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1. Introduction

Let fX ng1<n be a centered, strongly dependent, stationary Gaussian process with spectral

density f (ë, è), ë 2 (ÿð, ð]. Here è is assumed to belong to a compact set È � Rq. This

paper is concerned with estimating the parameter vector è based on a ®nite number of

observations X1, . . . , X n.

A number of estimators have been proposed for è in this setting. Classical minimum

contrast (parametric) methods, based on bilinear forms of the observations, such as the

Whittle or maximum likelihood estimators, have been developed under quite general

conditions (see Fox and Taqqu, 1986; Dahlhaus, 1989; Giraitis and Surgailis, 1990). On the

other hand, using an approximation of the spectral density for ë! 0, Geweke and Porter-

Hudak (1990) proposed a semi-parametric least-squares estimator based on a regression over

the log-periodogram for the exponent d of an ARIMA( p, d, q) when this exponent was

negative. The idea was to approximate the low frequencies of the spectral density, under

general conditions, without having to de®ne a parametric model. This allowed the higher

frequencies to be trimmed off, which reduced the problem of model misspeci®cation,

although of course convergence rates were slower. This semi-parametric estimator was

justi®ed later by KuÈnsch (1986) for positive d, but Robinson (1995) was the ®rst to give a

thorough theoretical account for this estimation scheme.

We remark that although semi-parametric rates are slower, in the context of long-range

dependence, regression over the log-periodogram is preferred as it provides simpler

numerical minimization problems than the usual parametric methods.

Following an approach developed by Taniguchi (1979), in this paper we construct a
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minimum contrast estimator which basically amounts to regression over the log-periodogram

in a parametric setting ± that is, considering the whole frequency band. In order to study its

asymptotic behaviour, we have to show the asymptotic normality of an estimator of integral

functionals of the log of the spectral density of the type
� ð
ÿð ø(ë)log( f (ë)) dë. This

functional exists for all spectral densities of strongly dependent processes with mild

restrictions on ø.

When considering integrals with respect to the log of the spectral density, the numerical

minimization problem is almost as simple as in the semi-parametric context and allows

working with the optimal rates. As another attractive feature, this minimum contrast

estimator satis®es certain robustness properties with respect to the parametric model (see

Taniguchi 1979).

Including the whole frequency band introduces certain technical problems, namely, that

evaluations of the periodogram at very low frequencies are not asymptotically uncorrelated.

However, this bad behaviour is cancelled out by integration and we ®nd the same

convergence rates as in the weakly dependent case. Our methodology uses the expansion of

the logarithm of the periodogram in Hermite polynomials. In fact, under additional

conditions other functionals can be treated in essentially the same fashion. Although we rely

heavily on the underlying Gaussianity assumption, this approach suggests methods of proof

based on Appell polynomials for linear processes, provided the formal expansion of the

functional exists (see Giraitis and Surgailis 1986).

2. Notation and hypotheses

Let F � f f (:, è)gè2È be a family of functions indexed over a compact parameter set,

È � Rq, such that for each ®xed è 2 È, f (:, è) : (ÿð, ð]! R is a positive integrable even

function. Assume F satis®es the following:

Assumption A1. For each è 2 È , there exist á(è) 2 (0, 1), r(è) . 0 and C(è) (with

supè2ÈjC(è)j, C) , such that as ë! 0� , for all ä, 0 ,

f (ë, è) � C(è)ëá(è)ÿ1ÿä � O(ër(è)�á(è)ÿ1):

There exists a constant D . 0 such that

inf
è2È

inf
ë2(ÿð,ð]

f (ë, è) > D:

Assumption A2. For each è 2 È, f (ë, è) is continuously differentiable in ë for all ë 2
(ÿð, ð), ë 6� 0, and there exists a positive constant C0 (independent of è) such that

@

@ë
log f (ë, è)

���� ���� < C0jëjÿ1:

Assumption A3. For each è in the interior of È , log f (ë, è) and log2 f (ë, è) are twice

continuously differentiable in è.
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Assumption A4. For each è in the interior of È, @=@èj log f (ë, è) , 1 < j < q, are

continuously differentiable in ë for all ë 2 (ÿð, ð), ë 6� 0 , and there exists a C1 . 0

(independent of è) such that, for all 0 , ä1 ,

@

@èj

log f (ë, è)

���� ���� < C1(jëjÿä1 � 1)���� @2

@ë@èj

log f (ë, è)

���� < C1(jëjÿ(1�ä1) � 1):

Assumption A5. For each è in the interior of È , @2=@èj@èk log f (ë, è) , 1 < j, k < q, are

continuously differentiable in ë for all ë 2 (ÿð, ð), ë 6� 0, and there exists a C2 . 0

(independent of è) such that, for all 0 , ä2 ,

@2

@èj@èk

log f (ë, è)

�����
����� < C2(jëjÿä2 � 1)

@3

@ë@èj@èk

log f (ë, è)

�����
����� < C2(jëjÿ(1�ä2) � 1):

Assumption A6. For è, ì 2 È, è 6� ì implies f (ë, è) 6� f (ë, ì) on a set of positive

Lebesgue measure.

For notation purposes, we shall sometimes denote f (:, è) by fè.

Remark 1. Assume that the true spectral density of observations X1, . . . , Xn is f (ë, è0), for

some è0 2 È. Let rk � E(X 0 X k). Under Assumption A1, Fox and Taqqu (1987) showed that,

for all ä. 0, rk � O(jkjÿá(è0)�ä).

Example 1. Consider a fractional ARIMA( p, d, q) with 0 , d , 1
2
, and p, q positive integers.

Here è � (a1, . . . , ap, b1, . . . , bq, d, ó 2) 2 R p�q�2, where (ai)i�1,:::, p and (bi)i�1,:::,q are the

coef®cients of a causal invertible ARMA process. We assume è 2 È, where È is a compact

subset. The resulting process has spectral density

f (ë, d) � ó 2

2ð
2 sin

ë

2

� �ÿ2d

f p,q(ë),

which satis®es Assumptions A1±A6. The function f p,q 2 C1((ÿð, ð]) is the spectral density

of the causal invertible ARMA process.

Consider the set G � fh 2 L1(ÿð, ð] :
� ð
ÿð log2(h(ë)) d ë,1g. Over this set we can

de®ne (Taniguchi 1979) the functional D2 : G 3 G ! R given by

D2( f , g) �
�ð
ÿð

log2 f

g
(ë)

� �
dë:

Now we can de®ne the functional T2(:) : G ! È, based on D2, given by
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T2(g) � arg min
è2È

D2( fè, g)

� arg min
è2È

�ð
ÿð

(log2 fè(ë)ÿ 2 log fè(ë)log g(ë)) dë: (1)

Remark 2. T2(g) may have multiple values so we shall assume that it stands for any one of

those values.

Let H be a given class of functions. If�ð
ÿð

ö(ë)log(gn(ë)) dë!
�ð
ÿð

ö(ë)log(g(ë)) dë

for every function ö(:) 2H , we will say that gn converges log±H to g (gn !l:H g).

Throughout this paper, a _ b � max(a, b), C stands for a generic constant which may

change value from line to line, and by `è0 ±probability' we mean that generated by a

centred Gaussian process with spectral density f (ë, è0).

3. Main result

Given observations X1, . . . , X n with true spectral density f 0(ë) � f (ë, è0), è0 2 È, we want

to construct a minimum contrast estimator of the parameter è0 based on the best

approximation over the class F for f 0. In order to do this we shall choose the value of è that

minimizes the functional D2( fè, f̂ 0), where f̂ 0 is an estimator of the true spectral density f 0.

The main result in this section discusses the asymptotic behaviour of this estimator.

The periodogram In is de®ned by In(ë) � jw(ë)j2, with

w(ë) � 1

(2ðn)1=2

Xn

j�1

X je
ië j: (2)

Although it is a bad pointwise estimator of f 0, suf®ciently smooth functionals of the

periodogram yield consistent estimators, as they average out this bad behaviour.

Consider, for a given n 2 N, the set of frequencies ëj � (2ð j)=n. Our estimator of f 0

will be given by the step approximation of the periodogram

gn(ë) � In(ëj) if
2ð( jÿ 1)

n
, ë <

2ð j

n
:

Notice that gn 2 G almost everywhere in è0-probability. In all that follows we shall

assume gn is positive.

Let k � eã, with ã denoting Euler's constant. We have the following theorem which is

analogous to Theorems 4, 5 and 6 in Taniguchi (1979) in the weakly dependent case:
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Theorem 1. Assume that the family F satis®es Assumptions A1±A6. Then T2( f 0) exists, is

unique and T2( f 0) � è0. If additionally è0 lies in the interior of È , then T2(kgn)!P è0.

Finally, if

ó f �
�ð
ÿð

@2 log f (ë, è)

@èj@èk

log f 0(ë)ÿ 1

2

@2 log2 f (ë, è)

@èj@èk

 !����
è�è0

dë

( )
(3)

is a non-singular matrix, then

���
n
p

(T2(kgn)ÿ è0)!D N 0,
2ð3

3

�ð
ÿð

ó f (ë)ó 9f (ë) dë

 !
, (4)

where !D stands for convergence in distribution and ó f (ë) is the q-vector de®ned by

ó f (ë) j � (ó f )ÿ1 @ log f (ë, è)

@èj

����
è�è0

:

Remark 3. This minimum contrast estimator is not ef®cient. Indeed, the lower bound for the

variance of any estimator of è is given by (see, for example, Dzhaparidze 1985)

ó 2 � 4ð

�ð
ÿð

ó f (ë)ó 9f (ë) dë: (5)

This lower bound is, for example, achieved by the maximum likelihood estimator or the

Whittle pseudo-likelihood estimator. Thus, the relative ef®ciency of the estimator we propose

with respect to these estimators is ð2=6.

4. Integrals with respect to the log-periodogram

In order to prove Theorem 1 we require asymptotics for integrals with respect to the log-

periodogram. Actually, we will consider discrete versions of the integral. In this section, we

will drop the parameter è from the notation.

Assume ø 2 L2((ÿð, ð]) is an even function that satis®es the following:

Assumption B1. There exists a positive constant K1 and â, 1
3

such that

jø(ë)j < K1jëjÿâ:

Assumption B2. ø is continuously differentiable in ë , for all ë 6� 0 , and there exists a

positive constant K2 such that

d

dë
ø(ë)

���� ���� < K2jëjÿâÿ1:

We are interested in the asymptotics of the function
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ln � 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)log(kIn(ëj)): (6)

for ëj � 2ð j=n and k � eã. We have the following result:

Theorem 2. Assume that the true spectral density of the observations f 0(ë) satis®es

Assumptions A1 and A2. Then

���
n
p 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)log(kIn(ëj))ÿ
�ð
ÿð

ø(ë)log( f 0(ë)) dë

0@ 1A!D N 0,
2ð3

3

�ð
ÿð

ø2(ë) dë

 !

with k � eã.

Remark 4. That the variance in Theorem 2 does not depend on the spectral density f0(ë) is

not surprising. Recall that the FreÂchet derivative of the nonlinear functional of the spectral

density Lø( f ) � � ðÿð ø(ë)log f (ë) dë at the point f is given by DLø( f )(ë) � ø(ë)1= f (ë).

Thus, this result only states that the variance of the estimator is a constant times

kDLø( f ) f k2
2.

Before proving Theorem 2 we shall require some more notation and some preliminary

technical results, whose proofs are given in the Appendix.

4.1. Using Hermite polynomials

First of all write, for each ë, In(ë) � X 2
n(ë)� Y 2

n(ë), where X n(ë) stands for the real part of

(2) and Yn(ë) for its imaginary part. Thus log(In(ë)) is actually a function of X n(ë) and Yn(ë).

Using this simple fact and taking advantage of the Gaussian framework, we shall expand

the functions (log(x2 � y2)ÿ (log 2ÿ ã)) p 2 L2(eÿ(x2� y2)=2), with p 2 N, on the basis of the

two-dimensional Hermite polynomials H m, l(x, y) � Hm(x)Hl(y). Let c
( p)
m, l be the corre-

sponding coef®cients:

c
( p)
m, l �

1

2ð

�1
ÿ1

�1
ÿ1

(log(x2 � y2)ÿ (log 2ÿ ã)) p Hm(x)Hl(y) eÿ(x2� y2)=2 dx dy

� 1

2ð

�2ð

0

�1
0

(log(r2)ÿ (log 2ÿ ã)) p rHm(r cos è)Hl(r sin è) eÿr2=2 dr dè: (7)

Notice that c
( p)
m, l � 0 if either m or l is odd. De®ne

h( p) � 1

2

� ��1
0

(log(u)ÿ (log 2ÿ ã)) p eÿu=2 du:

It is straightforward to show that c
( p)
0,0 � h( p). We have, in particular, c

(1)
0,0 � 0 and c

(2)
0,0 � ð2=6.

Observe also that by the Cauchy±Schwarz inequality,
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jc( p)
m, lj < (c

( p)
0,0 )1=2

������
m!
p ����

l!
p

: (8)

Consider the set of frequencies ëj1 , . . . , ëjl 2 fë1, . . . , ë[n=2]ÿ1g, with js 6� jt for s 6� t,

1 < s, t < l . The following two lemmas give bounds for the covariance of the vector

(Xn(ë j1 ), Yn(ëj1 ), . . . , Xn(ëjl )Yn(ëjl )).

Lemma 1. Assume that the true spectral density of the observations f 0(ë) satis®es

Assumptions A1 and A2. Then var(X n(ëj)) � an(ëj)� bn(ëj), var(Yn(ëj)) � an(ëj)ÿ bn(ëj)

and cov(X n(ëj), Yn(ëj)) � cn(ëj), where

an(ëj) � 1

4ð

X
jkj<n

1ÿ jkj
n

� �
rk cos ëj k

bn(ëj) � 1

4ðn

cos(ëj)

sin(ëj)

Xnÿ1

k�0

rk sin ëj k

cn(ëj) � 1

4ðn

Xnÿ1

k�0

rk sin ëj k:

Then there exist constants C, D . 0 such that

2an(ëj)ÿ f 0(ëj)

f 0(ëj)

����� ����� <
C

j
for all 1 < j < [n=2]ÿ 1, (9)

an(ëj) > D for all 1 < j < [n=2]ÿ 1: (10)

Lemma 2. Let ní < j , k < [n=2]ÿ 1 , for 0 , í, 1. Assume that the true spectral density

of the observations f 0(ë) satis®es Assumptions A1 and A2. Then there exists a constant C . 0

(independent of j,k) such that

jcov(X n(ëj), Xn(ëk))j < C log k � 1

j
f

1=2
0 (ëj) f

1=2
0 (ëk),

jcov(Yn(ëj), Yn(ëk))j < C log k � 1

j
f

1=2
0 (ëj) f

1=2
0 (ëk),

jcov(X n(ëj), Yn(ëk))j < C log k � 1

j
f

1=2
0 (ëj) f

1=2
0 (ëk),

jcov(Yn(ëj), Xn(ëk))j < C log k � 1

j
f

1=2
0 (ëj) f

1=2
0 (ëk):

The above lemma is due to Theorem 2 of Robinson (1995), if ní1 , j, k , ní2 , for 0 , í1 ,
í2 , 1. If j � O(n) or k � O(n) the proof follows analogously, so it is omitted.
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Set å j,n � bn(ëj)=an(ë1). The following lemma deals with the asymptotic behaviour of

this sequence.

Lemma 3. There exist c . 0 and n0 such that, for all n . n0 and for all 1 < j < [n=2]ÿ 1 ,

jån, jj < 1ÿ c: (11)

Also, there exists a constant C . 0 such that, for all 1 < j < [n=2]ÿ 1 ,

jån, jj < C
log j� 1

j
: (12)

Remark 5. As a consequence of equations (10), (11) and Remark 1 we have that, for all

1 < j < [n=2]ÿ 1, jcn(ëj)=(an(ëj)(1ÿ å2
n, j)

1=2)j ! 0 uniformly as n!1.

Introduce the normalized random variables

~Xn(ëj) � Xn(ëj)�����������������������������
an(ëj)� bn(ëj)

p , ~Yn(ëj) � Yn(ëj)�����������������������������
an(ëj)ÿ bn(ëj)

p :

Note that ~Xn(ëj) and ~Yn(ëj) are standard Gaussian variables with covariance cn(ëj)=
(an(ëj)(1ÿ å2

n, j)
1=2. Put Z n, j � Y 2

n(ëj)ÿ X 2
n(ëj)=(X 2

n(ëj)� Y 2
n(ëj)). It follows that Z n, j is

almost surely bounded by 1. Now write

log( ~X 2
n(ëj)� ~Y 2

n(ëj))

� log(X 2
n(ëj)� Y 2

n(ëj))ÿ log(an(ëj))ÿ log(1ÿ å2
n, j)� log(1� ån, j Z n, j): (13)

As a result of equations (9)±(13), it turns out that the asymptotics of the logarithm of the

periodogram can be obtained from those of the normalized periodogram. Based on Lemma

1, the next lemma shows how to calculate the moments of log( ~X 2
n(ëj)� ~Y 2

n(ëj)) ÿ
(log 2ÿ ã), for all 1 < j < [n=2]ÿ 1.

Lemma 4. Assume that the true spectral density of the observations f 0(ë) satis®es

Assumptions A1 and A2. Then

E(log( ~X 2
n(ëj)� ~Y 2

n(ëj))ÿ (log 2ÿ ã)) p � c
( p)
0,0 � O

cn(ëj)

an(ëj)

 !2

:

Remark 6. Remark 5 yields cn(ëj)=(an(ëj)(1ÿ å2
n, j)

1=2 � o(1) uniformly for all 1 < j <
[n=2]ÿ 1, so that the bounds in Lemma 4 are uniform over the whole frequency range.

For a given p > 2, consider any collection of positive ai, 1 < i < l , such thatP
iai � p. Let s be the number of ai � 1. Consider the vector (ëj1 , . . . , ëjl ), ní <

ji < [n=2] with ëj k
6� ëji

if k 6� i. We have the following lemma.

716 C. LudenÄa



Lemma 5. Assume that the true spectral density of the observations f 0(ë) satis®es

Assumptions A1 and A2. Assume ní < ji < [n=2]ÿ 1, i � 1, . . . , l , for 0 , í, 1. Let j �
min( j1, . . . , jl ). Then, there exists an n such that

E
Yl

i�1

(log( ~X 2
n(ëji

)� ~Y 2
n(ëji

))ÿ (log 2ÿ ã))ai �
Yl

i�1

c
(ai)
0,0 � O

C log n

j

� �s_2

:

We are now ready to prove Theorem 2.

Proof of Theorem 2. First de®ne ~In(ëj) � In(ëj)=an(ëj). We de®ne the normalized version of

ln (see (6)) as

~ln � 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)log(k~In(ëj)):

As is clear from (13), convergence in distribution of
���
n
p

(ln ÿ Eln) will be implied by that of���
n
p

(~ln ÿ E~ln), if we show that Rn � 1=
���
n
p P[n=2]ÿ1

j�1 ø(ëj)log(1� ån, j Z n, j) tends to zero in

probability. The proof of the theorem will thus be divided into three parts. First we will show

convergence in distribution for the centred ~ln, then control the bias term
���
n
p

(Eln ÿ� ð
ÿð ø(ë)log f 0(ë) dë), and ®nally show the aforementioned convergence to zero in probability.

Asymptotic distribution of ~ln ÿ E~ln. Choose â=(1ÿ â) , í, (1ÿ 2â)=2(1ÿ â). As a

consequence of Lemma 4 we have

E nÿ1=24ð
Xní

j�1

ø(ëj)(log(~In(ëj))ÿ (log 2ÿ ã))

24 352

< Cníÿ1
Xní

j�1

ø2(ëj)
ð2

6
� o(1)

� �

< Cníÿ1�2â
Xní

j�1

1

j2â

� O(n2í(1ÿâ)�2âÿ1) � o(1):

Thus nÿ1=24ð
Pní

j�1ø(ëj)(log(~In(ëj))ÿ (log 2ÿ ã))!P 0.

On the other hand, consider

Un,v � nÿ1=24ð
X[n=2]

j�ní

ø(ëj)(log(~In(ëj))ÿ (log 2ÿ ã)):

Clearly EUn,v � 0. Also, as a consequence of Lemmas 4 and 5, we have

EU2
n,v � nÿ1(4ð)2

X[n=2]ÿ1

j�ní

ø2(ëj)
ð2

6
� o(1)

� �
� 2nÿ1(4ð)2

X[n=2]

j1�ní

X[n=2]

j2� j1�1

ø(ëj1 )ø(ë j2 )
C log j2

j1

� �2

:

The ®rst term in the above sum converges to the stated variance. The second term is bounded

by
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Cnâ(log n)2
X[n=2]ÿ1

j1�ní

1

j
â�1
1

0@ 1A < Cn(â(1ÿí)_0)ÿv(log n)2:

Now assume that p > 2 and even. We have

EU
p

n,1=2
�
Xp

l �1

nÿ p=2(4ð) p

l !

X1

a1,:::,al

X
n1=2< j1,:::, jl <[n=2]

jm 6� jk

Yl

i�1

øai (ëji
)E
Yl

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))ai

� nÿp=2(4ð) p p!

( p=2)!2 p

X
n1=2< j1,:::, j p=2<[n=2]

jm 6� jk

Yp=2

i�1

ø2(ëji
)E
Yp=2

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))2

�
X

l �1,:::, p
l 6� p=2

nÿ p=2(4ð) p

l !

X1�
a1,:::,al

X
n1=2< j1,:::, jl <[n=2]

jm 6� jk

Yl

i�1

øai (ëji
) (14)

3 E
Yl

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))ai :

Here
P

1 is the sum over all possible a1, . . . , al with ai 6� 0 and such that
P

iai � p;
P

1�
excludes the case ai � 2 for i � 1, . . . , p=2.

By Lemma 5,

E
Yp=2

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))2 � (ð2=6) p=2 � (C log n=n1=2)2:

Thus, the ®rst term in the above sum converges to

p!

( p=2)!2 p
nÿ1(4ð)2

X[n=2]

j�n1=2

ø2(ëj)
ð2

6

0@ 1A p=2

�o(nÿ p=2):

In order to show the covergence to zero of the second term of the right-hand side of (14), we

shall group the terms in
P

1� based on the number of ai which are equal to one. Assume, for

some ®xed term, that the number of ai � 1 is s, 0 < s < l , with l the number of positive ai.

For notational purposes assume, for s . 0, that a1 � a2 � � � � � as � 1. By Lemma 5 there

exists a constant C � C(a1, . . . , al , p) such that
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X
n1=2< j1,:::, jl <[n=2]

jm 6� jk

Xl

i�1

øai (ëji
)E
Yl

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))ai

< Cnâp(log n)l
X

n1=2< j<[n=2]

1

jâ�2

 !sYl

i�s

X
n1=2< j<[n=2]

1

jâai
: (15)

We shall study this last expression according to the value of â. If â, 0 then each of the sums

on the right-hand side of (15) diverges, so that it is bounded by

Cnâp(log n)l nÿân(l ÿs=2)ÿâ( pÿ1) < C(log n)l n( lÿs=2): (16)

If â � 0 then the right-hand side of (15) is bounded by

Cnâp(log n)l �1 n(l ÿs=2) < C(log n)l �1 n( lÿs=2): (17)

The case where 0 , â, 1
3

is the most delicate as the sums on the right-hand side of (15) may

or may not converge according to the value of ai. Assume for notational purposes that

âai < 1 for s� 1 < i < t, for some t > 0 (if there are no ai in this set then t � 0). If t � 0

we assume
Q t

i�s�1 � 1. On the other hand, we have âai . 1 for all t � 1 < i < l , so that the

respective sums converge. Observe also that 2 < ai, for all s� 1 < i < l . With this notation,Yl

i�s�1

X
ní< j<[n=2]

1

jâai
�
Yt

i�s�1

X
ní< j<[n=2]

1

jâai
3
Yl

i� t�1

X
ní< j<[n=2]

1

jâai

< Cn( tÿs)ÿâ Xt

i�s�1

ai

< Cn( tÿs)ÿ2â( tÿs)

< Cn(l ÿs)(1ÿ2â):

Thus, as the sum corresponding to i � 1 is convergent in this case, the right-hand side of (15)

is bounded by

Cnâp(log n)l n(l ÿs=2)(1ÿ2â): (18)

As we are considering the case l � p=2 separately, we have l ÿ s , p=2ÿ s=2 in the

second sum in (14). This concludes the proof as we must normalize by nÿ p=2 in equations

(16), (17) and (18).

If p > 3 and odd, bounding as above, EU
p

n,1=2
� o(1) as we do not have the term given

in (14) with all ai � 2.

This together with the fact that E(Un,1=2 ÿ U n,v)2 ! 0 as n!1, shows the required

convergence in distribution.

Controlling the bias term. Because of the de®nition of ln and ~ln, in order to control the

bias term we have to verify that
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���
n
p 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)log f 0(ëj)ÿ
�ð
ÿð

ø(ë)log f 0(ë) dë

0@ 1A! 0, (19)

���
n
p 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)(log f 0(ëj)ÿ log(2an(ëj)))

0@ 1A! 0, (20)

���
n
p 4ð

n

X[n=2]ÿ1

j�1

ø(ëj)log(1ÿ å2
n, j)

0@ 1A! 0: (21)

Choose 0 , í, (1ÿ 2â)=2(1ÿ â). Under Assumptions A1, A2, B1 and B2 we have

nÿ1=24ð
Xní

j�1

ø(ëj)log f 0(ëj) < C log(d)ní(1ÿâ)�âÿ1=2 � o(1),

nÿ1=22ð
Xní

j�1

ø(ëj)log an(ëj) < C log(D)ní(1ÿâ)�âÿ1=2 � o(1),

n1=2

� níÿ1

0

ø(ë)log f 0(ë) dë < C log(d)n1=2�(íÿ1)(1ÿâ) � o(1),

nÿ1=24ð
X[n=2]ÿ1

j�ní

ø(ëj)(log f 0(ëj)ÿ log 2an(ëj)) < Cnÿ1=24ð
X[n=2]ÿ1

j�ní

jø(ëj)j
j

� o(nÿ1=2�(â_0)) � o(1),

���
n
p 2ð

n

X[n=2]ÿ1

j�ní

ø(ëj)log f 0(ëj)ÿ
�ð

níÿ1

ø(ë)log f 0(ë) dë

0@ 1A
< Cnÿ1=24ð

X[n=2]ÿ1

j�ní

log n

n
(ëj)

ÿ1ÿâ < Cnÿ3=2 log nn1�(â_0) � o(1),

which shows convergence to zero of the left-hand sides of (19) and (20).

Convergence of the left-hand side of (21) follows readily from (11) and (12), as

nÿ1=24ð
Xní

j�1

ø(ëj) < níÿ1=2:

Convergence to zero in probability of Rn. As jZ n, jj < 1 a.s., the stated result follows as,

by Lemma 4, there exists a c . 0 such that log(1� ån, j Z n, j) < c a.s., and if ní1 <
j < [n=2]ÿ 1, with 0 , í1 , 1, then there exists a C . 0 such that log(1 �
ån, j Z n, j) < C log( j� 1)= j almost everywhere. With these bounds we can then proceed as

for the bias terms. h

We can now prove Theorem 1.
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Proof of Theorem 1. Following the proof of Theorem 4 in Taniguchi (1979), de®ne

h(è) � D2( f (:, è), f (:, è0)) and hn(è) � D2( f (:, è), kgn(:)). Let h(1)(è) and h(1)
n be the

respective gradient vectors, and let h(2)(è) and h(2)
n be the respective matrices of second

derivatives. Let èm ! è; then under Assumptions A1±A3 by the dominated convergence

theorem we have

jh(èm)ÿ h(è)j �
�ð
ÿð

log2( fèm
)ÿ log2( fè)� 2(log( fèm

)ÿ log( fè))log f 0 dë

���� ����! 0:

Thus, h is continuous and reaches a (not necessarily unique) minimum over the compact set

È. If f 0 � f (:, è0), then h(è0) � 0. As h(è) > 0 this gives T2( f 0) � è0 in this case. Notice

that under Assumption A6 this minimum is unique.

Let us now study the asymptotic behaviour of the estimator of T2( f 0). Let ø(ë) �
log f (ë, è). Then under Assumptions A1, A2, B1 and B2,

���
n
p 4ð

n

X[n=2]

j�1

ø(ëj)log f (ëj, è0)ÿ
�ð
ÿð

ø(ë)log f (ë, è0) dë

0@ 1A! 0: (22)

Also,

���
n
p �ð

ÿð
ø(ë)gn(ë) dëÿ 4ð

n

X[n=2]

j�1

ø(ëj)log In(ëj)

0@ 1A! 0 (23)

in è0-probability.

Indeed, choose í as in Theorem 2. In order to verify (23), notice that

���
n
p �ð

ÿð
ø(ë)gn(ë)ÿ 4ð

n

X[n=2]

j�1

ø(ëj)log In(ëj)

0@ 1A
� 4ð

n1=2

X
j . ní

ø9(~ë j)(ëj ÿ ë1
j)log In(ëj)� 4ð

n1=2

X
j<ní

[ø(ëj1 )ÿ ø(ëj)]log In(ëj),

where ëj < ë1
j , ë1

j , ëj�1 and ~ë j 2 [ëj, ë
1
j]. To see that this last sum tends to zero in è0-

probability, we calculate its expectation and variance as in the proof of Theorem 2 and use

the fact that E[log(In(ëj))] and var[log(In(ëj))] are bounded for each ëj by a slowly varying

function at most. Then we use the fact that ø(ëj) satis®es Assumptions B1 and B2 to

complete the proof.

Let H be a class of functions that satisfy Assumptions B1 and B2. Then, from

Theorem 2 and equations (22), (23), we have that kgn(:) !l:H f (:, è0) in è0-probability. We

now require the following lemma, which controls the ¯uctuations of hn(è) and its

derivatives in probability. As h(1), h(1)
n are q-vectors and h(2), h(2)

n q 3 q matrices, the next

lemma is understood to apply componentwise.
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Lemma 6. Suppose Assumptions A1±A6 are satis®ed. Then:

1. for all ®xed è 2 È, h(k)
n (è)ÿ H (K)(è)! 0 in probability componentwise for k � 0, 1,

2;

2. for all B . 0 , componentwise

lim sup
ç!0

P sup
jè1ÿè2j. ç

jh(k)
n (è1)ÿ h(k)

n (è2)j. B

 !
! 0

for k � 0, 1, 2.

The proof of Lemma 6 is given in the Appendix.

To show consistency of T2(kgn), assume T2( f 0) is unique and lies in the interior of È.

We want to prove that P(jT2(kgn)ÿ T2( f 0)j. å)! 0. As for each n, T2(kgn) may not be

unique, consider instead ~T2(kgn) � infÈT2(kgn). In what follows, we shall assume

f 0(ë) � f (ë, è0) and write T2( f 0) � è0. Notice that as è0 is the unique value that

minimizes h(:) and because h(è0) � 0, we have h(è) � (èÿ è0)t h(2)(~è)(èÿ è0). We have

also that h(2)(è0) is positive de®nite so that, under Assumption A5, h(2)(~è) is positive

de®nite over a certain subset of È, which does not depend on è. Thus, there exists a certain

ä. 0 such that we have inf jèÿè0j. åh(è) > inf (ä, å2kh(2)(è0)k=2), with k:k the L2 matrix

norm. Now, assume å. 0 is small enough. There exists a constant B . 0 such that

P(j~T2(kgn)ÿ è0j. å)

� P inf
jèÿè0j. å

hn(è)ÿ hn(è0) , 0

� �

< P sup
jèÿè0j. å

(hn(è)ÿ h(è)ÿ hn(è0)) . inf
jèÿè0j. å

h(è)

 !

<
Xq

j�1

P j(h(1)
n (è0)) jj. Bå

2q

� �
�
Xq

j,k�1

P sup
è
j(h(2)

n (è)ÿ h(2)(è)) j,k j. B

2q2

� �
:

Consistency of ~T2(kgn) now follows from Lemma 6 and the continuity (thus uniform) of

each component of h(2)(:). In order to show consistency of the estimator, consider

T2(kgn) � supÈT2(kgn), and repeat the above arguments.

Once we have shown consistency, we can prove convergence in distribution. As in the

proof of Theorem 5 of Taniguchi (1979), we can write, in matrix notation,
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(T2(kgn)ÿ è0)

�ð
ÿð
ÿ 2

@2 log f (ë, èj)

@è@èk

����
è�è0

log f (ë, è0)� @
2 log2 f (ë, è)

@èj@èk

����
è�è0

dë� A� B

( )

� 2

�ð
ÿð

@ f (ë, è)

@èj

����
è�è0

(log kgn(ë)ÿ log f (ë, è0)) dë

 !
,

with

A �
�ð
ÿð
ÿ 2

@2 log f (ë, è)

@èj@èk

����
è�ì1

log kgn(ë) dë�
�ð
ÿð

2
@2 log f (ë, è)

@èj@èk

����
è�è0

log f (ë, è0) dë

( )

and

B �
�ð
ÿð

@2 log2 f (ë, è)

@èj@èk

����
è�ì2

dëÿ
�ð
ÿð

@2 log2 f (ë, è)

@èj@èk

����
è�è0

dë

( )
:

Because T
ö
2 (kgn)ÿ è0!P 0 in è0-probability, under Assumption A4, we have, by the

dominated convergence theorem, B!P 0 in è0-probability (that is, all entries of the matrix B).

Under Assumption A5, we have that log kgn(:) is bounded in probability and, again using

the dominated converge theorem, we have that A tends to zero in è0-probability (that is, all

entries of the matrix A).

Thus, we have

���
n
p

(T
ö
2 (kgn)ÿ è0) � ���

n
p �ð

ÿð
ó f (ë)(log kgn(ë)ÿ log f (ë, è0)) dë

� bn

�ð
ÿð
ÿ @ log f (ë, è)

@èj

����
è0

���
n
p

(log kgn(ë)ÿ log f (ë, è0)) dë,

where bn ! 0 in è0-probability. Finally, Theorem 2 concludes the proof. h

Appendix

Proof of Lemma 1. Put ëj � 2ð j=n, 1 < j < [n=2]. Let Fn(ë) � (1=n)jPn
j�1 ei jëj2 be the

FeÂjer kernel of degree n.

De®ne, for ë 2 (ÿð, ð],
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an(ë) � 1

4ð

X
jkj<n

1ÿ jkj
n

� �
rk cos ëk

� 1

4ð

�ð
ÿð

Fn(ì) f (ëÿ ì) dì,

bn(ë) � 1

8ðn

cos ë

sin ë
sin 2në� cos 2nëÿ 1

� �Xnÿ1

k�0

rk cos ëk

� cos ë

sin ë
(cos 2në� 1)� sin 2në

� �Xnÿ1

k�0

rk sin ëk,

cn(ë) � ÿ 1

8ðn

cos ë

sin ë
sin 2në� cos 2çë� 1

� �Xnÿ1

k�0

rk sin ëk

"

ÿ cos ë

sin ë
(cos 2nëÿ 1)� sin 2në

� �Xnÿ1

k�0

rk cos ëk

#
:

Notice that

cn(ëj) � 1

4ðn

Xnÿ1

k�0

rk sin ëj k,

and bn(ëj) � cot(ëj)cn(ëj). On the other hand, it can be shown after some calculation,

recalling the de®nition of w(ë) given in (2), that

Ew(ëj)w(ëj) � E(X 2
n(ëj)� Y 2

n(ëj)) � 2an(ëj), (24)

Ew(ëj)w(ëj) � E(X 2
n(ëj)ÿ Y 2

n(ëj))� 2iE(X n(ëj)Yn(ëj)) (25)

� 2bn(ëj)� 2icn(ëj):

Equations (24) and (25) yield

E(X n(ëj))
2 � an(ëj)� bn(ëj),

E(X n(ëj))
2 � an(ëj)ÿ bn(ëj),

cov(X n(ëj), Yn(ëj)) � cn(ëj):

Assumption A1 and the fact that Fn is positive and integrates to 2ð yield an(ëj) > D=2.

Finally, for completeness we include the proof of equation (9) (cf. Robinson 1995),

throughout which f (ë) stands for the spectral density:
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Ew(ëj)w(ëj)ÿ f (ëj) � 1

2ð

�ð
ÿð

Fn(ëÿ ëj)( f (ë)ÿ f (ëj)) dë

� 1

2ð

�ÿëj=2

ÿð
�
�ëj=2

ÿë j=2

�
�3ëj=2

ëj=2

�
�ð

3ëj=2

Fn(ëÿ ëj)( f (ë)ÿ f (ëj)) dë

< max
ë. ëj=2

f (ëj)
1

2ð

�ÿëj=2

ÿð
�
�ð
ëj=2

Fn(ëÿ ëj) dë� max
ë. ëj=2

Fn(ëÿ ëj)
1

2ð

�ëj=2

ÿëj=2

( f (ë)� f (ëj)) dë

� max
ë. ëj=2

j f 9(ë)j 1

2ð

�3ëj=2

ëj=2

Fn(ëÿ ëj)jëÿ ëjj dë:

The properties of the FeÂjer kernel yield the desired result under Assumptions A1 and A2.

h

Proof of lemma 3. First, we will prove the inequality in (12). Robinson (1995) shows in the

proof of Robinson's (1995) Theorem 2, that there exists a constant C . 0 such that, for

2 < j < [n=2]ÿ 1, Ew(ëj)w(ëj) < Cf 0(ëj)log j= j. This, together with equation (9), yields the

desired result.

On the other hand, Hurvich and Beltrao (1993) have shown that, for ®xed j,

lim
n!1 bn(ëj) f 0(ëj) � 1

ð

�1
ÿ1

sin2(ë=2)

(2ð jÿ ë)(2ð j� ë)

ë

2ð j

���� ����á(è0)ÿ1, (26)

lim
n!1 an(ëj) f 0(ëj) � 1

ð

�1
ÿ1

sin2(ë=2)

(2ð jÿ ë)2

ë

2ð j

���� ����á(è0)ÿ1: (27)

By (12), there exists a j0 such that, for all j > j0, ån(ëj) < 1
4
. Also, from (26) and (27) it

follows that there exists a c . 0 such that, for each ®xed j, there exists an nj such that

bn(ëj)=an(ëj) , 1ÿ c. Now, choose n0 � max1< j< j0 nj. This yields (11). h

Proof of Lemma 4. Given p > 1 we choose n such that cn(ëj)=(an(ëj)(1ÿ å2
n, j)

1=2) ,
1=(2 pÿ 1). Then, by Proposition 3.1(ii) in Taqqu (1977), term-by-term integration is allowed

and, using the formula for the expectation of products of Hermite polynomials (see, for

example, Taqqu 1977)
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E(log(~In(ëj))ÿ (log 2ÿ ã)) p � c
( p)
0,0 �

X1
q�2

X
k1�k2�2q,
0<ki<q,

ki even

1

k1!k2!
c

( p)
k1,k2

EH k1
( ~Xn(ëj))H k2

( ~Yn(ëj))

� c
( p)
0,0 �

X1
q�2

c( p)
q,q

q!

cn(ëj)

an(ëj)
���������������
1ÿ å2

n, j

q0@ 1Aq

:

As a consequence of inequality (8) the above series converges as cn(ëj)=(an(ëj)(1ÿ
å2

n, j)
1=2) , 1=(2 pÿ 1) < 1 and it is bounded by C(cn(ëj)=an(ëj))

2, for a certain positive

constant C. h

Proof of Lemma 5. Given l , choose n such that log n=ní , 1=(2l ÿ 1). Then by Proposition

3.1(ii) in Taqqu (1977), term-by-term integration is allowed and

E
Yl

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))ai �

X1
q�0

X
k1�:::�k2l �2q

0<ki<q,
ki even

Ql
i�1 c

(ai)
k2iÿ1,k2i

k1! . . . k2l !
E
Yl

i�1

Hk2iÿ1
( ~X n(ë ji

))H k2i
( ~Yn(ëji

))

�
Yl

i�1

c
(ai)
0,0 �

X
q>2

X
k1�:::�k2l �2q

0<ki<q,
ki even

Yl

i�1

c
(ai)
k2iÿ1,k2i

Ak1,:::,k2l (ëj1 , . . . , ëjl ),

where, if j � min( j1, . . . , jl ),

Yl

i�1

c
(ai)
k2iÿ1,k2i

Ak1,:::,k2l (ëj1 , . . . , ëjl )

�����
����� < (2l ÿ 1)q log n

j

� �q Yl

i�1

c
(2ai)
0,0

 !1=2

because of properties of the expectation of products of Hermite polynomials (see, for

example, Taqqu 1977), Lemma 2 and inequality (8). On the other hand, assume for simplicity

that a1 � . . . � as � 1. As
P

i ki � 2q and all the ki are even, if q , s it is not possible for

each pair (k2iÿ1, k2i), i � 1, . . . , s, to have at least one non-zero term. As c
(1)
0,0 � 0 we have

that if the number of ai which are equal to one is s, then

E
Yl

i�1

(log(~In(ëji
))ÿ (log 2ÿ ã))ai �

X
q>2_s

X
k1�:::�k2)�2q
0<ki<q,ki even

Yl

i�1

c
(ai)
k2iÿ1,k2i

Ak1,:::,k2l (ëj1, . . . , ëjl )

<
Yl

i�1

c
2ai)
0,0

 !1=2 X
q>2_s

2q� 2l ÿ 1

2q

 !
(2l ÿ 1)q log n

j

� �q

:

This last series converges as log n=ní , 1=(2l ÿ 1) and thus the lemma is proved. h
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Proof of Lemma 6. The ®rst part of this lemma follows directly from Theorem 2. In order to

verify the convergence to zero in the second formula, observe, for k � 0,

jhn(è1)ÿ hn(è2)j < 2
X[n=2]

j�1

log(kIn(ëj))

�ëj

ëjÿ1

(log f (ë, è1)ÿ log f (ë, è2)) dë

������
������

�
�ð
ÿð

(log2 f (ë, è1)ÿ log2 f (ë, è2)) dë

���� ����
< Cç(è1, è2)

4ð

n

X[n=2]

j�1

log(kIn(ëj))

������
������� 1

0@ 1A:
Here ç(è1, è2)! 0 if jè1 ÿ è2j ! 0. The result follows because the second moment of

log(kIn(ëj)) is uniformly bounded. For k � 1, 2 the proof follows analogously. h

Acknowledgements

The author is indebted to the referees, whose helpful comments greatly improved the

presentation of this paper. The author especially appreciates the suggestions of one of the

referees who helped correct a previous ¯aw in the proof of Theorem 2.

References

Dahlhaus, R. (1989) Ef®cient parameter estimation for self-similar processes. Ann. Statist., 17, 1749±

1766.

Dzhaparidze, K. (1985) Parameter Estimation and Hypothesis Testing in Spectral Analysis of

Stationary Time Series. Berlin: Springer-Verlag.

Geweke, J. and Porter-Hudak, S. (1990) The estimation and application of long memory time series

models. J. Time Series Anal., 4, 221±238.

Giraitis, L. and Surgailis, D. (1986) Multivariate Appell polynomials and the central limit theorem. In

E. Eberlein and M.S. Taqqu (eds), Dependence in Probability and Statistics. Boston: BirkhaÈuser.

Giraitis, L. and Surgailis, D. (1990) A central limit theorem for quadratic forms in strongly dependent

linear variables and its application to asymptotic normality of Whittle's estimate. Probab. Theory

Related Fields, 86, 87±104.

Fox, R. and Taqqu, M.S. (1986) Large sample properties of parameter estimates for strongly

dependent stationary Gaussian time series. Ann. Statist., 14, 517±532.

Fox, R. and Taqqu, M.S. (1987) Central limit theorems for quadratic forms in random variables having

long range dependence. Probab. Theory Related Fields, 74, 213±240.

KuÈnsch, H.R. (1986) Discrimination between monotonic trends and long range dependence J. Appl.

Probab., 23, 1025±1030.

Hurvich, C.M. and Beltrao, K.I. (1993) Asymptotics for the low-frequency ordinates of the

periodogram of a long-memory time series. J. Time Series Anal., 14, 455±472.

Parametric estimation for Gaussian processes 727



Robinson, P.M. (1995) Log-periodogram regression of time series with long range dependence. Ann.

Statist., 23, 1048±1072.

Taqqu, M.S. (1977) Law of the iterated logarithm for sums of non-linear functions of Gaussian

variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie Verw. Geb., 40,

203±238.

Taniguchi, M. (1979) On estimation of parameters of Gaussian stationary processes. J. Appl. Probab.,

16, 575±591.

Received March 1996 and revised October 1999

728 C. LudenÄa


