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There is a ®rm belief in the literature on statistical applications of wavelets that adaptive procedures

developed for Fourier series, labelled by that literature as `linear', are inadmissible because they are

created for estimation of smooth functions and cannot attain optimal rates of mean integrated squared

error convergence whenever an underlying function is spatially inhomogeneous, for instance, when it

contains spikes/jumps and smooth parts. I use the recent remarkable results by Hall, Kerkyacharian

and Picard on block-thresholded wavelet estimation to present a counterexample to that belief.
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1. Adaptive estimation for Fourier and wavelet series

Consider a problem of data-driven wavelet series estimation of spatially inhomogeneous

curves (which may have both smooth parts and jumps, spikes, etc.) under a minimax mean

integrated squared error (MISE). Wavelets are relative newcomers to the world of orthogonal

series, and, in contrast to classical Fourier series, they have no problem approximating jumps,

spikes, etc.

The creation of wavelets sparked a heated discussion in the mathematical literature on

wavelet transforms and Fourier transforms; see the illuminating paper by Strang (1993).

Unsurprisingly, a similar discussion was sparked in the statistical wavelet literature with the

emphasis on the possibility of using adaptive procedures developed for Fourier series. The

judgement of the wavelet literature, which refers to these estimators as `linear' adaptive,

was unanimously negative; see, for instance, the discussion in Donoho and Johnstone

(1994; 1995) and Donoho et al. (1995). The main theoretical argument of the wavelet

literature is that adaptive Fourier estimators, with the Efromovich±Pinsker (EP) block

shrinkage estimator being the main example, mimic linear pseudo-estimates (which are

based both on data and an underlying class of function) that do not attain an optimal rate

over classes of spatially inhomogeneous functions. `Thus, adaptive linear methods cannot

attain the optimal rate either', conclude Donoho and Johnstone (1995, p. 1200). Moreover,

their numerical experiments show that using the EP estimator with a wavelet basis in place

of the Fourier basis and with the block size specially chosen gives a disappointing

performance.

Such a theoretical conclusion and the supporting numerical results look very reasonable

(after all, the nature of wavelets and Fourier systems is absolutely different), and I know of
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no article or book where they have been contested. On the other hand, why is the wavelet

literature so sure that data-driven estimators developed for Fourier series mimic these

inadmissible linear pseudo-estimates? Is this due to that label `linear'? Furthermore, what

happens if in the EP estimator one simply changes a Fourier basis into a wavelet basis

(without any other modi®cations)? To answer these questions and shed light on the issue, let

us recall the basics of the minimax theory of data-driven Fourier series estimation. (Note

that in what follows it is essential to distinguish between the improvement in estimation of

spatially inhomogeneous functions obtained by using a wavelet basis in place of a Fourier

one, which is not at all the point of the paper, and the comparison explored between

different adaptive procedures for wavelet series estimators.)

2. Minimax paradigm of data-driven Fourier series estimation

First of all, let us recall three classical steps in exploring a minimax data-driven Fourier

estimation.

1. Finding a lower bound for the minimax (over a given function class H ) risk.

2. Finding an upper bound for the minimax risk which should asymptotically coincide

with the lower bound. Typically a pseudo-estimate, based both on data and H , is used

to establish the upper bound.

3. Finding a data-driven estimate ± based only on data ± which attains the lower bound.

The best-known data-driven estimators mimic oracles which are based on data and

estimated curves. (Note that the use of the underlying curve instead of the function

class H differentiates the oracles from the pseudo-estimates used in step 2.)

It was a matter of mathematical luck that for smooth functions the pseudo-estimates used

in step 2 were linear, that is, for a ®ltering model ± linear ®lters with coef®cients

depending on H , for nonparametric regression ± linear combinations of responses with

coef®cients depending on H , etc. On the other hand, it was discovered in the 1980s that

linear pseudo-estimates could not be rate-optimal whenever an underlying curve was not

smooth; see the original article by Nemirovskii et al. (1985) and a comprehensive review in

HaÈrdle et al. (1998). This fact simply tells us that in step 2 other pseudo-estimates should

be used to support the lower bound; nevertheless, it has become the main argument in the

wavelet literature in favour of rejection of data-driven methods suggested for Fourier bases.

To assess the validity of such an argument, let us recall the EP estimator, which is a sharp

minimax estimator suggested for Fourier series during the 1980s.

3. Efromovich±Pinsker estimator

This section is based on Efromovich and Pinsker (1984). A square-integrable signal f (t),

0 < t , 1, is observed in a white Gaussian noise and an observation Yn(t) satis®es

dYn(t) � f (t)dt � ó nÿ1=2 dw(t) (recall that results for the ®ltering model are typically valid
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for other nonparametric models including equidistant nonparametric regression and density

estimation where n is the sample size).

Let fj j, j � 1, 2 . . .g be a Fourier basis in L2[0,1]. Then f (t) �P1j�1è jj j(t), where è j

are Fourier coef®cients. Thus the ®ltering problem is equivalent to estimation of the Fourier

coef®cients based on observations Yj � è j � nÿ1=2óî j, where î j are independent and

identically distributed standard normal. Note that at this stage the underlying basis is

irrelevant, so it may be a wavelet basis as well.

The EP estimator attempts to mimic the linear oracle f ��(t) �P1j�1w�j Yjj j(t), where

w�j � è2
j=(è2

j � ó 2 nÿ1). Note that arg minc Ef(cYj ÿ è j)
2g � w�j , thus the linear oracle

dominates all other oracles of the form ~f (t) �P1j�1ë j( f )Yjj j(t) including all known

threshold ones. This simple fact is interesting in itself because, at least in the world of

oracles, thresholding is not optimal.

Unfortunately, it is impossible to mimic the linear oracle using a statistic because it is

too intelligent (it knows all the è2
j), so a slightly less intelligent oracle should be used.

Thus, let the blocks fT1n, T2n, . . .g be (possibly) a sequence of partitions of the indices

f1, 2, . . .g, and then consider the block-linear oracle

f̂ �(t) �
XSn

k�1

[Èk=(Èk � ó 2 nÿ1)]
X
j2Tkn

Yjj j(t): (1)

Here Èk � Lÿ1
kn

P
j2Tkn

è2
j and Lkn is the cardinality of Tkn. Apparently, this oracle dominates

any other oracle of the form f̂ (t) �PSn

k�1ëk( f )
P

j2Tkn
Yjj j(t).

The block-linear oracle has several nice features. For smooth functions, under very mild

assumptions on the choice of blocks and Sn, it mimics the linear oracle. In its turn, the

block-linear oracle may be mimicked by a statistic (data-driven estimate) which is called the

EP estimate,

f̂ (t) �
XSn

k�1

[È̂k=(È̂k � ó 2 nÿ1)]I(È̂k . dknó
2 nÿ1)

X
j2Tkn

Yjj j(t): (2)

Here È̂k � max(Lÿ1
kn

P
j2Tkn

(Y 2
j ÿ ó 2 nÿ1), 0) is the positive part of the unbiased estimate of

Èk (thus, it is an admissible estimate), and I(�) is the indicator. Note that the EP estimator

shrinks the observed Yj towards the origin by the product of two well-known factors: the ratio

between powers of the input and output signals on the block frequencies, and the hard-

threshold factor.

Statistical properties of the EP estimator which are important for our discussion are

formulated in the following proposition. To shed light on assumptions, note that the

integrated squared error (ISE) of the block-linear oracle (1) is�1

0

( f̂ �(t)ÿ f (t))2 dt � nÿ1
XSn

k�1

LknËkn �
X
k.Sn

LknÈkn, (3)

where Ëkn � Èkn=(Èkn � ó 2 nÿ1). Write a ^ b for min(a, b).
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Theorem 1. Consider a non-constant square-integrable signal f. Let the threshold levels dkn

of the EP estimator (2) be bounded, Lknd3
kn . c0 . 0, and, for some a , 1,XSn

k�1

expfÿLkn max(adkn(dkn ^ 1)=8, (adkn ÿ 1)=2)g, C�,1: (4)

Then for some ®nite constant C the MISE of the EP estimator is no larger than a constant

times the MISE of the block-linear oracle (1), that is,

E

�1

0

( f̂ (t)ÿ f (t))2 dt

( )
< C E

�1

0

( f̂ �(t)ÿ f (t))2 dt

( )
: (5)

Moreover, if the threshold levels decay ± more precisely, ifXSn

k�1

d
1=2
kn LknËkn � o(1)

XSn

k�1

LknËkn (6)

and
PSn

k�1 LknËkn !1 as n!1 ± then the EP estimator sharply mimicks the block-linear

oracle, that is,

E

�1

0

( f̂ (t)ÿ f (t))2 dt

( )
< (1� o(1))E

�1

0

( f̂ �(t)ÿ f (t))2 dt

( )
: (7)

This assertion was established in Efromovich and Pinsker (1984) for a more general

model Yj � è j � ó nÿ1=2å j where the noise å j had only eight ®nite moments. In this case

assumption (4) should be replaced by
PSn

k�1 Lÿ1
kn dÿ3

kn , C�. To establish (5) and (7) for the

Gaussian model, use the exponential inequality

P(È̂k . dnÿ1, Èk , cdnÿ1) <

min(3 expfÿLkn(1ÿ c)d((1ÿ c)d ^ 1)=8g, ((1ÿ c)dkn)ÿ1 expfÿLkn((1ÿ c)dkn ÿ 1)=2g),
which holds for suf®ciently small c . 0, in Lemma 3 of that paper in place of the Chebyshev

inequality. Also note that the proposition holds for any orthonormal system of functions.

4. The Hall±Kerkyacharian±Picard block-threshold wavelet
oracle

Let ö and ø denote father and mother wavelet functions and let f have the wavelet

expansion f (t) �P2 j0ÿ1
k�0 á j0 kö j0 k(t)�P j> j0

P2 jÿ1
k�0 è jkø jk(t), where ö jk(t) � 2 j=2ö(2 j t ÿ k),

ø jk(t) � 2 j=2ø(2 j t ÿ k) and á jk, è jk are the corresponding wavelet coef®cients whose natural

estimates are á̂ jk �
� 1

0
ö jk(t)dYn(t) and è̂ jk �

� 1

0
ø jk(t)dYn(t). Hall et al. (1995; 1998) made

the remarkable discovery that a block-thresholded oracle is asymptotically minimax over a

wide class of both smooth and spatially inhomogeneous functions including all practical and
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test examples studied in the wavelet literature such as `blocks', `Doppler', `jumpsine',

piecewise smooth functions with increasing number of pieces, etc. The oracle is

~f �(t) �
X2 j0ÿ1

k�0

á̂ j0 kö j0 k(t)�
XJ�
j� j0

X2 j=Ljn

s�1

I Lÿ1
jn

X
k2Tjsn

è2
jk . c�ó 2 nÿ1

 ! X
k2Tjsn

è̂ jkø jk(t): (8)

Here 2 j0ÿ1 < n1=(2N�1) < 2 j0 and N is the wavelet regularity; Tjsn � fk : Ljn(sÿ 1) <
k , Ljnsg, in which Ljn is the length of blocks on the jth resolution scale; J� � blog2 nc; bxc
is integer part of x; and c� is a positive constant. There is a wide variety of blocks which

imply rate optimality, for instance, logarithmic blocks; see also Cay and Brown (1998).

Furthermore, Cay (1999) established rate optimality of block thresholding over Besov spaces.

Theorem 1 implies the following corollary.

Corollary 1. Consider a non-constant square-integrable function f. Let the threshold levels

djn be bounded, Ljnd3
jn

. c0 . 0, and, for some a , 1,

XJ�
j� j0

(2 j=Ljn)expfÿLjn max(adjn(djn ^ 1)=8, (adjn ÿ 1)=2)g, C�,1: (9)

Then the MISE of the wavelet EP estimator,

~f (t) �
X2 j0ÿ1

k�0

á̂ j0 kö j0 k(t)�
XJ�
j� j0

X2 j=Ljn

s�1

È̂ js

È̂ js � ó 2 nÿ1
I È̂ js .

djnó 2

n

� � X
k2Tjsn

è̂ jkø jk(t), (10)

is no larger than a constant times the MISE of the oracle (8), that is,

E

�1

0

( ~f (t)ÿ f (y))2dt

( )
< C E

�1

0

( ~f �(t)ÿ f (t))2

( )
: (11)

For instance, (9) holds if djn � d . 3 is a constant and Ljn � bln (n)c. Thus, if a block-

threshold oracle is spatially adaptive (rate minimax) then the wavelet EP estimator is

spatially adaptive as well. If ó 2 is unknown then a traditional robust median-scale estimate,

based on fè̂J�kg, is used. Furthermore, as in Cay (1999), the estimator is pointwise rate-

optimal. Also, as in (6)±(7), sharp mimicking is also possible.

5. Numerical study

Donoho and Johnstone (1995, p. 1216) correctly conclude that using the `linear' adaptive

estimators LPJS and WaveJS is disappointing. Bear in mind that the EP estimator (2) is a

prototype of these estimators and that they are similar to (8) with some speci®c

parameters. In short, numerical examples show that these estimators perform essentially

worse than SureShrink, which is the benchmark of the term-by-term threshold-adaptive

estimates.
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I will explain below why these two `linear' estimators perform so badly, but ®rst let us

look at two particular cases of the EP estimator which illustrate its robustness. Let us refer

to the ®rst one as the EP estimator with `increasing L and d � 0' because it has block sizes

Ljn � bn2b( jÿ j0)=3c and zero threshold levels djn � d � 0; here bn is the largest power of 2

(2k , where k � 1, 2, . . .) which is at most log2(n). Note that this EP estimator has no

thresholding factor. Let us refer to the second estimator as the EP estimator with `constant

L and d � 5' because it has Ljn � bn and djn � 5. There is nothing special in these

particular parameters, I simply want to show a broad spectrum of the possibilities.

These EP estimators are compared with the default SureShrink estimator supported by the

toolkit S�WAVELETSTM. This toolkit allows one to consider equidistant nonparametric

regression problems, thus I consider such a model with n observations, j0 being the default

one (six ®nest scales are considered by the default), and the default Symmlet 8 wavelet is

used. Two particular underlying regression functions are the classical `Doppler' and

`jumpsine' of that toolkit. Figures 1 and 2 show particular cases of estimation of these two

functions for n � 1024 and signal-to-noise ratio (snr) equal to 3. The EP estimates appear

to perform exceptionally well in comparison with SureShrink.

But how stable are these properties if one repeats these simulations over and over? To

answer this question, let us de®ne an experiment as a combination of an underlying

function, sample size n and snr. Consider our two functions, n being 512, 1024 and 2048,

and snr being 3, 5 and 7. Suppose that for every experiment: (i) we carry out 100

independent Monte Carlo simulations; (ii) we calculate the sample mean (over these 100

simulations) of the ratio of the ISE of each of our EP estimators in turn to the ISE of

SureShrink; (iii) we calculate the sample mean (over these 100 simulations) of the ratio of

the number of non-zero wavelet coef®cients used by each of our EP estimators in turn to

the number of non-zero wavelet coef®cients used by SureShrink.

Step (ii) allows us to compare the estimates in terms of ISE, whereas step (iii) allows us

to compare the data-compression properties of the estimates. Note that if the ratio is smaller

than 1 then the EP estimator is better than SureShrink, and vice versa if greater than 1. The

results are presented in Table 1.

These results con®rm the preliminary conclusion, made by inspection of particular

graphs, that the EP estimator may be of interest to wavelets. Also note that the ®rst EP

estimator (the one with no thresholding) performs exceptionally well in terms of ISE but

slightly worse than both the second EP estimator and SureShrink in terms of data

compression (the latter is not a surprise). On the other hand, the second EP estimator is

comparable with SureShrink in terms of ISE and yields a much better data compression.

Recall that the only goal of this numerical study is to show that data-driven estimators

developed for Fourier series may be of interest to wavelets. The results presented clearly

indicate that this is the case.

Finally, I promised to explain why the `linear' adaptive estimators suggested by Donoho

and Johnstone perform so badly. The main reason is that they use Ljn � 2 j (a resolution

scale is considered as a block) together with djn � 0 (no thresholding factor). As a result,

all wavelet coef®cients from a resolution scale are shrunk by the same factor, and thus the

disappointing outcome is straightforward. In short, while there is a wide choice of

reasonable parameters for the EP estimator, extremes should be avoided.
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Figure 1. Estimation of noisy Doppler signal (n � 1024, signal-to-noise ratio 3) by three estimates

shown by solid lines. The dashed line shows the underlying signal.
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Figure 2. Estimation of noisy jumpsine signal (n � 1024, signal-to-noise ratio 3) by three estimates

shown by solid lines. The dashed line shows the underlying signal.

706 S. Efromovich



6. Conclusion

I have shown that known adaptive procedures developed for Fourier series may be of interest

to wavelet series as well. In particular, changing a Fourier basis into a wavelet basis in the EP

estimator implies rate-optimal estimation of spatially inhomogeneous functions. Moreover, for

the case of reasonable sample sizes these estimators may compete with classical wavelet

estimators in terms of visual appeal, approximation and data compression.
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