtain

P(Sn . xjX (1), X (2), . . . , X (nÿ1)) � P(X (n) � S�nÿ1 . xjX (1), X (2), . . . , X (nÿ1))

� P(X (n) . xÿ S�nÿ1jX (1), X (2), . . . , X (nÿ1))

�
�F((xÿ S�nÿ1) _ X (nÿ1))

�F(X (nÿ1))
:

Theorem 3.1. Assume that �F(x) � L(x)=xá (á. 1) with L(x) slowly varying. Then the

algorithm given by fZ4(x)g is logarithmically ef®cient.
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The proof is given in the Appendix.

Algorithms using importance sampling. Theorem 3.1 leaves open what to do with

distributions like the Weibull or lognormal. We shall here present a new algorithm involving

importance sampling. Let H be the importance sampling distribution (not to be confused

with the extreme value distribution of Section 2!), h its density and f the density of F. It

turns out that what works is to take H as much more heavy-tailed than F in the following

sense:

Condition 3.1. The distribution K with density k(x) � f 2(x)=(ch(x)), where c � �1
0

f 2=h, is

subexponential and satis®es K(x) <
log

�F(x)2.

It is easily veri®ed that taking �F(x) � c=log x, say,

h(x) �
ç

x(log x)2
, x . a,

ãg(x), 0 < x < a,

8<: (3:1)

where a > e, ç. 0, g is an arbitrary strictly positive density on [0, a] and�1
0

h(x) dx � ç

�1
a

xÿ1(log x)ÿ2 dx� ã � ç

log a
� ã � 1

works in all of our three subexponential examples (lognormal, Weibull, regular variation).

Note, in particular, that this distribution has in®nite mean. That is, h(x) decreases only

slightly faster than 1=x (the choice h(x) � xÿ1 itself does not work because we need h to be

integrable). For the Weibull case, one can take h somewhat more moderately heavy-tailed, say

Pareto where h(x) � (áÿ 1)(1� x)ÿá with á 2 (1, 1).

It is not a priori obvious just how to implement the importance sampling, and here are

two ways. One could just simulate X1 from H and X 2, . . . , X n from F, in which case the

estimator is

Z5(x) � f (X 1)

h(X1)
I(X 1 � � � � � Xn . x);

or one could simulate all of X 1, . . . , X n from H , leading to the estimator

Z6(x) � f (X1)

h(X 1)
� � � f (Xn)

h(X n)
I(X1 � � � � � X n . x):

However, the estimator Z5(x) can easily be discarded because the event that one of

X 2, . . . , X n `by itself' is large contributes too much to the variance:

Proposition 3.1. For any F,

lim
x!1

EZ5(x)2

z(x)
. 0:
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Proof.

EZ5(x)2 > E H

f (X 1)2

h(X 1)2
; X 2 . x

" #
� cP(X 2 . x) � cz(x):

h

However:

Proposition 3.2. If F 2 S and Condition 3.1 holds, then the estimator Z6(x) is

logarithmically ef®cient.

Proof.

EZ6(x)2 �
�
� � �
�
fx1�����xn.xg

f (x1)2

h(x1)2
� � � f (xn)2

h(xn)2
h(x1) . . . h(xn) dx1 . . . dxn

� cn

�
� � �
�
fx1�����xn.xg

k(x1) . . . k(xn) dx1 . . . dxn

� cnPK (X1 � � � � � X n . x) � ncn K(x) <
log

ncn �F(x)2:

h

Random sums and the M=G=1 queue. Now consider the case where n � N is a random

variable independent of X1, X 2 . . . : Here are two main examples. The ®rst is the Pollaczek±

Khinchine formula for the distribution of the M=G=1 waiting time W , or the compound

Poisson ruin probability ø(x) as in Asmussen and Binswanger (1997),

z(x) � P(W . x) � ø(x) � P(X 1 � � � � � X N . x), (3:2)

where N , X 1, X2, . . . are independent, P(N � n) � (1ÿ r)rn and P(X k < x) � F(x), in

which F is the stationary excess distribution corresponding to the service-time distribution B,

F(x) � ìÿ1
B

� x

0
B(y) dy (r � âìB, where â is the arrival intensity). The second is the

accumulated claims for an insurance company in a year, where the most standard assumption

is that N is Poisson, say with rate ë.

It is straightforward to see from the variance calculations in the proofs of Theorem 3.1

and Proposition 3.2 that both algorithms work in this setting too, provided EN 2 ,1 for the

order statistics algorithm and EN cN ,1 for the importance sampling algorithm. In the

setting of the M=G=1 queue, EN2 ,1 is automatic but the order statistics algorithm only

works for the regularly varying case (and, in fact, for the lognormal case; see Binswanger

1997). For subexponential distributions such as the Weibull, the importance sampling

algorithm is applicable provided we can choose the parameters in (3.1) in such a way that

rc , 1. In fact, de®ne

ã(a) � 1ÿ 1

log a
, å(a) �

�1
a

f 2(x)x log2(x) dx:

Rare events simulation for heavy-tailed distributions 311



Then:

Theorem 3.2. Let a be chosen so large that

F 2(a)

ã(a)
� å(a) ,

1

r
,

and de®ne

h(x) �
ã(a)

f (x)

F(a)
, x , a,

1

x log2(x)
, x . a:

8>><>>:
Then the estimator

Z�6 (x) � f (X 1)

h(X1)
� � � f (X N )

h(XN )
I(X 1 � � � � � X N . x)

where N , X1, X 2, . . . are as in (3.2), is logarithmically ef®cient for estimating z(x) �
P(W . x) in the M=G=1 queue.

Proof. It is easily seen that
�

h(x) dx � 1 and that ã(a)! 1 and å(a)! 0. Hence the choice

of a is feasible, and we get

c �
�1

0

f 2(x)

h(x)
dx

� 1

ã(a)

�a

0

f (x)F(a) dx�
�1

a

f 2(x)x log2(x) dx

� 1

ã(a)
F 2(a)� å(a) ,

1

r
:

h

4. The large-deviations approach

We now consider the idea of ®nding a probability ~P(x) which in an appropriate asymptotic

sense is close to the conditional distribution P(x) given the rare event, and use ~P(x) as

importance sampling distribution.

We will start with two extremely simple examples, indicating the dif®culties with this

idea in the heavy-tailed case.

Example 4.1. Assume that A(x) � I(X1 � � � � � Xn . x). The subexponential asymptotics in

its crudest form says that A(x) occurs by one of X 1, . . . , Xn becoming large (and even

exceeding x) while the remaining ones are typical (unaffected). Thus, one would simulate one
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X i, say X1, from F x(y) � (F(y)ÿ F(x))=�F(x), y > x, and X2 . . . , Xn from F. However, this

importance sampling distribution ~P fails to satisfy the crucial absolute continuity criterion

(1.2) because ~P(B(x)) � 0 but P(B(x)) . 0, where

B(x) � X 1 � � � � � X n . x, max
i�1,:::,n

X i < x
n o

:

Example 4.2. Assume that A(x) � I(X . x), where X is Weibull ( â) with â, 1, that is, with

density f (y) � âyâÿ1eÿ yâ, y . 0. Then by (2.3), the conditional distribution of (X ÿ x)=ã(x)

given X . x is limiting standard exponential where ã(x) � x1ÿâ=â. Thus we may try the

estimator Z7(x) � f (x� Y )=h(Y ), where Y is generated from the exponential density

h(y) � ã(x)ÿ1eÿ y=ã(x). But

EZ7(x)2 �
�1

0

f (x� y)2

h(y)2
h(y) dy �

�1
0

â2ã(x)(x� y)2âÿ2e y=ã(x)ÿ2(x� y)â dy � 1:

In contrast, if â � 1 we are in the light-tailed case with z(x) � P(A(x)) � eÿx and obtain

EZ7(x)2 � eÿ2x so that (1.1) is satis®ed because z(x) � eÿx in this case.

We will encounter a similar phenomenon in the random walk setting z(x) � P(ô(x) ,1).

Here ~P(x) is described in Proposition 2.1 and Remark 2.1 (we assume without loss of

generality that ì � ÿ1 in the following), which leads to the following algorithm: if á � 1,

that is F 2 MDA(Ë) (say the lognormal or Weibull case), we generate T from a geometric

distribution with mean ã(x) (note that T=ET is then limiting standard exponential) and in

the regularly varying case �F(x) � L(x)=xá, 1 ,á,1, we generate T from a `discrete'

Pareto distribution with mean ã(x) (see below). We force the random walk to cross level x

at time T , that is, simulate X T from F xÿSTÿ1 where F x(y) � (F(y)ÿ F(x))=�F(x), y > x.

This approach has (at least) two variants: one could just simulate X 1, X 2, . . . , X Tÿ1 from

F, in which case the estimator is

Z8(x) �
Qô

i�1 f (X i)Pô
k�1 pk f xÿSkÿ1 (Xk)

Qkÿ1
i�1 f (X i)� �pô

Qô
i�1 f (X i)

,

where pn � P(T � n), �pn � P(T . n) and ô � ô(x) (note that ô < T ). Since f xÿSiÿ1 (X i) � 0

for i , ô, we obtain

Z8(x) �
�F(xÿ Sôÿ1)

pô � �pô �F(xÿ Sôÿ1)
:

In this case a level crossing before time T is possible. Another variant is to exclude such a

level crossing by simulating X k(k � 1, 2, . . . , T ÿ 1) from FxÿSkÿ1
where Fx(y) �

F(y)=F(x), y < x, in which case the estimator is
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Z9(x) �
Qô

i�1 f (X i)Pô
k�1 pk f xÿS kÿ1 (Xk)

Qkÿ1
i�1 f xÿSiÿ1

(X i)� �pô
Qô

i�1 f xÿSiÿ1
(X i)

� 1

pô
�F(xÿ Sôÿ1)

Yôÿ1

i�1

F(xÿ Siÿ1):

If á � 1 then pn � r(1ÿ r)n, where r � r(x) � 1ÿ 1=ã(x), and then �pn � (1ÿ r)n. In

this case we then have

Z8(x) � 1

(1ÿ r)ô

�F(xÿ Sôÿ1)

r� �F(xÿ Sôÿ1)

Z9(x) � 1

r(1ÿ r)ô
�F(xÿ Sôÿ1)

Yôÿ1

i�1

F(xÿ Siÿ1):

Theorem 4.1. Assume that F is in MDA(Ë) \ S and that
�1

x
�F(y) dy is a subexponential

tail. Then for all x . 0 we have (a) E[Z8(x)2] � 1 and (b) E[Z9(x)2] � 1.

The proof is given in the Appendix.

In the regularly varying case �F(x) � L(x)=(1� x)á, ã(x) � (1� x)=(áÿ 1), and we

choose T with point probabilities pk � c(x)(1� x)áÿ1=(1� x� k)á, where c is a

normalizing constant. It is easy to see that then c(x)! áÿ 1 and that P(T . (1� x)y)

! (1� y)1ÿá as required.

Theorem 4.2. Assume that �F(y) � (1� y)ÿá for some á. 1. Then for all x . 0 we have

E[Z9(x)2] � 1.

The proof is given in the Appendix.

Theorem 4.3. Assume that �F(y) � (1� y)ÿá for some á. 2: Then the estimator Z8(x) fails

to satisfy the ef®ciency criterion (1.1).

The proof is given in the Appendix.

5. Concluding remarks

A main conclusion to be drawn from the present paper is that the rare events simulation

method which is prevalent in the light-tailed case, importance sampling via large-deviations

arguments, does not seem to hold promise of being equally useful in the heavy-tailed case

(one may note that there are recent indications that it also has limitations in the light-tailed

case; see Glasserman and Wang 1997).

We have presented two algorithms which have as good asymptotic ef®ciency properties as
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the standard estimators in the light-tailed case. However, the situations in which these

estimators can be used are quite special. We consider it premature to predict whether a

general methodology using features of these algorithms can be developed. At this stage, one

must note that there is no ef®cient algorithm for simulating the tail waiting time probability

P(W1. x) in a general GI=G=1 queue with heavy-tailed service-time distribution. For the

buffer over¯ow probability P(M C . x) (see Proposition 2.2), we did not manage to come up

with an ef®cient algorithm even for M=G=1.

A technical question which is left open is the behaviour of the estimator Z8(x) when

1 ,á < 2 (®nite mean but in®nite variance). We conjecture that also in this case Z8(x) will

fail to satisfy (1.1). One reason is that Z8(x) captures the large-deviations reasoning less

well than Z9(x) (which has in®nite variance in all cases). For example, the distribution of ô
subject to the importance sampling measure is not asymptotically correct.

A possible line for further research is to relax the rather strict requirements we have

imposed upon our estimators. Here are two possible relaxations of the assumptions, for

which is may be easier to ®nd algorithms:

(a) One could allow some bias so that EZ(x) is close to but not necessarily equal to z(x).

(b) One could look for estimators which improve the crude Monte Carlo estimators

without attaining the ef®ciency criterion (1.1).

Appendix: Proofs

The key step in the proof of Theorem 3.1 is the following estimate:

Lemma A.1.

E[Z4(x)2] < n(nÿ 1)
1

2
�F 2 x

2

� �
ÿ �F 2 x

n

� �
log �F

x

2

� �" #
: (A:1)

Proof. We ®rst recall (see, for example, Gut 1995, p. 106) that the density f X ( nÿ1)
(x) of the

random variable X (nÿ1) is

f X ( nÿ1)
(x) � n(nÿ 1)F nÿ2(x) �F(x) f (x):

We then obtain

E[Z4(x)2] � E
�F(xÿ S�nÿ1)
�F(X (nÿ1))

; X (nÿ1) <
x

n

" #2

�E
�F((xÿ S�nÿ1) _ X (nÿ1))

�F(X (nÿ1))
;

x

n
, X (nÿ1) <

x

2

" #2

� E 1; X (nÿ1) .
x

2

� �2

: (A:2)

The ®rst term on the right-hand side of (A.2) can be bounded as follows. If X (nÿ1) < x=n

then �F(xÿ S�nÿ1) < �F(x=n), so that
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E
�F(xÿ S�nÿ1)
�F(X (nÿ1))

; X (nÿ1) <
x

n

" #2

< �F 2 x

n

� ��x=n

0

f X ( nÿ1)
(y)

�F 2(y)
dy

< n(nÿ 1) �F 2 x

n

� ��x=n

0

f (y)
�F(y)

dy

� ÿn(nÿ 1) �F 2 x

n

� �
log �F

x

n

� �
:

The second term in (A.2) can be bounded in the same way. For x=n , X (nÿ1) < x=2,
�F((xÿ S�nÿ1) _ X (nÿ1) < �F(x=n), yielding

E
�F((xÿ S�nÿ1) _ X (nÿ1))

�F(X (nÿ1))
;

x

n
, X (nÿ1) <

x

2

" #2

< �F 2 x

n

� ��x=2

x=n

f X ( nÿ1)
(y)

�F 2(y)
dy

< n(nÿ 1) �F 2 x

n

� ��x=2

x=n

f (y)
�F(y)

dy

� ÿn(nÿ 1) �F 2 x

n

� �
x log �F

x

2

� �
ÿ log �F

x

n

� �" #
:

To ®nd an upper bound for the third term in (A.2) we write

E 1; X (nÿ1) .
x

2

� �2

�
�1

x=2

f X ( nÿ1)
(y) dy

� n(nÿ 1)

�1
x=2

F nÿ2(y) �F(y) f (y) dy

< n(nÿ 1)

�1
x=2

�F(x) f (x) dx

� n(nÿ 1)
1

2
�F 2 x

2

� �
:

Adding the above inequalities leads to the desired result. h

Proof of Theorem 3.1. Since F 2 S , we have z(x) � P(Sn . x) � n �F(x) � nL(x)=xá. It

follows from X EL(x)!1, xÿEL(x)! 0, x!1, for any E. 0, that jlog z(x)j � á log x.

Since L(x=d) � L(x), we have �F(x=d) � dá �F, and hence Lemma A.1 yields

jlog var Z4(x)j � ÿlog var Z4(x) > ÿlog E[Z4(x)2]

� ÿlog �F(x)2 � 2á log x: h

316 S. Asmussen, K. Binswanger and B. Hùjgaard



Proof of Theorem 4.1. Throughout the proof we let C denote any positive constant and

denote the importance sampling measure by ~P(x).

(a) Let ~Sn be a random walk under ~P(x) with increment distribution F and ~ô �
inffn : ~Sn > xg. Then, by the strong law of large numbers, we can ®nd constants

å, ç, ä. 0, with ç, 1 , å, such that

~P(x)(ÿånÿ ä < ~Sn < ÿçn� ä for all n) > C: (A:3)

Since under ~P(x), fSngn , ô�D f~Sngn , ~ô (see, for example, Asmussen and KluÈppelberg 1996) we

have

E[Z8(x)2] > CE
1

(1ÿ r)2ô

�F(x� åô� ä)
�F(x� åô� ä)� r

 !2
24 35:

Clearly,

~P(x)(T � n, ~ô. T ) > (1ÿ z(x))~P(x)(T � n):

Thus

~E(x)[Z8(x)2] > C~E(x) 1

(1ÿ r)2T

�F(x� åT � ä)
�F(x� åT � ä)� r

 !2

; ~ô. T

24 35

� C~E(x) 1

(1ÿ r)2~ô

�F(x� åô� ä)
�F(x� å~ô� ä)� r

 !2

; T . ~ô

24 35

> C~E(x) 1

(1ÿ r)2T

�F(x� åT � ä)
�F(x� åT � ä)� r

 !2
24 35:

Now the right-hand side equals

Cr
1ÿ r

X1
n�1

1

(1ÿ r)nÿ1

�F(x� ån� ä)
�F(x� ån� ä)� r

 !2

� 1

since F 2 S implies

lim
n!1 èn �F(x� ån) . 0

for all x and è. 1.

(b) In this case let ~Sn have increment distribution Fxÿ ~Snÿ1. If Sn < x for all x, then
~Sn � Sn for all n. Since P(S1 < x, S2 < x, . . .)! 1 as x!1, we conclude that (A.3)

holds also in this case. This leads to
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~E(x)[Z9(x)2] > C~E(x) 1

r2(1ÿ r)2(ôÿ1)

Yôÿ1

n�0

F(x� çnÿ ä)

 !2

�F(x� åô� ä)2

24 35

> C~E(x) 1

r2(1ÿ r)2(ôÿ1)

Y1
n�0

F(x� çnÿ ä)

 !2

�F(x� åô� ä)2

24 35:
Now Ð1n�0 F(x� çnÿ ä) � c . 0 if and only if

P1
n�0

�F(x� çnÿ ä) ,1, which follows

from ìF ,1. Since in this case ô � T almost surely we obtain, as above,

~E(x)[Z9(x)2] > C
X1
n�1

1

r(1ÿ r)nÿ1
�F(x� ån� ä)2 � 1,

Since F 2 S . h

Proof of Theorem 4.2. Again we let C denote any positive constant and denote the

importance sampling measure by ~P(x).

Obviously

~E(x)[Z9(x)2] > ~E(x) 1

p2
ô

Yôÿ1

k�1

F(xÿ Skÿ1) �F(1)

( )2

I(X ôÿ1 2 (xÿ 1ÿ Sôÿ2; xÿ Sôÿ2))

24 35:
As in the previous proof, we can apply (A.3) to obtain, for some å, ä. 0,

~E(x)[Z9(x)2] > C~E(x) 1

p2
ô

Yôÿ1

k�1

F(x� çk ÿ ä)

( )2

I(X ôÿ1 2 (xÿ 1� åô� ä; x� çô� ä))

24 35:
> C~E(x) 1

p2
ô

I(X ôÿ1 2 (xÿ 1� åô� ä; x� çô� ä))

� �

> C
X1
t�0

1

pt

f (x� çt � ä)[(çÿ å)t � 1]

> C
X1
t�0

1

pt

f (x� çt � ä) � C

(1� x)áÿ1

X1
t�0

(1� x� t)á
1

(1� x� çt � ä)á�1
:

It is easily seen that

1� x� t

1� x� çt � ä
> min[1=ç, (1� x)=(1� x� ä)]

for t > 0, and we obtain

~E(x)[Z9(x)2] >
C

(1� x)áÿ1

X1
t�0

1

(1� x� çt � ä)
� 1:

h
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In the proof of Theorem 4.3, let ~St be a random walk with increments ~X 1, ~X2, . . .
distributed according to F and ~ô � infft . 0 : ~St . xg. Let â � 1=á and let Tx, t be the

interval

(xÿ (x� çt)â, xÿ 2(x� çt)â);

cf. (A.3).

Lemma A.2. Let gx, t(z) be the density of the absolutely continuous part of the random

variable ~St I(~ô. t). Then, for t > x,

gx, t(z)C
(x� t)â

(x� t)á�1
, z 2 I x, t:

Proof. Let t9 � 1, . . . , t be ®xed, let ~S ( t9)
t � ~St ÿ ~Xt9 and let A(t9) be the event that

~St 0 < 0 for all t 0 , t9, ~St 0 ÿ ~St9 < 0 for all t9 < t 0 , t (A:4)

~S ( t9)
t 2 (ÿEt ÿ ä, ÿçt � ä), ~S ( t9)

t
~S ( t9)

t9 2 (ÿE(t ÿ t9)ÿ ä, ÿç(t ÿ t9)� ä) for all t9 < t 0 , t:

(A:5)

Then, by a variant of (A.3), P(A(t9)) > C . 0 with C independent of t, t9. Write z � z1 �
z2 � z3, where z1 � ~S ( t9)

t9 , z2 � ~X t9, z3 � ~S ( t9)
t ÿ ~S ( t9)

t9 , and assume t ÿ t9 < (x� çt)â=Eÿ ä.

On A(t9), we then have

~St9 � zÿ z3 , xÿ (x� çt)â � E(t ÿ t9)� ä < x:

Then (A.4) yields ~St 0 , x for all t 0 < t and hence ~ô. t. It follows that the contribution to

gx, t(z) from A(t9) is at least

f (z2) > f (C(x� çt)) > C(x� çt)ÿáÿ1 (A:6)

because, by (A.5),

z2 � zÿ z1 ÿ z3 > z� çt ÿ ä > xÿ 2(x� çt)â � çt ÿ ä > C(x� çt):

Now, ®nally, note that the A(t9) are mutually exclusive (say, the ®rst upcrossing of level zero

occurs at time t9 by (A.4)) and sum (A.6) over the (x� çt)â=Eÿ ä > C(x� t)â allowed

values of t9 to obtain the result. h

Proof of Theorem 4.3. If Stÿ1 2 I x, t, we have

�F(xÿ Stÿ1) > �F(2(x� çt)â) > C(x� çt)ÿáâ > C(x� t)ÿ1,

pt � �pt
�F(xÿ Stÿ1) < ptf1� C(x� t) �F(xÿ Stÿ1)g

< ptf1� C(x� t) �F((x� çt)â)g

< ptf1� C(x� t) �F((x� çt)â)g < Cpt:

Hence
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EZ8(x)2 >
X1
t�1

E
�F(xÿ Stÿ1)

pt � �pt
�F(xÿ Stÿ1)

 !2

; T � t < ~ô, Stÿ1 2 I x, t

24 35
> C

X1
t�1

pt

1

( pt(1� x� t))2

�
I x, t

gx, t(z) dz

> C
X1
t�1

1

pt

1

(1� x� t)2

(1� x� t)2â

(1� x� t)á�1

� C
X1
t�1

(1� x� t)á

xáÿ1

1

(1� x� t)2

(1� x� t)2â

(1� x� t)á�1

� C
1

xáÿ1

X1
t�1

1

(1� x� t)3ÿ2â
> C

1

xáÿ1

1

x2ÿ2â
:

Now z(x) is of order xÿ(áÿ1), cf. (2.4), so that it suf®ces to note that 2ÿ 2â � 2ÿ 2=á ,
áÿ 1 when á. 2. h
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