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Serial ranks have long been used as the basis for nonparametric tests of independence in time series
analysis. We shall study the underlying graph structure of serial ranks. This will lead us to a basic
martingale which will allow us to construct a weighted approximation to a serial rank process. To
show the applicability of this approximation, we will use it to prove two very general central limit
theorems for Wald—Wolfowitz-type serial rank statistics.
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1. Introduction and statement of results

Let Xy, ..., X,, be independent random variables with a common continuous distribution
function. For any i =1, ..., n, let R(i) denote the rank of X; among X1, ..., X,,. Then

1
P(R(D), - R(m) = (D), ... m(n)} =

for any permutation (7z(1), ..., m(n)) € &, where & denotes the set of all permutations of
(1,...,n). Let A = (44, ..., A,) denote the vector of anti-ranks of (R(1), ..., R(n)) — that
is, A is the inverse permutation of (R(1), ..., R(n)) defined by

RA)=j,  j=1,...,n

Clearly, for any permutation (7z(1), ..., m(n)) € 2,
P{(A4y, ..., 4,) = (@(1), ..., w(n)} = %
For n =2, let ¢,(1), ..., cy(n) be real constants such that
zn; cn(i) = 0. (1.1)

Denote, for n = 2,
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J
Su() = _e(R@)/(n—j),  j=1,....n—1
i=1

and define, for each j =1, ..., n — 1, the o-field
Za(j) = 0(RA), ..., R(j)).
Let £ ,(0) be the trivial o-field. It is readily verified that
{(Sa(), Ca()) s 1< j<sn—1} (1.2)

is a martingale; consult, in particular, Shorack and Wellner (1986). Now, for n = 3, define the
rank process

Cu(t) =Y ea(R()), 0<r=<1. (1.3)
i=nt
For the constants c,(1), ..., c,(n), introduce the following two conditions: there exist finite
positive constants /1 and %/, such that, for all n = 2,
n
aie) =Y )= 7 (1.4)
i=1
and
= G <n"' 7 (1.5)
i=1

(Of course, (1.4) follows from (1.5) by the Cauchy—Schwarz inequality.) Shorack (1991),
using the martingale property (1.2) in combination with the Skorohod embedding, established
the following weighted approximation for the rank process.

Theorem A. Assume that (1.1), (1.4) and (1.5) hold. Then on a rich enough probability
space there exist a sequence of versions (Cp)n=1 of (C, )n>1 (ie. C, = C, for every n) and a
standard Brownian bridge B such that, for all 0 < 1/< and p >0,

w10 = 0.8
p

= Op(n™) 1.6
p/n<i=i—p/n ({1 — H)l/2-y (1 (1.6)

Einmahl and Mason (1992) generalized Shorack’s result to a class of exchangeable
processes. Weighted approximations to exchangeable processes and the uniform empirical
and quantile processes, among other processes, have proved to be tremendously useful in
establishing the asymptotic distribution of complicated statistics for which traditional weak
convergence methods are difficult to apply. See, for example, Part II of the proceedings
volume edited by Hahn ez al. (1991) and the monograph by Csorgdé and Horvath (1993),
and the many references therein. For weighted approximations to certain sequences of
continuous-time martingales, refer to Haeusler and Mason (1999).

One of our intentions here is to obtain the analogue of Shorack’s result for a serial rank
type process. To motivate our investigations, consider the nonparametric testing problem
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Hy: Xy, ..., X, are independent versus H;: Xy, ..., X, are dependent,

where X1, ..., X, are considered to be observations of a time series at times i =1, ..., n.
Introduce the notion of the pairs of ranks/serial ranks at lag r, r = 1, based upon the sample
X1, ..., X, taken in the given time order:

(R(1), R((1 = Pmodn))s - - - » (R(1n), R((n = Mmodn))s (1.7)

where for any —n+1sM<n—-1,

M+n  M<O0
Munoan =\ M>0

The classical test statistics for Hy versus H; are often based on these pairs of ranks/
serial ranks at some lag r, » = 1. For instance, Spearman’s rho is formed by choosing
r=1 1in (1.7) and taking the sample correlation of these pairs. Consult Hallin and Puri
(1988; 1991; 1992a; 1992b; 1994; 1995) and the references therein to see how to construct
optimal tests based on serial ranks against various time series parametric alternatives.

Towards defining a serial rank process analogous to the rank process given in (1.3), for
any n=3 and 1 <r<sn—1, we set

(S (D), s fr(m) = (R((A1 = Pmodn)s - - - » R(An = Mimodn))- (1.8)

Notice that (f,(1), ..., f(n)), for 1 < r < n— 1, is a random permutation of (1, ..., n),
and observe, for instance, that

Tu(r) =Y auDan(f(D) =Y an(R(E)an(R( = Pimodn),
i=1 i=1

where a,(i),i=1,..., n, is any triangular array of constants. The statistic 7,(r) is the
classic serial rank test of Wald and Wolfowitz (1943) for testing Hy: Xy, ..., X, are
independent versus H;: X, ..., X, are dependent.

For n=3, let c,(1), ..., cy(n) be real constants such that (1.1) holds, and for

1 <r =< n—1, define the serial rank process at lag r

CO) = el /i), 0s<t<L

i<nt

One of our aims in this paper is to establish the following weighted approximation for the
serial rank process.

Theorem 1.1. Let r be fixed and assume that (1.1), (1.4) and (1.5) hold along the
subsequence {n;}i=1 of {n} of all integers n =3 such that n; and r are relatively prime.
Then on a rich enough probability space there exist a sequence of versions (C(’)),>1 of
(C( )),>1 (i.e. C(’) = C(’) for every i) and a standard Brownian bridge B such that for all
0<v<1/4 and p>0

ICP(0) = 0,,()B(1)]
sup -
p/nists1—p/n; (t(l - t))l/Z—v

= 0,(n"). (1.9)
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We remark that a straightforward modification and simplification of the proof of Theorem
1.1 yields the following weak convergence result for C(n").

Theorem 1.2. Let r be fixed and assume (1.1) and (1.4), and replace (1.5) by the assumption
that

 max c () —0

Ssjsn;
holds along the subsequence {n;}i=1 of {n} of all integers n =3 such that n; and r are
relatively prime. Then on a rlch enough probability space there exist a sequence of versions
(C(’)),>1 of (C<’)),>1 (i.e. C(’)— C(’) for every i) and a standard Brownian bridge B such
that

sup |C(1) — 0.0 ()B(D] = 0,(1). (1.10)

0=r=l

We will not give the routine details of the proof here. However, refer to Remark 3.2
below.

To show the applicability of our weighted approximation for C(n’) we shall establish two
general results on the asymptotic normality of the following class of Wald—Wolfowitz
statistics. For n =3, let a,(1), ..., a,(n) and b,(1), ..., b,(n) be constants, and choose
l = r=<n—1. Consider the statistic

\/_Zz l(an(l) n)bn(fr(i))
0 u(@)o »(b) |
where 02(a) = S0 (an(i) — @n)?, @y = n~ 'S0 a,(i) and 02(b) = SO0 b(i).

For our first central limit theorem, introduce the condition on the constants a,(1), ...,

ap(n), n=3:fori=1,...,n,
I
—-J 1.11
(1) w

a,i) = J, (nil)

where J; and J, are non-increasing functions on (0, 1) satisfying

i J3i/(n+ 1) + J3(i/(n + 1))

o3(a)

W(r) =

=0(1) (1.12)

i=1
and

J3(i/(n+ 1)+ J3(i/(n + D) _
1<isn o2(a)

o(1). (1.13)

For our second central limit theorem we need the following condition on the constants
ay(1), ..., ay(n), n=3. For some measurable function ¢ on (0, 1) satisfying 0<
var (U) < oo, where U is Uniform(0, 1), assume

1
lim J (a,(1 4 [un]) — @(u))* du = 0. (1.14)

n—oo
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Furthermore, impose on the constants b,(1), ..., b,(n), n = 3, the condition
lim lim sup Z 1{b2(i)/02(b) > t/n}b (i) /02 (b) = 0. (1.15)
700 im0

For instance, it is readily checked that (1.15) is satisfied if (1.14) holds with b,(7) replacing
an(i).

We will establish the following central limit theorem for W,(r). In the course of its proof
we will see how to adapt the approximation in Theorem 1.1 to determine the limiting
distribution of functionals of the serial rank process when » and r are not necessarily
relatively prime.

Corollary 1.1. Let a,(l), ..., a,(n), n =3, be a triangular array of constants satisfying
02(a)>0, 3" a,(i) =0 and (1.11), (1.12) and (1.13). Further, let b,(1), ..., by(n), n =3,
be a triangular array of constants such that Oi(b) >0, > 1 bu(i) =0 and (1.15) hold. Then
for any v =1, we have

Wor) 5 Z  asn— oo, (1.16)
where Z is a standard normal random variable.

Remark 1.1 Notice that the functions J; and J, need not be square-integrable to satisfy
(1.12) and (1.13). For instance, the functions J, (1) = Jo(u) = u~'/? fulfil (1.12) and (1.13).

Corollary 1.2. Replace (1.11), (1.12) and (1.13) by (1.14), and keep the rest of the
assumptions of Corollary 1.1. Then the conclusion (1.16) remains true.

Corollaries 1.1 and 1.2 are related to the central limit theorem of Héjek and Sidék (1967)
for simple linear rank statistics (see their Theorem V.1.6). As a special case of Corollary
1.1 we get the central limit theorem for the Wald—Wolfowitz statistic recently established
by Hallin and Vermandele (1996) (refer, in particular, to their Proposition 11).

Surprisingly, proofs of central limit theorems for Wald—Wolfowitz statistics of the form
W,(r) under minimal conditions turn out to be quite intricate and involved. The proof that
Hallin and Vermandele (1996) provided for their central limit theorem is based on a simple
technique developed by Lombard (1986). However, their proof is long and highly technical.
The proof of our central limit theorem, though significantly shorter than theirs, remains very
technical. This is largely due to the problem of moving from the case when » and n are
relatively prime to the case when they are not. This problem was recognized by Wald and
Wolfowitz (1943), who in their paper only established a central limit theorem along the
subsequence {n;};=; of {n} for all integers n =3 such that n; and r are relatively prime.
In practical situations when the sample size # is large and » and » are not relatively prime,
they suggested reducing to the relatively prime case by tossing out a small number ' less
than » observations to make » and »n' = n — ' relatively prime and then basing the
statistical test on the slightly smaller set of n’ observations.

In the process of establishing Theorem 1.1 we will uncover the random graph structure
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that lies behind the ranks/serial ranks in (1.8). This will guide us to the construction of the
basic martingale which will lead through the Skorohod embedding to Theorem 1.1. As far
as we know, Hallin ef al. (1992) were the first to analyse serial rank tests using notions
from graph theory. We should also mention the survey article on combinatorics and
statistics by Kolchin and Chistyakov (1974). The random graph structure will be derived in
Section 2. In Section 3 we will construct the basic martingale and prove Theorem 1.1. The
proofs of Corollaries 1.1 and 1.2 will be detailed in Section 4.

2. The graph structure of serial ranks

We shall make use of notions from graph theory. Let us introduce directed graphs on the set

{1, ..., n}. Any directed graph consists of the set of vertices ¥ = {1, ..., n}, and the set of
ordered pairs {(ix, jx) : k=1,..., N}, N =1, where iy, j, € V and i; # j; for each
k=1,..., N. The pair (i, ji) represents the arc from the vertex i) to the vertex j;. Thus

the positive integer N denotes the number of arcs in the directed graph. We say that the
vertex i is connected to the vertex j if there is a path of arcs from i to j. Let W be the set of
all directed graphs for which N = n and

{it, s int =, jnp=A{1, ..., n} 2.1)

Hence a directed graph I' € W is defined uniquely by the set of its arcs, which enables us to
use the following notation for the elements of W:

= {(ij0):k=1,...,n} (2.2)

It follows from (2.1) that any directed graph I' € W has the property that for any vertex i
there exist exactly one incoming arc (j, i) for some j # i and exactly one outcoming arc
(i, 1) for some [ # i.

For any 2 < k < n, we call a k-cycle any subset of the arcs of the form

{(l19 iz): (i27 13)’ e (lks ll)}’ (2'3)
where iy, iy, ..., i; are distinct.
For any m>1 and a € N such that » = am, define W(a, m) C W to be the set of the
directed graphs on {1, ..., n}, which consist of exactly a different m-cycles.

The following result is crucial for our work since it reveals the structure of the
permutations (f,(1), ..., f.(n)) defined in (1.8).

Proposition 2.1. For any n =3 and 1 < r < n— 1, such that r = ab, n = am, where a is
the greatest common divisor of r and n,

Q.. ={{{, L), ..., (n fr(n)}: 4 €7} = W(a, m). 2.4
Proof. First we will show that
Q,, C W(a, m). (2.5)

Let us arbitrarily fix 4 € 72 and 1 < r < n — 1. Consider
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(1) = R((Ay = Pmodn)s - - -5 fr(n) = R((An = Mmodn)- (2.6)
We will show that
L=A{, fr(), ..., (n, fr(n)} € W(a, m). 2.7
Let i1 x be such that 4;, =k, for k=1, ..., a, and set
Ai, = (A, — (s = DP)modns fors=2,..., m. (2.8)

Assume that, for some 1 <i<j<gand 0 < k|, kp =< m — 1, we have

(] - klr)modn = (i - k2r)modn- (29)
This implies that for some [ € Z
O0sj—i=a(m+ (ky— k)b)<a. (2.10)

Obviously, the inequalities in (2.10) can be true only if j = i, which in turn forces k| = k;
since b and m are relatively prime. Hence (2.9) holds only if both j =i and k| = k,. This
shows that the

Ai, = Ay, — (5= DPmodn fors=1,....mk=1,...,a,
are n distinct values {1, ..., n}, as are
ik =R(A;,), fors=1,....,mk=1,...,a @.11)

Now according to formulae (1.8) and (2.8) for s=1, ..., m—1, k=1,...,a,

Srlis k) = R((4i, — Mimodn) = R((Ai, — $P)modn) = R(A;., ) = g1,k
and

Sr(imi) = R((Aiy, — MP)modn) = R(As,,) = i1k
Clearly each set
Cr == A5k, [rls) 2 s =1, ..., mp = {(ire, i2.0), G2k, 33,45 - -+ (ks P10}
is an m-cycle with set of vertices 7% = {i14, --+» imi}, k=1,..., a. Thus
I'={Gsr filisk) :s=1,....,mk=1,...,a} =U{_Ck € W(a, m),

which confirms (2.5).
Next we will show that

W(a, m) C Q, . (2.12)
Suppose that I' € W(a, m). Then clearly
I'=u5_,C,
where
Cr = {(1.1> 12.0)> (ks T3.0)5 « -+ (o> $1.0) fork=1,...,a

It is easy to show that, for an appropriate permutation 4 € &,
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T ={(L f,(Ds ..., (n, f:(m)}. (2.13)

To see how this works, set

A4y, =k, fork=1,...,a,

and define
A, = (As,, — (5 = DP)modns fors=2,..., m,
and
imis = Ain, = k.
Now set

Srlisk) = R((4i,,, — $P)modn) = R(4i,,,,) = ist1,ks fors=1,...,m—1,
and
Srlimi) = R(4,,, k) = R(Ai, k) = i1k
Thus
{Gre G0, -5 Gk [r(imi))} = Crs fork=1,...,q,

which yields (2.13) and therefore (2.12). Clearly, (2.5) and (2.12) imply the assertion of our
proposition. O

Next we derive some useful corollaries from this proposition.
For any permutation ( f,(1), ..., f,(n)) of the set (1, ..., n), define its inverse

0200 R § A () E R
Then it follows that
7)) = i if and only if (i, j) € T, (2.14)

where T is defined as in (2.7). Set also f.%(j)=f '(f;*"'(j)) for all k>1 and
je{l,...,n}. For any I €{l,...,n}, M C{l,...,n} and T(M) = {(J, (), j€ M}
CT € W(a, m), define the length of the longest connected path of the arcs of the graph
I'(M) to the vertex [ as follows:
0, if 1¢ VI(M)),
k(I, T(M)) == { max{0 < K<m: (f.5(1), £,*'(1)) e (M)  otherwise, (2.15)
forall 0 < k < K},

where V(I'(M)) is the set of vertices of the graph I'(M), that is, V(I'(M)) =
{J, /+(j) : j € M}. We shall introduce the following notation. Assuming

I=U_,Ch = {(Gish, [rlisp):s=1,....,m k=1,...,a} € W(a, m),
write

7/k:{il,ka ey im,k}:{sl,k: ...,Sm’k}, for k = 1, ceey a, (216)
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to denote the set of the vertices of the cycle Cj, where

Issip<...<Sprsmn
for k=1, ..., a. In this notation we have, for each k=1, ..., a,

Cr = {(s1,5 Sr(SLE)s s Smses Fr(Smi))}

Further, foreach 1 < js=mand i=1, ..., a, set

ni(j) =#{t=1:s,; < j}
and

Ty = {(s1i, Fr(S10))s oy Sui(iris [r(Sm( i)}

Corollary 2.1. Assume that (f,(1), ..., fr(n)), n = 3, is a random permutation as in (1.8).
Choose any 1 <r<n—1, and set r = ab and n = am, where a is the greatest common
divisor of r and n. Suppose

Ty i= {(L,7A0), s G S} CT,  forsome T € W(a, m),  (2.17)
where 1 < j<<n is arbitrary but fixed and j+ 1 € 7}, for some 1 < i < a. Then

PG+ D =G+ DI = FD), oo (D) = oDy 705 -os 7a}

m, ifl<nm(j+D)<m f(j+1)€ 7 and

_ LGHDE DG, frlsia), - Srsninad)s (2.18)
L, if m(G+ ) =mand f,(j+ 1) =7""G+1),
0, otherwise.

Before we proceed with a proof, we point out the important special case of Corollary 2
when r and n are relatively prime.

Corollary 2.2. Assume that (f,(1), ..., f,(n)), n =3, is a random permutation as in (1.8).
Choose any 1 < r < n—1 to be relatively prime to n. Suppose

L= {(L /D), ... G [N} CT.  for some T € W(1, n), (2.19)

where 1 < j<<n is arbitrary but fixed. Then
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PG+ D) = £+ D) = (D), ..., () = Fr(D}

ﬁ, if j+1<nand

_ LG+ DELIDGED, LM DY (200
L, if j+1=nand fu(n)=f.""(n),
0, otherwise.

Proof of Corollary 2.1. Note that condition (2.17) entails

P{f(D) = (D), ..., fr()) = (D} >0.

Further, according to Proposition 2.1, the probability on the left-hand side of (2.18) equals
zero unless

L =Lu{(+ 1L+ 1)} 2.21)

={(L, /D), .., G oD, G+ L fr(G+ 1)} C T

for some I'" € W(a, m).
Consider four cases.

(i) Suppose n;(j+ 1) =1. Then condition (2.21) holds if and only if f,.(j+ 1) #
Jj+1 B B

(ii) Suppose j+1 & {fi(s1,0), ..., fr(Snp,)} and 2 < ni(j+ 1) <m. Then, clearly,
condition (2.21) is satisfied if and only if

fr(] + 1) ¢ {j + 13 fr(SLi), cees fr(sn,'(_j),i)}' (222)

(iii) Suppose j+ 1€ {fi(s1:), --» fr(Sm(j)} and 2 < n;(j+ 1)<m. Then, clearly
condition (2.21) is fulfilled if

LGHDELATDG 1), flsii)s s flSnpi)}- (2.23)
Now assume that (2.23) does not hold, that is,

LG+ € LG+ 1), frlsia)s -0 Frlsn )}
Then the set of the arcs
{1 Fr(S1))s - vs SmiCiris Fr(Sm )y G+ 1 fo(G+ 1)}

makes one k-cycle where obviously & < j+ 1 < m, which contradicts (2.21). Hence, in case
(iii) condition (2.21) is equivalent to (2.23).

(iv) Finally, assume n;(j + 1) = m. To satisfy condition (2.21) in this case there is only
one possible value for f,(j+ 1), namely

[+ 1) =G4, (2.24)
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where, clearly, k(j+1, 1) =m— 1.

Combining (i), (i), (iii) and (iv), and taking into account that any value satisfying (2.17) or
(2.21) is equally likely, we conclude (2.18). Ol

3. The basic martingale and proof of Theorem 1.1

3.1. The basic martingale

First we shall introduce a martingale that will be crucial for our approximation.
Assume that » =3 and 1 < r < n—1 are relatively prime. Let b(i), for i=1, ..., n,
denote a sequence of constants satisfying

> b(j)=0.
Jj=1
We shall write, for j =1, ..., n—2,

Knj= Knj(fi(Dsooos i) = £, DG+ D,
with k(j+ 1, I';) defined as in (2.15). For 1 < j < n — 2, introduce the centring constants

5, | S b, 2=
0, if j=1,
and the o-fields
T () = o (fr(D), .o, fr (),
with .7 ,(0) being the trivial o-field. Now let a(i), for i =1, ..., n, be constants and set, for

j=1,...,n—=2,
J
M,(j) = at){b(f(0) + bi}.

i=1

Before we proceed we need the following lemma.

Lemma 3.1. For any choice of n =3, constants c(i), | <i<n and l <rsn-—1,

_ Siae) = s el (1) = e(Kni-1)

n—i

E(c(fr ()7 u(i = 1))

3.1)

and

imic(]) (= Deti)

Ec(Kn,ifl) = 1 n—1

(3.2)
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Proof. Notice that by Corollary 2.2 we have (3.1). Taking the expectation of both sides, we
obtain

Sieth) —el) _ieth) | Fineh)  Be(Kpi)
n—1 n—1 (n—1D(n—1) n—i
The proof is finished by solving for Ec(K, ;1) in this last equation. U]

Lemma 3.1 immediately yields the following proposition.

Proposition 3.1. Let n =3 and 1 < r < n — 1 be integers such that r and n are relatively
prime. Then

{(Mu(), 7u(j)) : 1< j=<n—2}

is a martingale.

By choosing

1
a(i) =——— and b(i) = cu(i), fori=1,...,n—2,
n—i—1
we see after a little calculation that
Sl ) [ B en(Knic)
M,(j) === : . 33
== +;(n—i—l)(n—i) (3-3)

This will be the basic martingale upon which we will base the proof of Theorem 1.1.

3.2. Proof of Theorem 1.1

For n = 3, we set

n Knif 2
S ety Y o) oy 2
= oz (n—i—D)(n—1) "
D(nr)(t) = =n <isn (34)
2 2
D(,f)<1 ——), 1—Z<r<1.
n n
Then, for j=1,...,n—2,
DY (j/n) .
/ = M,()). 3.5)
n—j—1

For the proof of Theorem 1.1, let  be fixed, and let {n,;},=1 denote the subsequence of
{n} of all integers n = 3 such that n; and r are relatively prime.

We will use Proposition 3.1 and the Skorohod embedding for martingales to construct a
sequence of versions (D{?);=1 of (D);= and a standard Brownian bridge B such that, for
all 0 <v<i,
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D) — 0 (B _
e (= )

Op(n;”), (3-6)

where J is any of the following intervals: [2/n;, | —2/n;], [p/ni 2/ni), [1 —2/n;,
1 —p/n;] with 0<p<2, and thus (3.6) holds for any interval J of the form [p'/n;,
1 —p'/n;], with p’ >0.

From (3 6) we can construct the C(’) of Theorem 1.1 using Lemma Al of Berkes and
Philipp (1979), provided that we can show that, for all 0<p <1,

|C5(0) — D)
sup o rs m

p/ni<t<l—p/n; (t(l — l‘))l/2 v P( 71}) (37)

Throughout this proof k;, i = 1, will denote finite positive constants independent of n = 3,
71 and 7/>. Also, to simplify notation, throughout the rest of the proof we will write »n
instead of n; and o, instead of ¢ ,(c).

Step 1. First we prove (3.7). Note that C(n’)(t) = D(n’)(t) for 0 < t<<2/n. Thus, for all
0<p<1, we see that the supremum in (3.7) is bounded above by

C(#) — D(¢ CO(1) — DVt
wp  IOZDROL SO DR,
2/n<t<1-1/n (t(l - ) Y 1-1/n<t<1-p/n (t(l - t)) v

By definition of C(n’) and D(n’) and some easy computations, we obtain

[nf]
n—[nt] - len(Kn,j1)]
El, <E sup E - -
2/n<t<1-1/n («(1 — t))l/z v (” —Jj=Dn—))

R . 71/2+v
i i |Cn(Knj 1)|
=sef o (()) e,

which, by the elementary fact that, for any non-negative a;, i=1,...,n, and 0 <5,
s...=b,n=1,

max b; Z a; < ; aib;, (3.8)

and noting that i~'/>*"(n — i)!/>*" is non-increasing in i, in turn, gives

n—1
El, <wkn'"% Z T2 (= PV E (K i)
i=2

Now by Lemma 3.1,
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n—1 . .
E|Cn(K,,,,>1)| < 2Zk:1‘cn(k)| n 2(71 l)|c,,(z)| ’
n n

< 2n—1/2 +2 l)| (Z)‘
by the Cauchy—Schwarz inequality. Thus
n—1 n—1
E],, < 2K1n1/2721} Z i71/2+1/(n _ i)73/2+1/0_n 4 2K1 n*ZV Z i71/2+1/(n _ i)71/2+v‘cn(i)‘.
i=2 i=2

Using assumption (1.4), it is readily shown that this last bound is O(n~"), which implies that
I, = Oy(n™").
Now, for any 1 — 1/n < t<<1, we have

|CO(1) — DY) < |en( fo(n — )| + nz_f |len(Kn,i-1)|
n n n r [:2(,1_1_1)(”_1_).

Therefore, by a similar argument to that for 7,
I, = 0,(n™").

This completes the proof of step 1.

Step 2. Next we shall construct D(’) such that (3.6) holds. Notice that, for any sequence
of versions D(’) of D(r), we have

max sup  |DY(1) = DY(j/m)| =0,
SIS =i <(+1)/n

so that the supremum in (3.6) when J = [2/n;, 1 — 2/n;] is bounded by

\D(j/n) — 0,B(j/n) l0,B(j/n) — 0,B(D)
max sup 1/271} max Sup 1/271/
2</Sn=2 j) e < 1)/ (#(1 = 1) 27=n=2 jipsi=(irny/n - (H1 = 1))
=1, +1I,.

By (2.25) in Einmahl and Mason (1992), we have 1,=0, ),(n~"). Observe that, by
smoothness properties of (#(1 — £))'/2~", we can derive I, = O ),(n~") from the statement

IDV(j/n)— o B(]/”)|
25’135—2 ((j/m)(A — j/n)l/2v

Therefore it is enough to construct [)(n’) such that (3.9) holds in order to verify (3.6) when
J = [2/71,‘, 1-— 2/71,]

This construction will be performed by an application of the Skorohod embedding.
Notice that the martingale

0,(n™"). 3.9
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nD") i
_ " \n)
n—j—1

is not centred, but has expectation

iy = E(nMy(1)) = ”E(f;n(fr(l))) C —ne())

-2 (n=Dmn-2)
Hence we must apply the Skorohod embedding to the centred martingale

nZy(j) = nMy(j) — my, l<jsn-2,
whose difference sequence &,(1), ..., &,(n — 2) is given by

nM (1) — m,, j=1,

gn(])_{n(Mn(j)—Mn(j_l))a 2<sjsn-2.

For later use, we record that by (3.1) of Lemma 3.1, we have, for j=1,..., n —2,
En()) = m(%(ﬁ(])) — E{ea(/rONT 0(G — DY), (3.10)

which, by the way, clearly shows that nZ, is a centred martingale.
Let (Q, .7, P) be a probability space which carries a standard Wiener process W. For
each n = 3, define the Wiener process

W, (t) := 0, W(t/o?), 0<t<oo.

Then there exist stopping times T,(j) < T,(j+ 1), 1 =< j =< n — 2, with respect to W, such
that the random variables

n8u(j) := Wu(Tu()); lsjsn-2 (3.11)
satisfy

(NEn(Di=jn—2 = (NZu(j))1==n_2- (3.12)

Moreover, the following is true. Let .%[n, t] = o(W,(s) : 0 < s < ¢) for 0 < 1< oo, and let
Bu(j) be the o-field of the events in the filtration which are known at time 7,(;) for
l=sj<=n-2 Let 1,(j), ] =j=< n—2, be defined by 7,(1) = T, (1) and

()= To(j) — Ta(j—1), for2<j<n-2. (3.13)

Then each 7,() is non-negative and measurable with respect to .%7,( ), and for the difference
sequence #,(1), ..., n,(n —2) of the martingale n&,(1), ..., n&,(n —2) we have, for
lsj=sn-2

E@()|Za(j — 1) = BOry(D|-Za(j — 1)

= E(ry(Da(D), -, 14 = 1), (3.14)
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where .77,(0) is the trivial o-field. Finally, for any 1 < p < oo, there exists a constant C, < oo
depending only on p such that, forall 1 < j<n—2,

E(2()Zn(i = 1) < CLE(na(DPP|5n(G — 1))

= CLE(na()*2 (D), -y 7a(j = 1)) (3.15)

(see Hall and Heyde 1980; Scott and Huggins 1983). Statement (3.9) will be derived later on
from

n8a(j) = Waljor /(n =D _ . _,
X (1 — iy~ O (3.16)

Statement (3.16), itself, is derived from the following proposition by exactly the same
arguments as employed in the proof of Theorem 1 in Einmahl and Mason (1992, pp. 113—
115). We will not detail these arguments here but concentrate on the proof of the proposition.

Proposition 3.2. For 0 < 6 <1 we have, along the sequence of all integers n such that n
and r are relatively prime,

max j2(§—l(n _ j)1+2(§

2<j<n-2

iy 2
. JO %
Tui) = =5 | = ).

Proof. We write, using (3.14),
Jo,
n—j

20—1 N
max n—
pmax J (n—))

Tn(.]) -

< max 0 (n— )+

J
> Tea(i) = B@a()|. 2 — 1))]‘
i=1

2<j<n-2
26-1 1426 . 2 jos,
jmax 207N = Y DRI, - (= D) = 2
sjsn-2 g n—
=: f,, + ﬁ,,.
Consider 7, first. By the Hajek—Rényi inequality we obtain, for 0 < ¢ < oo,
pa(c) = P(n %I, = ¢) (3.17)

n—2
<oty it n = DTE([T() — E@a() (i = ).
i=1

Clearly, by (3.15), for | sis=n—-2,
E([7,()) — E@, ()| Z,(i — D)P) < E@%() < GEMY(D) = GEE (), (3.18)
so that
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n—2
pa(©) < Carge >N "% (n — iy MOE(E) (1)), (3.19)
i=1

We shall bound E(é“,‘q(i)). Notice that by (3.10), the c,-inequality and Jensen’s inequality in
combination with Corollary 2.2, we obtain, for i=1, ..., n,

4 4
E(& (1) < 32 (L) Ect(f,(1) < 64 (L) Hn (3.20)
n—i—1 n—i—1

where u, is as in (1.5). Combining (3.19) and (3.20), we find

n—2
Pae) = 6413 Cac2n 0, Y 14072 (n — i),

It can be readily shown that

n—2
n2746 Z l~4l§72(n _ l')72+46 — 0(1)
i=1

Thus, in view of assumption (1.5),
pale) < 64153Coc P np, O(1) = O(c™?),

which yields 7, = 0,(n*).
For the proof of I, = OP(nM), notice that

2

J
DB, - £~ 1) =22
i=1

= 7 .
I]n Z max 12(3 1( _ J)1+2(S
2<j<n-2

)1+2(5

J
D IEEDIED, -, En(— 1) — Ei(i)]’

i=1

< max ]2‘) Y(n—
2<jsn-2

max ]2(3 1 1 +20

2<j<n-2

J
Z En(i) — B(E| 7 (i — 1))]’

4+ max ]2(3 l(n )1+26

2sjsn-2

J
S EBEMT i 1) - L7
i=1

= Rn,l + Rn,2 + Rn,}-

Note that the summands appearing in R, ; and R, are martingale differences. Therefore, the
Hajek-Rényi inequality can be applied as in (3.17) to obtain, for 0 <c¢<<oo and j =1, 2,

n—2
P(n 2R, = ¢) < i4c i ® Z iY072(n — iPTRR(EN ).
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This is the same bound as in (3.19). Therefore, we have R, ; = OP(n25), for j=1,2. 1t
remains to consider R, 3. Note that

j Z(n—z)(n—lJrl)

so that we can write after a few steps

R < max 201 n—i 1420
n3 aj 2] ( ¥

J
> [E(& ()7 (i = 1)) —

i=2

n(n—i+ 1)o?
(n—0(n—i—1)2

2 2
e (n—f2> E(SH(fu(1)) = m} = %‘ +0(n”)

—: Rl,3 + Rj5 + O(n®).

Then it is easy to check that

Ris < Ksainza,
which by assumption (1.4) gives Rj3 = o(n?).

It remains to treat R} 3. For this, we need to compute E(Ei(i)|.7 (i — 1)), for
2<i=<n-—2. Using (3.1) in Lemma 3.1 along with (3.10), we obtain

E(EX(D)|.7 4(i — 1))

n?

. 2
B n 5 5 1 i—1
=TT | 2 ) — K = (IZ; e fAD) + cn<1<n,i1)>

(3.21)
Using this representation, we can write
/ 20-1( 1426 2 )
s = mmax =) Z(n S 2HD) = 03/m
2
2o-1( 1420
+,max =) Z 1)2(n <Z (1) = enl(Kni- o)

20-1( 1420 n*c2(K i)
* 2<r}1<ar>l< / =) Z(n i—1)2(n—1i)’

that is,
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J 2 n
n3 < Ko ,Jmex O N (n — )1+2(§Z(ni7i)3‘2(ci(fr(l)) —o%/n)
P =i

; 2
+ K62 max ]2(S l(” J) 7 (Z Cn(fr(l))>
<j<n 2 ) =i
20-1 1120 N~ (K nic1)
+ s, maxj (n—j) Z i (3.22)

Now by applying the elementary fact (3.8) and noticing that ;2°~'(n — j)!*?® is non-
increasing in j, we obtain

n—2
R:'[,B < K6n2 E 12()71(’1 _ l‘)72+2()
i=2

3 d,,m(z))‘
I=i

n 2
+ Kél’l2 Z 20~ 1 —i0)" 3120 (Z Cn(fn(”))

I=i
n—2
+ K6n2 Z i2571(n o i)72+260i(Kn,i71)
i=2

=iTn1 + rn,2+ Tn3,

where d, (k) := (k) —o%/nfor k=1,...,n
To bound r,; and r,» we need the following lemma, which we state in a more general
form than we need here, but which will be used in this form later on.

Lemma 3.2. Let a(i), b(i), | < i< n, n =3, be constants such that Y " ,a(i) = 0. Let a be
the greatest common divisor of n and 1 < r =< n— 1. Then whenever m>?2, with n = ma, or
r is relatively prime to n,

2
n 2 n n
E <Z a(i)b( f,(i))) == D a3 (3.23)
i i=1 i=1

=1
Proof. 1t is easy to see, taking into account Proposition 2.1, that for any i # j

Eb(f-(D))b(f()) =

TS _z)zlb(k)b(l), (3.24)

where Y1 runs over all 1 < k, [ < n, such that k # [, k # i, [ # j and (k, 1) # (j, i). This,
together with Proposition 2.1, gives us after some computation
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2
~ N\ XL @O L0 nY L @ ()b)
E(Za(,)b(f,(,))) = &=l p— - (n_‘l)(n_ >

i=1
2 R :
==Y @)y ),
i=1 i=1
where we used the condition " a(i) = 0.

From Lemma 3.2 with

-1
1-— s forlssil=<i—1,

a(l) =

, fori—1<I<n,

and b(i) = c,(i), we obtain that, for any 1 <i < n,

i—1 2 .
E(Z c,,(fra))) < 2(Q) (1 -
=1 n

Further, by noting that » ;_,d,(k) = 0, we obtain that

i1 2 .
E( d,,(f,(l))) < 2(’ — 1) (1 _
=1

i—1
n

) ici(l).
=1

) Enjdi(l)

=1

We now see, using (3.26), that
n—2 ) )
Ern,I < K7n Z l~2()71/2(n _ l-)73/2+2(5‘u11/2 — 0(1’120)
i=2
and, applying (3.25), that
n—2
Eryy <ig Y i%(n—i) 202 = O(n™).

i=2

Further, by Lemma 3.1,

(3.25)

(3.26)
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=3 i-1 o
Ern,3 = K9}’[2 Z i26—1(n _ l-)72+2(3 ( kilci(k) i (n — l)Ci(l))
i=2

n—1 n—1
n—2 n—2
<won Y PPN (n— i) 0% +ron Dy PN (n— i) e
i=2 i=2

2 1/2
< K10n260.i + Kon /_,un (Z l-4(5—2(n _ i)—2+46> ,

i=2

which, by (1.4) and (1.5), is O(n?*®). This completes the proof of Proposition 3.2. (I

We can now define the vector (D(n’)(Z/ n), ..., f)(n’)((n —2)/n)) and then verify (3.9). Set

DO i
DI _ e Gyt me 2<j<n-2
n—j—1
Then we have
nDP(j/n) » nD{)(j/n)

; = nZ,(j) + m, = aMy(j) = >
n—j—1 n—j—1

where, in view of (3.12), the equality in distribution holds uniformly in 2 < j < n — 2. This
shows

DY@/n), ..., DP(n —2)/n) E (DPQ/n), ..., DP(n—2)/n).
For the proof of (3.9) we proceed as in Einmahl and Mason (1992, p. 113) and define the
required Brownian bridge by

t

B(t):(l—t)W(ﬁ) 0=1t<l1,

and B(1) = 0. Notice that

to?
o B(t) = (1 — t)W,,(l 7 t).

Then, after a little algebra, we obtain
NOTE, _ . N .2 e
max IDn.(J/n) fan(J/n)I < max |n§n(1) Wn(JO‘,,/(n M
s=jena (/=) P 2= G P — )

n '\ Wa(jos,/(n = D)
+2Smga'X72 / 1/2—v 1 — / 1/2—v
j=n-2 (j/n) ( j/n)

+ |mn|n1/27v

=1, + I, + I},
The first summand, 7, is O,(n™") by (3.16). Further, the easily established facts that
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n—1 ) .
EwW -
Z — nl(jzavn/(n : ‘])3721/ _ 0(]/[721/)
S G/m' (A =g/ n)
and
|m,| < 40 ,n" "2, for n = 3,

along with 0 < v <% and assumption (1.4), imply I/}, = O,(n™") and III;, = O(n™"). Hence
we have achieved the construction of the versions 13(,,") such that (3.9) holds. Thus, by the
arguments just preceding (3.9), we see that (3.6) is satisfied when J = [2/n;, | —2/n;].

It remains to verify that (3.6) also holds when J = [p/n;, 2/n;] and [1 —2/n;, 1 — p/n;],
with 0 <p <2. For this, note that for all 0 <p < 2 we have

2| B(t 2| B(¢ _
sup _ulBO|_ (1)‘2 + sup _oaBOI___ O,(n™");
p/n<t<2/n (t(l - t)) 2=y

1—2/n=t=1—p/n (H(1 — ) Nt
see Einmahl and Mason (1992, p. 115). Therefore, it is enough to show that versions D(n’) of
D" can be constructed so that also

N U] " D50
p/n<t<2/n (t(l - t))1/27v 1-2/n<t<l-p/n (t(l - t))1/27v

Since we can construct D(n’) on (p/n,2/n)U(l —2/n, 1 — p/n) from f)(n’) on[2/n,1—2/n],
it suffices to show that the processes D!’ which we want to mimic have the desired
behaviour, that is, it remains to verify (3.27) for D{” instead of D{". This, however, is easily
done employing the definition of D", which gives

0 0=<:t<l/n

D0 =4 eu( £, Un<t<2/n
D1 —2/n), 1-2/n<t=<1.

+ =0,(n"). (3.27)

We will not give the details of these elementary arguments. This completes the proof of step
2. Clearly steps 1 and 2 imply Theorem 1.1. O

Remark 3.1. For reference later on, we note that an examination of the proof of Theorem 1.1
shows that if y; denotes the Op(n;”) term in (1.6), then for all x>0 and for some function p

sup P(njy: >x) < p(x),

i=1

satisfying p(x) — 0, as x — oo, where the function p depends only on the 7/} and %/,
appearing in (1.4) and (1.5) and 0 < v <1

Remark 3.2. Using the trivial inequality

n
4 /v 20 5,2
tn = Zl ¢,() < max ¢ (j)os(e),

<Jj

it is routine to modify the proof of Theorem 1.1 to yield Theorem 1.2.
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4. Proofs of Corollaries 1.1 and 1.2

4.1. Proof of Corollary 1.1

Choose a ¥y >0 and set, for i=1, ..., n,
cn(i) = bu(i)/ 0 4(b),
c;’n(i) = ¢,(i) or 0, according as cﬁ(i) < y/n or not,

cynli) = ¢ () — n™" ) el (k).
k=1

Notice that

Vo an(Dea(fr(i)

W(r) =

ou(a)
_ \/ﬁzglzlan(i)cy,n(fr(i)) + \/EZ?:1an(i)(cn(fr(i)) - Cy,n(fr(i)))
B oa(a) 0 ,(a)

=: Wy u(r) + W, (7).

Let n = ma and r = sa, where a is the greatest common divisor of » and n, and Cy, ...

be the m-cycles as in Proposition 2.1. Further, for k=1, ..., a, let

P e =itk oo bmk} ={S1k> > Smk )
as in (2.16) denote the set of the vertices of the cycle Ci, where

Issp<...<Spi < n.
Write, for k=1, ..., a,
G =m"" Y ayi) and Cpum=m" Y c,a(D).
€7 €7y

With this notation we can write

ﬁZZzlzieTk an(i)(cy,n(fr(i)) - Ey,k,m) + \/ﬁmzzzlak,mzy,k,m

Wralr) = o .(@) o 0(a)

a
Ty kon(8) + Ay n(r) =: Vi u(r) + A, (7).
k=1
Set, for k=1,...,a,and i=1, ..., m,
ak,m(i) = an(si,k) — df,ms Cy,k,m(i) = Cy,n(si,k) - Ey,k,m
and

[#,s(i) to be the index j such that s, ; = f,.(s; 1)

563
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Further, let

COn® =" cpum(fisD).,  0=<t=<1
i=mt
Using this notation we can write, for each k=1, ..., q,
n Y akm(Dey km( frs(D)
Ty,k,n(s) = \/—Z ! - .

o(a)
For each y>0 and k=1, ..., a, let

m m
2 2 . 2 2 .
Oim@ =Y a; () and o}, ()=> c, @)
i=1 i=1

The following proposition is crucial to our proof.

Proposition 4.1. With the above assumptions and notation, for each y>0, n=3,

lsr=sn—-1and k=1,...,q, there exist on a rich enough probabzlzty space versions
ykn(s) of Ty i.n(s), that is, Tykn(s)— Ty k,n(s), jointly in k=1,...,a, and a standard
normal random variable Z such that
Vyn(r) := > Tyien(s) = $a(¥) Z + 0p(1), (4.1)
=1
where
s2(y) = Z oy (@)03 ;. (0)/0%(a). 4.2)
k=1
Proof. For any y>0 and k=1, ..., a, we see from their definitions

m m m

; 2 . 4 . 2.2

Y um@® =0, > &=y, D )= my/n’.
i=1 i=1 i=1

Thus conditioned on 7%, the process C( . Satisfies the assumptions of Theorem 1.1. Hence

conditioned on 77, for every k = 1, , a, there exist versions Cgf)km of Cgf)km and a
standard Brownian bridge B such that for all 0w <}‘
v (S)
m”|C m(t) —0 ,k,m(c)B(t)
sup IS IV/H . b (4.3)
I/mst<1-1/m (t(l - t))

where Oy, is a random variable such that for all for x>0, uniformly in » =3 and

lsk=sa,
POkm=>x|77) < p(x), (4.4)

for some function p satisfying p(x) — 0 as x — oo. (See Remark 3.1.)
Next let 4, (or |A,.|) be the random atomic measure that places mass
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ak,m(i) - ak,m(i + 1) <OI' |ak,m(i) - ak,m(i + 1)|>
0 n(a) 0 n(a)

on each i/m, for i =1, ..., m, where ay ,(m + 1) := 0. Define each f,,’km(s), k=1,...,a,
to be the integral

N I=1/m _
oal®) = V| (040,
1/m
which one readily checks to have the same distribution as T, ; ,(s). Introduce the random
variables

1-1/m
Zyton = 10,100 | B0
1/m
Now by (4.3) we have, for any 0 < v <,
~ 1-1/m
‘Ty,k,n(s) - Zy,k,n| = avnl/Z—VJ (t(l - t))1/2—v d|Am,k|(t)6k,m>
1/m

= Drn,k(V)ék,ms

for some constant D >0, where

m . . 1/2—v
Fak(v) = m'2 Z(i (1 - %D [@m(D) = axn(i+1)|/0 (@),

i=1 m

. Si i .
ak,nz(l)_J1<n 4’_1{1) —Jz(n —s’—kl)’ i=1,..., m
I i
Ji|—— J:
1<n+1)‘+ 2<n+1>

we conclude by using the monotonicity of J; and J, that, both conditioned on 7 and
unconditionally, we obtain after summation by parts, that for some D; >0

Notice that

Thus by setting

s i=1,...,n,

d (i) =

[n/2]+1
@) < Dy Y TP + du(n+ 1 = )]0 (a) = 7

i=1
Since by (1.13), for each j =1,
lmax. |da(i) + du(n+1—i)|/o,(a) — 0,
sis)

we see that, for each fixed j = 1,
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[n/2]+1

re=o()+ Dy Y i Pdy(0) + du(n+ 1= D)/0,(a)
i=j+1

= o(1)+ Dzjiv

by using the Cauchy—Schwarz inequality and (1.12), for some D, > 0. Noting that j = 1 can
be made arbitrarily large, we conclude

r, — 0 as n — 00. 4.5)
Thus we obtain, conditioned on 7%, that
1Ty kn(8) = Zykon| < Drudim, (4.6)

where r, satisfies (4.5). Notice that, conditioned on 7", Z,;, is a mean-zero normal
random variable with

n'var(Zy ;.0 7%)

=0, 2@ DD (% - i) (@4 (D) = @i+ DN@sn() = @i+ D)

m2
At this point we need the following easily verified fact:

Fact 1. Choose m =2 and let d(1), ..., d(m+ 1) be constants such that d(m+ 1) = 0.
Then

i=1 j
where d,, = m~'>"" d(i).

S ' ' ' ‘ " A2 -
1 ( _ 732) () — dei+ D)) — G+ 1) = Y= 2= (@),

m -1

From this fact we get that

2 2
aoy ,(a)oy, ;. ,(c) _

var(Z 7% = =: 52 .
( V,k,nl k) O‘%l(a) k,m()/)
Thus, conditioned on 7}, we can write each
Zykon =2 Skm(V) Z,
where Zj is a standard normal random variable. Clearly, since the T, ; .(s), k =1, ..., a, are
independent given 77, ..., 7, the Zy, ..., Z, can be constructed to be independent
conditioned on 77, ..., 77, so that, conditioned on 77, ..., 77,

Z = S;l ) Z Sk,m(Y) Zx,
k=1

with s5,(y) as in (4.2), is a standard normal random variable. Putting everything together, we
have constructed Tt ,(s), k=1, ..., a, and Z, conditionally on 77, ..., 7, such that
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Vyn() =Y Tyn(s) = 52())Z + DrpOpm, (4.7)

k=1
where 0,, = > {_, 0« . However, since there are only finitely many possible 77, ..., 7, for
any fixed » and r, without any measurability problems, we can construct these random
variables so that (4.7) holds unconditionally. Finally, notice by (4.4) that d,, = Op(1), which,
when combined with (4.5), completes the proof of Proposition 4.1. O

Lemma Al of Berkes and Phillipp (1979) allows the appropriate probability spaces on
which (s,(Y)Z, V, .(r)) and (V, ,(7), W;’n(r) + A, (7)) sit to be coupled to form the triple

(5x(NZ, Vyu(r), W (1) + By (1)),

where
a0 Z. Vyn()Z (54(Z, V(1)
and
Py, W4 (1) + By u(r ) Z (V). W (1) + A1),
Thus

& - _ -
W)= Vyulr) + W, (1) + Ay (7). (4.8)

Clearly now, on account of (4.8) and (4.1), using the fact that ¥, ,(r) and Vy,n(r) are equal in

distribution, the proof of Corollary 1.1 will be complete as soon as we have shown that

lim lim sup E(W, ,(r))* = 0, (4.9)

Yo% oo
for each y >0,
A, 4(r) = 0,(1), (4.10)
and, for each y >0 and for all ¢ >0,
lim limsup P{|1 — s2(y)| >¢} = 0. 4.11)

Y= p—oo

First consider (4.9). Note that, by Lemma 3.2,
By () <2 Hby())/o7(b) >/ n}b, ()]0 (b).
J=1

Therefore by assumption (1.15), we have (4.9).
Next we shall show (4.10). For this we need the following elementary finite-sampling
fact:

Fact 2. Choose n=2, 1 < m<n and constants c¢(1), ..., c(n) such that Y} c(i) = 0.
Further, let V,, be a random subset of size m chosen from {1, ..., n} with probability 1/(},).
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Then

2 n
E(Z c(i)> - % (1 - ’:—_11) 3.
i=1

i€V

Applying Fact 2, we get that, for each k=1, ..., a,

EEf,’k’m <m?%y and E(ﬁi,m) < m20%(a),

n

from which we obtain
Criom = Opy(m™ ") and Gy n/0,(a) = O,(m™"). (4.12)
Thus for each k=1, ..., a,

\/ﬁmak,mzy,k,m

e = 0,(m™/%), (4.13)

which implies (4.10).
Finally we turn to (4.11). Notice that each

Orml@) = ai)— may,,.
€7y
From (4.12) we have, uniformly in | < k < q,
may, ,/07(a) = op(1).

This immediately yields that, uniformly in 1 < k < q,

Tim(@/00(@) =Y ay(i)]/or(a) + op(D).

€7

In the same way, it can be argued that, uniformly in 1 < k < q,

02 em(©)/0%(0) =D & (D/0%(c) + 0p(1).

€7y

Notice that

€7y

PN mafl(a)
E[ g an(l)] =
and

€7

Applying Fact 2, we obtain that
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mo(a)]’ & o2(a)’
E| ) a()-—2=| < Z{aﬁ(l) —”—} .
€7y n i=1 h
Now, using (1.13), it is easy to show that
max {a,(i)/07,(a)} = o(1).

Thus one sees by using Chebyshev’s inequality that, uniformly in 1 < &k < g,

> di)/o%@) = o,(1).

€7

Similarly, one proves that, uniformly in 1 < k < q,

> e (/o) — ma? (c)/(no(c)) = 0,(1).

€7y

Using assumption (1.15), it is now straightforward to verify that (4.11) holds. This
completes the proof of Corollary 1.1.

4.2. Proof of Corollary 1.2

To show that (1.16) remains true under assumption (1.14), note that, given any ¢ as in (1.14)
and € >0, we can find a polynomial ¢ on (0, 1) such that

1
L(qo(u) — o) du<e. (4.14)

The argument just given shows that asymptotic normality holds for the statistic I, (r) formed
when the a,(i), i=1, ..., n, in W,(r) are replaced by

o(i/(n+1)), i=1,...,n,

since any polynomial ¢ satisfies (1.12) and (1.13). Next, by applying Lemma 3.2 in
combination with (1.14), we readily check that we can make the mean squared difference
between the statistics W,(r) and W,(r) arbitrarily close, as n — oo, by choosing & >0 small
enough in (4.14) and ¢ appropriately. This finishes the proof of Corollary 1.2.
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