Bernoulli 6(4), 2000, 709-728

Parametric estimation for Gaussian long-
range dependent processes based on the
log-periodogram

CARENNE LUDENA

Departamento de Matematicas, Instituto Venezolano de Investigaciones Cientificas, Apartado
21827, Caracas 1020-A, Venezuela. E-mail: cludena@euclides.ivic.ve

We establish the consistency and asymptotic normality of a certain minimum contrast estimator,
introduced by Taniguchi (1979), for Gaussian long-range dependent processes. The estimator is based
on regression over the log-periodogram in a parametric setting.

Keywords: Gaussian processes; log-periodogram; long-range dependence; minimum contrast
estimators; spectral estimates

1. Introduction

Let {X,}1<, be a centered, strongly dependent, stationary Gaussian process with spectral
density f(4, 0), A € (—m, w]. Here 6 is assumed to belong to a compact set ® C R?. This
paper is concerned with estimating the parameter vector € based on a finite number of
observations X, ..., X,.

A number of estimators have been proposed for 6 in this setting. Classical minimum
contrast (parametric) methods, based on bilinear forms of the observations, such as the
Whittle or maximum likelihood estimators, have been developed under quite general
conditions (see Fox and Taqqu, 1986; Dahlhaus, 1989; Giraitis and Surgailis, 1990). On the
other hand, using an approximation of the spectral density for A — 0, Geweke and Porter-
Hudak (1990) proposed a semi-parametric least-squares estimator based on a regression over
the log-periodogram for the exponent d of an ARIMA(p, d, ¢g) when this exponent was
negative. The idea was to approximate the low frequencies of the spectral density, under
general conditions, without having to define a parametric model. This allowed the higher
frequencies to be trimmed off, which reduced the problem of model misspecification,
although of course convergence rates were slower. This semi-parametric estimator was
justified later by Kiinsch (1986) for positive d, but Robinson (1995) was the first to give a
thorough theoretical account for this estimation scheme.

We remark that although semi-parametric rates are slower, in the context of long-range
dependence, regression over the log-periodogram is preferred as it provides simpler
numerical minimization problems than the usual parametric methods.

Following an approach developed by Taniguchi (1979), in this paper we construct a
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minimum contrast estimator which basically amounts to regression over the log-periodogram
in a parametric setting — that is, considering the whole frequency band. In order to study its
asymptotic behaviour, we have to show the asymptotic normality of an estimator of integral
functionals of the log of the spectral density of the type Jfﬂ Y(A)log( f(A))dA. This
functional exists for all spectral densities of strongly dependent processes with mild
restrictions on .

When considering integrals with respect to the log of the spectral density, the numerical
minimization problem is almost as simple as in the semi-parametric context and allows
working with the optimal rates. As another attractive feature, this minimum contrast
estimator satisfies certain robustness properties with respect to the parametric model (see
Taniguchi 1979).

Including the whole frequency band introduces certain technical problems, namely, that
evaluations of the periodogram at very low frequencies are not asymptotically uncorrelated.
However, this bad behaviour is cancelled out by integration and we find the same
convergence rates as in the weakly dependent case. Our methodology uses the expansion of
the logarithm of the periodogram in Hermite polynomials. In fact, under additional
conditions other functionals can be treated in essentially the same fashion. Although we rely
heavily on the underlying Gaussianity assumption, this approach suggests methods of proof
based on Appell polynomials for linear processes, provided the formal expansion of the
functional exists (see Giraitis and Surgailis 1986).

2. Notation and hypotheses

Let .7 ={f(-, O)}gco be a family of functions indexed over a compact parameter set,
® C RY, such that for each fixed 8 € ©, f(-, 0): (—m, ] — R is a positive integrable even
function. Assume .7 satisfies the following:

Assumption Al. For each 0 € ©, there exist a(0) € (0,1), p(0)>0 and C(0) (with
supgeo|C(0)| < C), such that as A — 0", for all 6 <0,

f(l, 0) —_ C(e)la(e)—l—é + 0(&[)(9)-0-(1(9)—1).
There exists a constant D >0 such that

inf inf f(4, 6) = D.
élel@ lezljn,n] f( )

Assumption A2. For each 0 € ©, f(4, 0) is continuously differentiable in A for all A €
(—m, @), A # 0, and there exists a positive constant Cy (independent of 6) such that

9
’ﬁ log (4, 0)‘ < ColA|™".

Assumption A3. For each 0 in the interior of ©, log f(4, 0) and log? f(A, 0) are twice
continuously differentiable in 0.
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Assumption A4. For each 6 in the interior of ©, 0/06/logf(A,0), 1<j<gq, are
continuously differentiable in A for all A € (—m, ), A #0, and there exists a C; >0
(independent of 0) such that, for all 0 <0y,

‘ log (A, 9)’ < (A + 1)

(14+41)
‘8&69 log (4, 9)’ Ci(IAI” +1).

Assumption AS. For each 0 in the interior of ©, 8*/960,00,log f(1, 0), 1 < j, k < gq, are

continuously differentiable in A for all A € (—m, m), A #0, and there exists a C,>0
(independent of 0) such that, for all 0 <9,,

‘ 2

-0,
se,08, 108 /0 0)‘ Ca(lA] 7% + 1)

5
< —(1402)
’818@6& log f(4, 0)‘ < Cy(|A| +1).

Assumption A6. For 0, uc®, 0 #u implies f(4,0)# f(A, u) on a set of positive
Lebesgue measure.

For notation purposes, we shall sometimes denote f(-, ) by fo.

Remark 1. Assume that the true spectral density of observations X, ..., X, is f(4, 6)), for
some Oy € ©. Let ry = E(XoX}). Under Assumption Al, Fox and Taqqu (1987) showed that,
for all 0 >0, ry = O(|k|~*@0)+9),

Example 1. Consider a fractional ARIMA(p, d, gq) with 0 <d < %, and p, g positive integers.
Here 0 = (aj, ..., ap, by, ..., by, d, 0%) € RPT472 where (a;);—1,.., and (b;)i, 4 are the
coefficients of a causal invertible ARMA process. We assume 6 € ©, where © is a compact
subset. The resulting process has spectral density

,,,,,

o2 N\
S, d)= <2 sin 2) Sr.g(A),

which satisfies Assumptions A1-A6. The function f,, € C*°((—, x]) is the spectral density
of the causal invertible ARMA process.

Consider the set & = {h € L'(~m, m]: ffn log>(h(1))d A <oo}. Over this set we can
define (Taniguchi 1979) the functional D,: & X & — R given by

D/, g) = j log® (g (A)) @

Now we can define the functional 7,(-): & — O, based on D,, given by
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T)(g) = arg lgleiélDz(J%» g)
— arg gggj (log? fo(@) — 21og fo(A)log g(A)) di. (1)

Remark 2. T,(g) may have multiple values so we shall assume that it stands for any one of
those values.

Let .7 be a given class of functions. If

| pnoste.anar — | pnosterna

for every function ¢(-) € .7, we will say that g, converges log— 7 to g(gn e 2).

Throughout this paper, a V b = max(a, b), C stands for a generic constant which may
change value from line to line, and by ‘fy—probability’ we mean that generated by a
centred Gaussian process with spectral density f(4, 6p).

3. Main result

Given observations X7, ..., X, with true spectral density fo(1) = f (4, 6), 6y € ©, we want
to construct a minimum contrast estimator of the parameter 6, based on the best
approximation over the class .7 for fo. In order to do this we shall choose the value of 6 that
minimizes the functional D,( fp, fo) where fo is an estimator of the true spectral density fo.
The main result in this section discusses the asymptotic behaviour of this estimator.

The periodogram 1, is defined by 7,(1) = |[w(A)]%, with

-y

Although it is a bad pointwise estimator of fj, sufficiently smooth functionals of the
periodogram yield consistent estimators, as they average out this bad behaviour.

Consider, for a given n € N, the set of frequencies 4; = (2m))/n. Our estimator of fj
will be given by the step approximation of the periodogram

G =D <
n n

@) = L) if 2

Notice that g, € ¥ almost everywhere in Oyp-probability. In all that follows we shall
assume g, is positive.

Let x =e?, with y denoting Euler’s constant. We have the following theorem which is
analogous to Theorems 4, 5 and 6 in Taniguchi (1979) in the weakly dependent case:
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Theorem 1. Assume that the family .7 satisfies Assumptions A1—-A6. Then T>( fo) exis}l;s, is
unique and Ty(fo) = 6y. If additionally 0y lies in the interior of ©, then Ty (xg,)— 6.

Finally, if
)T [9*log f(A, 0) 10%1og? f(4, 0)
or= {Jn< 2006, 220D 35050

dﬂ} 3)
6=t

is a non-singular matrix, then

P 3
VA(Ta(kgn) — ) 2ot (0, =i J o)) dl>, )

where 2> stands for convergence in distribution and oy(1) is the q-vector defined by

1 0log (4, 6)

or(A); = (07)” 56
7

0=0,

Remark 3. This minimum contrast estimator is not efficient. Indeed, the lower bound for the
variance of any estimator of 6 is given by (see, for example, Dzhaparidze 1985)

TT
o 47:J or(A)o 2y dA. (5)
—7TT
This lower bound is, for example, achieved by the maximum likelihood estimator or the

Whittle pseudo-likelihood estimator. Thus, the relative efficiency of the estimator we propose
with respect to these estimators is 7% /6.

4. Integrals with respect to the log-periodogram

In order to prove Theorem 1 we require asymptotics for integrals with respect to the log-
periodogram. Actually, we will consider discrete versions of the integral. In this section, we
will drop the parameter 6 from the notation.

Assume 9 € L*((—m, mt]) is an even function that satisfies the following:

Assumption B1. There exists a positive constant Ky and f§ <% such that

[y = KilA| ™.

Assumption B2. 1 is continuously differentiable in A, for all A #0, and there exists a
positive constant K, such that

v = kol

We are interested in the asymptotics of the function
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4t [n/2]—-1
> p@)log(l(4y). (6)
J=1

n

I, =

Jor A; =2mj/n and x = e'. We have the following result:

Theorem 2. Assume that the true spectral density of the observations fo(d) satisfies
Assumptions A1 and A2. Then

4 [n/2]-1

T g i 2 3
Vil Y wtogtet, o) - | pilog fuby di | or (o,%J W)dﬂ)
Jj=1 —T —7

n
with x = ¢e".

Remark 4. That the variance in Theorem 2 does not depend on the spectral density fo(4) is
not surprising. Recall that the Fréchet derivative of the nonlinear functional of the spectral
density Ly(f) = ffﬂ Y(M)log f(A)dA at the point f is given by DL, (f)A) = p(A)1/f(A).

Thus, this result only states that the variance of the estimator is a constant times

I DL 5-

Before proving Theorem 2 we shall require some more notation and some preliminary
technical results, whose proofs are given in the Appendix.

4.1. Using Hermite polynomials

First of all write, for each 4, 1,(1) = X%(1) + Y2(4), where X,(1) stands for the real part of
(2) and Y, (A) for its imaginary part. Thus log(/,(4)) is actually a function of X,(4) and Y,(A).

Using this simple fact and taking advantage of the Gaussian framework, we shall expand
the functions (log(x? 4 »?) — (log2 — v))? € Lz(e’(xzﬂ’z)/z), with p € N, on the basis of the
two-dimensional Hermite polynomials H,, (x, y) = H,(x)H(y). Let c%)l be the corre-
sponding coefficients:

1 b o 2 2
o ——j J (log(x + %) — (log2 — y))? Hu(x) Hi(y) e~ 2 dr dy

m,l — o I
1 27T (o0 )
= %J J (log(r?) — (log2 — Y))? rH,,(r cos 0) H(rsin 0) e =" /% dr d6. (7
0 Jo

Notice that ¢\”) = 0 if either m or [ is odd. Define

m,l —

WP = (1> Joo(log(u) — (log2 —y))? e “*du.
2/ Jo

It is straightforward to show that c{) = (). We have, in particular, c{) = 0 and c{j) = 7?/6.

Observe also that by the Cauchy—Schwarz inequality,
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D] < (i)' AV mIVIL. (8)

Consider the set of frequencies 4, ..., 4;, € {41, ..., Apuj2)-1}, With jg # j, for s # ¢,
1 <s,t=</. The following two lemmas give bounds for the covariance of the vector
(Xn()'jl)a Yn(/’i‘jl)a ey Xn(/l]/)Yn(j‘J/))

Lemma 1. Assume that the true spectral density of the observations fo(d) satisfies
Assumptions Al and A2. Then var(X,(A)) = a,(4;)) + b,(4)), var(Y,(4))) = a.(4;) — bu(4))
and cov(X,(4)), Y,(4))) = ca(4)), where

an(A) = ﬁ > (1 — g) 74 cos Ak

|k|<n

1 cos(4)) =l
D) = oo siniy 2 S

n—1

1 .
cn(Aj) = mz resinA;k.

k=0
Then there exist constants C, D> 0 such that

2a,(4) — fo)| _ €

o) Jorall 1 < j<{[n/2] -1, 9)
j

an(A) =D Jorall 1 <j<{[n/2]—1. (10)

Lemma 2. Let n* < j<k <[n/2]—1, for 0<v <1. Assume that the true spectral density
of the observations fy(A) satisfies Assumptions Al and A2. Then there exists a constant C >0
(independent of j,k) such that

Clng+l 1/2
——f

lcov(X(2), Xa(A)| < NS> ),

OS> ),

Clogk+1
lcov(Y,(dy), Yu(hp))| = gf i

D),

Clogk+1
lcov(X (&), Ya(h)| < % 12

NS> -

Clogk+1
lcov(Ya(hy), Xu(hp))| < gf 12

The above lemma is due to Theorem 2 of Robinson (1995), if "' <j, k<n"?, for 0 <v; <
vy <1.If j = O(n) or k = O(n) the proof follows analogously, so it is omitted.
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Set €, = by(4;)/a,(A1). The following lemma deals with the asymptotic behaviour of
this sequence.
Lemma 3. There exist ¢ >0 and ny such that, for all n>ngy and for all 1 < j <[n/2] -1,
lenj] < 1—c. (1D
Also, there exists a constant C >0 such that, for all 1 < j <[n/2] -1,

logj+ 1
g, < €8I0

(12)

Remark 5. As a consequence of equations (10), (11) and Remark 1 we have that, for all
1 <j<{[n/2]—1, |cs(A))/(an(A))(1 — sf,,j)l/z)| — 0 uniformly as n — oo.

Introduce the normalized random variables
Xn(4) ()
V) + ba(y) Van(4)) — bu(4))

Note that X,(4;) and Y,(4) are standard Gaussian variables with covariance c,(4;)/
(an(A)(1 — &, )2 Put Z,; = Yi(k) — Xa(y)/(X2(y) + Y(A). It follows that Z,; is
almost surely bounded by 1. Now write

X,(4) = Y, () =

log(X%(4) + Y2 (4))

= log(X5(4) + Y5(A) — log(an(%)) — log(1 — &, )+ log(1 + &,;Z,).  (13)

As a result of equations (9)—(13), it turns out that the asymptotics of the logarithm of the
periodogram can be obtained from those of the normalized periodogram. Based on Lemma
1, the next lemma shows how to calculate the moments of log(X i(/l_,-) +Y i(/lj)) —
(log2 —v), for all 1 <j=<[n/2]-1.

Lemma 4. Assume that the true spectral density of the observations fo(A) satisfies
Assumptions A1 and A2. Then

2
E(log(X2(A) + Y2(4)) — (log2 —y))” = ) + O k)
| an(lj)

Remark 6. Remark 5 yields c¢,(4;)/(a,(4;)(1 — efl,j)l/2 = o(1) uniformly for all 1<j=<
[n/2] — 1, so that the bounds in Lemma 4 are uniform over the whole frequency range.

For a given p =2, consider any collection of positive a;, 1 <i=</, such that
>iai=p. Let s be the number of a; =1. Consider the vector (4;,...,4;), n" <
Ji =<I[n/2] with 4;, # 4;, if k # i. We have the following lemma.
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Lemma 5. Assume that the true spectral density of the observations fo(1) satisfies

Assumptions Al and A2. Assume n’ < j; <[n/2]—1,i=1,...,/, for 0<v<L1. Let j =
min(ji, ..., j,). Then, there exists an n such that
/ sV2
- @ Clogn
E [ [doe(Xs(4;) + Y3 (3;) — (log2 — y)* = H ol + ( jg )
i=1

We are now ready to prove Theorem 2.

Proof of Theorem 2. First define fn(/lj) = I,(4))/a,(4;). We define the normalized version of
I, (see (0)) as

e [n/2]-1
=— Z Y2 )og(kl,(4))).

As is clear from (13), convergence in distribution of v/n(l, — El,) will be implied by that of
Vn(l, — El,), if we show that R, = 1/\/—2[” 21- 1/)(/1 NNog(l +¢€,,Z, ;) tends to zero in
probability. The proof of the theorem will thus be divided into three parts. First we will show
convergence in distribution for the centred I,, then control the bias term Vn(El, —
f Y(Dlog fo(4) dA), and finally show the aforementioned convergence to zero in probability.

Asymptotlc distribution of 1, —El,. Choose B/(1—p)<v<(1—28)/2(1 —p). As a
consequence of Lemma 4 we have

2

E n_1/243'1721/1(/11)(10g(] (/1 ) — (log2 — V)| < Cn”~ 1 qu (/1 )< + 0(1)>

Jj=

nV
1
< CnV71+2ﬁ —

— O( 2V(17,3)+2ﬁ71) _ 0(1)

Thus n*1/24nz 11/)(}Lj)(log(l (A4)) — (log2 — y))—> 0.
On the other hand, consider

(n/2] ~
Upy = n"'24m Y~ y(dy)(log(l,,(4)) — (log 2 — ).

j=n

Clearly EU,, = 0. Also, as a consequence of Lemmas 4 and 5, we have

[n/2]— [n/2] [n/2] (ClOg]z)

EU;, = n"'(4n)? Z 7 (A)( +o(1))+2nl(4n)2 ST piv@y)

Jj=n" i=n" h=ji+1

The first term in the above sum converges to the stated variance. The second term is bounded
by
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[n/2]-1
1
CrP(logny* | > =i | < CnPA=V0=v(1og p)?,
ji=n" J1

Now assume that p = 2 and even. We have

/2 Vi ~
BU7,, = Yo g > Hw [ J(log(7,(4)) — (052 - v)*
i=1

/=1 Alyenny a, nl/2</l n/2
]m?é]k
| p/2 p/2
=n P/2(4mp /mp > Hw (A)E Haoga (4;)) — (log2 — y))’
n'?<j,..., Jpp<[n/2]1
Jm#Jk
n 1’/2(475)1’ 1*
+ 2 PO Hw“'@ ) (14)
/=1l,.,p T Al as p\2<j,..,j/<[n)2] i
/#p/2 Jn e

/
x E [ [(og(T,(%;)) — (log2 — v))*.
i=1

Here > ! is the sum over all possible ay, ..., a, with a; # 0 and such that }_;a; = p; Zl*
excludes the case ;=2 for i=1, ..., p/2.
By Lemma 5,
r/2

E [ Jdog(Zu(4;)) = (log2 = v))* = (x*/6)""* + (Clog n/n'/2)?

Thus, the first term in the above sum converges to

. [n/2] p/2
_ T —p/2
T n~ ! (4my? ,;zw (,1) +o(nP/?).

In order to show the covergence to zero of the second term of the right-hand side of (14), we
shall group the terms in >_'* based on the number of a; which are equal to one. Assume, for
some fixed term, that the number of ¢; = 1 is 5, 0 < 5 < /, with /the number of positive a;.
For notational purposes assume, for s > 0, that a; = a; = --- = a;, = 1. By Lemma 5 there
exists a constant C = C(ay, ..., a,, p) such that
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/ /
> > w2 [ [ogn(4;)) — (log 2 — y))*
n1/2§j1,...,j/§[n/2] i=1 i=1
jm?éjk

s /
= Cnﬁp(log n)/< Z ]ﬂlﬁ> H Z ]‘% (15)

n'2<j<[n/2] i=s pll2<j<[n/2]

We shall study this last expression according to the value of 3. If 5 <0 then each of the sums
on the right-hand side of (15) diverges, so that it is bounded by

CnPP(log n) nPn"=/2-Fr=1) < C(log ny n'"~*/?. (16)
If B = 0 then the right-hand side of (15) is bounded by
CnPP(log ny 10 =5/ < Clog ny t' n"=¥/?, (17)

The case where 0 <f3 <% is the most delicate as the sums on the right-hand side of (15) may
or may not converge according to the value of @;. Assume for notational purposes that
Pa; <1 for s+ 1 <i =<t for some t = 0 (if there are no g; in this set then t = 0). If 1 =0
we assume Hf:Hl = 1. On the other hand, we have a; > 1 for all 1+ 1 < i </, so that the
respective sums converge. Observe also that 2 < q;, for all s + 1 < i =< /. With this notation,

I Y +#-11 > 4xI1 ¥ &

i=s+1 n<j<[n/2] =5+l w<j=(n/2] / i=CF w<j=[n/2] 7

t
< cplt=9F Z a;

i=s+1

< Cn( t—s)—26(t—s)
< Cpl-90-26).

Thus, as the sum corresponding to i = 1 is convergent in this case, the right-hand side of (15)
is bounded by

CrPP(log n) n'—5/20-28), (18)

As we are considering the case /= p/2 separately, we have / —s<<p/2 —s/2 in the
second sum in (14). This concludes the proof as we must normalize by n~?/? in equations
(16), (17) and (18).

If p =3 and odd, bounding as above, EU” 1p = o(1) as we do not have the term given
in (14) with all a; = 2.

This together with the fact that E(U,,/, — Uny)? — 0 as n — oo, shows the required
convergence in distribution.

Controlling the bias term. Because of the definition of [, and I,, in order to control the
bias term we have to verify that
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4n[n/2]—1
V(== D vdlog folk) -
j=1
4t [n/2]-1
V(= > wilog folk) — log2an()))
j=1
47
ﬁ(7

n 4z yp(2log fo(2y) = Clog(dyn™ 112 = o(1),
J=1

n

n 122 " p@plog an(dy) < Clog(D)n"!=PH=12 = o(1),

J=1

v—1

[n/2]-1

| vno roy cu> o0,

) _>O’

> w@log(l — €
j=1

)Ho_

Choose 0 <v < (1 —26)/2(1 — ). Under Assumptions Al, A2, Bl and B2 we have

”1/2L Y(log fo2)di = Clog(d)n'/>H0D1-0 = o(1),

[n/2]-1

"EL [y
4 S pihog folky) — log2a,(h) < Cn~4n 3 A

j=n

_ O(nfl/ZJr(,BVO)) _ 0(1)’

no=

[n/2]-1

< Cn~'4m Z

j=n"

1 [n/2]-1
Vil = w@log folk) —

logn
n

nv

| wnog i (u)

j=n*

which shows convergence to zero of the left-hand sides of (19) and (20).
Convergence of the left-hand side of (21) follows readily from (11) and (12), as

n’1/24ﬂ:2n:

J

Q/J(lj) = nvfl/Z.
=1

J

)~ < Cn P log nn T = o(1),

C. Ludenia

(19)

(20)

21)

Convergence to zero in probability of R,. As |Z, ;| <1 a.s., the stated result follows as,
by Lemma 4, there exists a ¢>0 such that log(l+¢,;Z,;) <c as., and if »" <

j=<I[n/21—-1, with 0<w; <I,

then

there

exists

a

CcC>0

such

that

log(1 +

€n;Zn;) < Clog(j+ 1)/j almost everywhere. With these bounds we can then proceed as

for the bias terms.

We can now prove Theorem 1.

O
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Proof of Theorem 1. Following the proof of Theorem4 in Taniguchi (1979), define
hO) = Do(f(, 0), £(-, 6p)) and h,(0) = Da(f(-, 0), kgu(-)). Let K1) and A" be the
respective gradient vectors, and let 2?)(0) and A® be the respective matrices of second
derivatives. Let 6,, — 0; then under Assumptions A1—-A3 by the dominated convergence
theorem we have

|h(0m) - h(0)| =

| tog?fa,) ~ tog* fo) + 20 fu,) ~ o fiblog fo 2|

Thus, 4 is continuous and reaches a (not necessarily unique) minimum over the compact set
O. If fo = f(, 6y), then h(6y) = 0. As h(0) = 0 this gives T,>(fy) = 6, in this case. Notice
that under Assumption A6 this minimum is unique.

Let us now study the asymptotic behaviour of the estimator of T,(fp). Let w(1) =
log f(A, ). Then under Assumptions Al, A2, Bl and B2,

4m [n/2] 7
o2 Ve 0 o0~ | wiaog £ o0z | o 22)
Also,
T 4 [”/2]
NG j (A)gﬂ)dﬂ——Zw og (1) | — 0 (23)

J=

in Oy-probability.
Indeed, choose v as in Theorem 2. In order to verify (23), notice that

[n/2]

4m
N J V) — 3 yilog 1)

1/221.0@ )3y — Aplog 1(4)) + I/ZZ[W,]) W()og 1n(y),

j>n jsn"

where 4; < /1; </1 <Aj+1 and l €[4, j] To see that this last sum tends to zero in 6y-
probablhty, we calculate its expectatlon and variance as in the proof of Theorem 2 and use
the fact that E[log(/,(4;))] and var[log(/,(4,))] are bounded for each 4; by a slowly varying
function at most. Then we use the fact that 1(4;) satisfies Assumptions B1 and B2 to
complete the proof.

Let .#Z be a class of functions that satisfy Assumplti]()ns Bl and B2. Then, from
Theorem 2 and equations (22), (23), we have that xg,(-) = f(-, 6p) in Gp-probability. We
now require the following lemma, which controls the fluctuations of #4,(6) and its
derivatives in probability. As A, h) are g-vectors and h®, h® ¢ X ¢ matrices, the next
lemma is understood to apply componentwise.
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Lemma 6. Suppose Assumptions A1—A6 are satisfied. Then:

1. for all fixed 0 € O, h(nk)(e) — H®(0) — 0 in probability componentwise for k = 0, 1,
2;

2. for all B>0, componentwise

limsup P sup |hP(0) — 1P@,)|>B| —0
n—0 |91702‘ >n

for k=0,1, 2.

The proof of Lemma 6 is given in the Appendix.

To show consistency of T»(kg,), assume 7>( fp) is unique and lies in the interior of ©.
We want to prove that P(|7>(xg,) — T>(fo)| >¢) — 0. As for each n, T>(xg,) may not be
unique, consider instead T,(kg,) = infgT>(kg,). In what follows, we shall assume
fod) = f(4, 6y) and write T»(fo) = 0y. Notice that as 6, is the unique value that
minimizes A(-) and because /(6y) =0, we have h(0) = (0 — oo)th@)(é)(e — 6p). We have
also that h@(6y) is positive definite so that, under Assumption A5, h@(6) is positive
definite over a certain subset of @, which does not depend on 6. Thus, there exists a certain
0>0 such that we have inf|y_g,~.A(0) = inf(9, e2||hP(0y)]|/2), with ||-|| the L* matrix
norm. Now, assume & >0 is small enough. There exists a constant B>0 such that

P(|T2(xgy) — 60| > €)

= P( inf hn(O)—hn(60)<0>
|06 > &

gp( sup  (hu(0) — h(0) — hy(6p))> inf h(0)>
|

0—0y| > ¢ [0—0y| > ¢

q
=

Be B
1 P<|(h(nl)(90))_/| >2q) +> P<51;p|(h(n2)(6) — K2(0))4 >2q2)'

J Jok=1

Consistency of T»(kg,) now follows from Lemma 6 and the continuity (thus uniform) of
each component of A?(-). In order to show consistency of the estimator, consider
T>(xg,) = supe T»(kg,), and repeat the above arguments.

Once we have shown consistency, we can prove convergence in distribution. As in the
proof of Theorem 5 of Taniguchi (1979), we can write, in matrix notation,
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" & log f(4, 6) & log® f(4, 6)
(T2(xkgn) — 9()){Jn — 2W - log f(4, 6y) + W »on di+A4+8B
T 9f(4, 6
=2 (J SO (logg(h) ~ log 10 G0) dz),
—T j 0=0,
with
™ & log f(4, 6) T 9*log f(A, 0)
A= -2 1 22— 1
{J S0, lERB A j S0, et o
and

i J & log* f(h. 0)
P o 06,06,

B r 0 log? f(4, 0)
). o600

da .
6=06,

Because T ?(Kg,,) — OoiO in 6y-probability, under Assumption A4, we have, by the

dominated convergence theorem, B L 0in 6y-probability (that is, all entries of the matrix B).
Under Assumption A5, we have that logxg,(-) is bounded in probability and, again using
the dominated converge theorem, we have that 4 tends to zero in y-probability (that is, all
entries of the matrix A4).
Thus, we have

Vi(TS(xgn) ~ 60 = V| _oy(ilog e (h) ~ log £ (A 60) &2

L

26, Vn(logxg,(2) —log f (2, 6p)) dA,
U 0o

where b, — 0 in Oy-probability. Finally, Theorem 2 concludes the proof. O

Appendix

Proof of Lemma 1. Put A; =2mnj/n, 1< j<{[n/2]. Let F,(A) = (l/n)|z;7:1 e/ 2 be the
Féjer kernel of degree n.
Define, for A € (—m, 7],
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a,(A) = ﬁ Z (1 —%) rr cos Ak

|k|<n

1 7T
x| Pora-wan

n—1

1 (cosid .
b.(A) = Sen (sin/l sin2nA + cos2nl — 1) ; rrcos Ak

n—1

+ (COS’1 (cos2nd + 1) + sinan) Y risinik,

sinl “—

1 (cosi Lt

en(A) = — l— <.—sin2n/1 + cos 2774 + 1) > resindk

8mn \sinl “—

n—1

B (cos;{ (cos2nd — 1)+ sin2n/l> Z T cos/lk] .

sinA —

Notice that

n—1

1 .
caldy) = mz ry sinA;k,

k=0

and b,(4;) = cot(4;)c,(4;). On the other hand, it can be shown after some calculation,
recalling the definition of w(4) given in (2), that

Ew()w(4) = E(X5(4) + Y5(4) = 2a,(4)), (24)
Ew()w(k)) = E(X5(4) — Y3(4)) + 26E(X,(A) Ya(4))) (25)
= 2b,(4)) + 2ica(4)).

Equations (24) and (25) yield
E()(n(/lj))2 = an(/lj) + bn(/lj),
E()(n(j'j))2 = an(/lj) - bn(/lj)a
cov(Xu(4)), Yu(4))) = ca().

Assumption Al and the fact that F, is positive and integrates to 2 yield a,(4;) = D/2.
Finally, for completeness we include the proof of equation (9) (cf. Robinson 1995),
throughout which f(1) stands for the spectral density:
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1 T
En () — ) = o= | Fl =) ~ S &

- ;ﬂjl g r g j 2 J Fulh = 2SO — £ dA

—4/2 /2 34;/2

12

—2;/2 7T 1 *
= mas S5 | | R apaie max RG-t) | @+ G a

A>2;/2

J

1 (h2
+ max |/’ (/1)|—J E(h— Al — A d.
A>12/2 A/2

The properties of the Féjer kernel yield the desired result under Assumptions Al and A2.
O

Proof of lemma 3. First, we will prove the inequality in (12). Robinson (1995) shows in the
proof of Robinson’s (1995) Theorem 2, that there exists a constant C >0 such that, for
2 =<j=<[n/2] -1, EwA))w(4;) < Cfo(A)logj/j. This, together with equation (9), yields the
desired result.

On the other hand, Hurvich and Beltrao (1993) have shown that, for fixed j,

> sin*(4/2) A a1
Jim bu(4))fo%) = J Q= )2+ A) |27 ’ (26)
. 1(* 2(A/2
nh_»nolo an(y) folk)) = _J (S;Ej(i//l))z 2 a(f)—1 (27)

By (12), there exists a jo such that, for all j = jo, £,(4;) < %, Also, from (26) and (27) it
follows that there exists a ¢>0 such that, for each fixed j, there exists an n; such that
bu(A))/an(A;) <1 — c. Now, choose ny = maxi<;<;,n;. This yields (11). O

Proof of Lemma4. Given p =1 we choose n such that c,(4;)/(a,(A;)(1 — & )1/2)<
1/(2p — 1). Then, by Proposition 3.1(ii) in Taqqu (1977), term-by-term integration is allowed
and, using the formula for the expectation of products of Hermite polynomials (see, for
example, Taqqu 1977)
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E(log(7u(4) — (log2 = y)? =iy + > > L B H () Hi(Ta(y)

C
Vo1 kiks
q=2 ki+k =24, kulky!
0<k;=q,
k; even
oo H(p) q
c cn(;Lj)

- 3 2
q=2 q: a,,(/lj) 1-— gn,j

As a consequence of inequality (8) the above series converges as c,(4;)/(a,(4;)(1—
szn’j)l/Z)< 1/2p—1)<1 and it is bounded by C(c,(4;)/a(;))? for a certain positive
constant C. O

Proof of Lemma 5. Given /, choose n such that log n/n” <1/(2/ — 1). Then by Proposition
3.1(ii) in Taqqu (1977), term-by-term integration is allowed and

/ 0 H/ C(ai) /
7 i i=1 % kai_1,k2; v o
E]JGoguh) — Qog2 =y =3 > 5B ] He, (X)) Hi, (Yalh)
i=1 q=0 ki++kyy=2q 1eeee 27 i=1
0=<ki=gq,
ki even
/ /
= H CE)(?(S) + Z Z C(lc‘;i;),l,szAkl ,,,,, ke s s A, )
i=1 q=2 ki++ky=2q i=1
0sk;<gq,
ki even

where, if j = min(jy, ..., j, ),

/

vy 1/2
C(ka;i)fl,kZiAkl ,,,,, kz/(/ljl’ ) /1]/) = (2/ - l)q (10%) ( cg%g:))

i=1 i=1

because of properties of the expectation of products of Hermite polynomials (see, for

example, Taqqu 1977), Lemma 2 and inequality (8). On the other hand, assume for simplicity

that @y = ... = a; = 1. As > _;k; = 2¢ and all the k; are even, if ¢ <s it is not possible for

each pair (kyi_1, ki), i=1, ..., s, to have at least one non-zero term. As c((){()) = 0 we have

that if the number of a; which are equal to one is s, then

Va
(log(Tu(4)) — (og2 =) = > Y [ iAo Bt s 4)

i=1 q=2Vs ki++k==2q i=1
0<k;=gq,k; even

/ 12 2g+2/ -1 q
H u Z log n
- ('1 Cé,d)) ( >(2/_1)q( f ) ‘

q>2Vs 2q

/
E

This last series converges as logn/n” <1/(2/ — 1) and thus the lemma is proved. O
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Proof of Lemma 6. The first part of this lemma follows directly from Theorem 2. In order to
verify the convergence to zero in the second formula, observe, for k = 0,

[n/2] i
1 (0) = h(O)] < 23 logocfn(ﬂ,-»L
=

j—

(log f(4, 61) — log f(4, 6>)) dA

+

j (log £ (A, 1) — log? f(A, 62)) di

4 /A
< OB, )| |- log(kly(A))| +1
j=1

Here #(6;, 6;) — 0 if |6; — 6,] — 0. The result follows because the second moment of
log(i1,,(4;)) is uniformly bounded. For k& =1, 2 the proof follows analogously. O
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