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McKay, Conover and Beckman introduced Latin hypercube sampling (LHS) for reducing the variance

of Monte Carlo simulations. LHS is a method for stratifying a univariate margin. We consider an

extension of LHS to stratify an m-variate margin with orthogonal arrays, after Owen and Tang. We

de®ne extended Latin hypercube sampling of strength m (henceforth denoted by ELHS(m)), such that

ELHS(1) reduces to LHS. Using the results obtained by Owen, we ®rst derive an explicit formula for

the ®nite-sample variance of ELHS(m). Based on this formula, we give a suf®cient condition for

variance reduction by ELHS(m), generalizing similar results from McKay et al. for m � 1. Actually,

our suf®cient condition for m � 1 contains the suf®cient condition of McKay et al. and thus

strengthens their result.
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1. Introduction

Monte Carlo simulation is often used to evaluate the expectation of a statistic W �
g(X1, . . . , XK ), which is not analytically tractable. In most Monte Carlo simulations simple

random sampling (SRS) is used to generate sample points. SRS is widely applicable because

of its simplicity. However, its sampling variance is often large and many replications are

needed to achieve the desired precision. Therefore methods for reducing the sampling

variance of SRS are of great importance.

One way of reducing SRS variance is to scatter the sample points more uniformly than in

SRS. This is the basic idea of various techniques known as quasi-Monte Carlo methods (for

a review, see Niederreiter 1992). We can achieve uniformity by stratifying the sample space.

Latin hypercube sampling (LHS) is a method for stratifying each univariate margin

simultaneously. It is natural to de®ne extended Latin hypercube sampling ELHS(m) of

strength m, m < K, by stratifying an m-variate margin simultaneously, such that ELHS(1) is

equivalent to LHS. The desired strati®cation property can be achieved by sampling designs

based on orthogonal arrays (OAs) proposed by Owen (1992a) and independently by Tang

(1993). ELHS is a particular version of OA-based sampling.

The reduction of variance by LHS and ELHS is closely related to analysis of variance

(ANOVA) decomposition of the statistic W . Stein (1987) showed that LHS asymptotically
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®lters out main effects of W . Therefore LHS asymptotically achieves variance reduction for

any statistic W . Similarly, OA-based sampling asymptotically ®lters some higher-order

interactions as well, and hence asymptotically achieves further variance reduction for any

statistic. However, for the ®nite-sample case, LHS and its generalizations do not necessarily

lead to variance reduction due to combinatorial complications.

In order to investigate the reduction of ®nite-sample variance, we ®rst derive an explicit

expression for the ®nite-sample variance of ELHS(m) based on the results obtained by

Owen (1994a). Using this expression, we derive a suf®cient condition for the variance

reduction of ELHS(m) over SRS. Our suf®cient condition is given in terms of m-variate

monotonicity of the statistic g(X 1, . . . , X K ). For the case of m � 1, our suf®cient condition

requires that g is monotone in any K ÿ 1 out of K variables X 1, . . . , XK . The suf®cient

condition given by McKay et al. (1979) requires that g is monotone in each X i,

i � 1, . . . , K. Thus our result for m � 1 strengthens the results of McKay et al. (1979).

The organization of this paper is as follows. In Section 2 we de®ne ELHS(m) and

introduce appropriate notational conventions. In Section 3 we derive explicit expression for

the ®nite-sample variance of ELHS(m). Based on this expression, we give a suf®cient

condition for reduction of ®nite-sample variance of ELHS(m) over SRS in Section 4. In

Section 5 we perform some numerical simulations to con®rm our theoretical results. In

Section 6 we make some additional comments on LHS and OA-based sampling.

2. Construction of extended Latin hypercube sampling

In this section we explicitly describe our ELHS(m), which is a particular version of Owen's

generalization of LHS. We evaluate the expectation of a statistic W � g(X1, . . . , XK ):

ì � E(W ) � E[g(X 1, . . . , X K )],

where (X 1, . . . , X K ) 2 RK . We assume that X 1, . . . , X K are independent continuous random

variables with known distribution functions Fj, j � 1, . . . , K. The vector (X 1, . . . , X K) � X

has the joint distribution function F � F1 � � � FK .

Suppose that the evaluation of this expectation is analytically intractable and we use a

Monte Carlo method. In our extended Latin hypercube sampling de®ned below, the sample

points are generated in two steps. For the ®rst step, we partition the sample space RK into

NK cells of equal probability 1=NK and choose N m, m < K, cells of NK cells using a

random OA. For the second step the actual sample points are generated according to the

conditional distribution on the chosen cells.

We now describe the ®rst step. A ëN m 3 K matrix D, with elements taken from a set of

N symbols, is called an orthogonal array of strength m (m < K), size ëN m, K constraints,

N levels and frequency ë, if in any ëN m 3 m submatrix of D each of the possible 1 3 m

row vectors occurs the same number ë of times. Such an array is denoted by

OA(ëN m, K, N , m). Without essential loss of generality, we only consider the case ë � 1

as in the original LHS of McKay et al. (1979).

The orthogonal array is a natural generalization of orthogonal Latin squares. Plackett and

Burman (1946) generated OAs of strength 2 by combining mutually orthogonal Latin
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squares. Rao (1947) formulated the concept of OAs in general form and gave a lower bound

of N for ®xed m, K. Bose and Bush (1952) explained how to construct OAs and gave

suf®cient conditions for the existence of OAs, since they do not always exist.

We arbitrarily choose and ®x an orthogonal array OA(N m, K, N , m) and denote it by D.

The ijth element of D is denoted by dij. We call D a generator array. Actually we will

show that the selection of D does not affect the variance of ELHS(m). We generate random

OAs by random permutations of elements of D. For simplicity of notation, we take the set

of N symbols as

ZN � f1, 2, 3, . . . , Ng:
Let S N denote the symmetric group of ZN , that is, the set of permutations of f1, . . . , Ng.
Let ð 2 S N ; then (ð(1), . . . , ð(N )) is a particular permutation of (1, . . . , N ). We choose K

permutations ð j, j � 1, . . . , K, independently and uniformly from S N and we apply

ð j 2 S N to the jth column of D, j � 1, . . . , K. The resulting array is denoted by Ð(D), with

ijth element ð j(dij). This constitutes the ®rst step of generating the sample points.

Let Fÿ1
j (u) � inffxjFj(x) > ug, j � 1, . . . , K, be the quantile functions, and for z �

(z1, z2, . . . , zK ) 2 Z K
N let

P(z) � Fÿ1
1

z1 ÿ 1

N
,

z1

N

� �� �
3 � � � 3 Fÿ1

K

zK ÿ 1

N
,

zK

N

� �� �
� RK ,

which is a cell of RK with probability 1=N K. When ð j, j � 1, . . . , K, are given we denote

the ith row of Ð(D) by

zij � ð j(dij), zi � (zi1, zi2, . . . , ziK) 2 Z K
N :

For the second step we generate a random vector (X i1, . . . , XiK ) in the cell P(zi) according to

the conditional distribution of F on the cell. Let 0 , Uij < 1, i � 1, . . . , N m, j � 1, . . . , K,

be independent uniform random variables. Then X ij can be generated as

X ij � Fÿ1
j f(zij ÿ Uij)=Ng:

We now de®ne our estimator TEL of ì based on ELHS(m) by

TEL � 1

N m

XN m

i�1

g(X i1, . . . , X iK):

Obviously TEL is an unbiased estimator of ì.

Furthermore we denote the usual estimator of ì based on SRS by TR. We are interested

in the comparison of variances of TEL and TR.

3. Finite-sample variance of ELHS

3.1. ANOVA decomposition of the cell mean function

In order to investigate the variance of TEL, we introduce the cell mean function and its

ANOVA decomposition. The cell P(z) is indexed by z � (z1, z2, . . . , zK ) 2 Z K
N. In an abuse of
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notation, we simply denote the cell as z � (z1, z2, . . . , zK) 2 Z K
N . Suppose that a sample

point X is obtained from a cell z. We call the conditional expectation E[g(X)jz] the cell mean

function and denote it by

ìz � E[g(X)jz] � NK

�
P(z)

g(X) f (X) dX,

where f (X) is the density function of X.

We denote the usual ANOVA decomposition of the cell mean function by

ìz1 z2:::zK
ÿ ì

�
XK

i�1

á1(zi)�
X

i1 , i2

á2(zi1 , zi2 )�
X

i1 , i2 , i3

á3(zi1 , zi2 , zi3 ) � . . . � áK (zi1 , . . . , zi K
),

where

á1(zi) � 1

N Kÿ1

XN

z1�1

� � �
XN

ziÿ1�1

XN

zi�1�1

� � �
XN

zK�1

(ìz1 z2:::zK
ÿ ì),

á2(zi1 , zi2 ) � 1

N Kÿ2

XK

j�1
j6�i1,i2

XN

z j�1

(ìz1 z2:::zK
ÿ ìÿ á1(zi1 )ÿ á1(zi2 )),

and we continue this process to áK . In each ás(zi1 , . . . , zis ), (z1, . . . , zK ) is to be summed

over all K-vectors in Z K
N with the values of zi1 , . . . , zis ®xed and all other coordinates free.

Summation over zi is always taken from 1 to N , and we henceforth omit the range

1 < zi < N from the summation signs.

We denote the sum of squares of sth-order interaction effects by

j2
s �

1

N s

X
i1 , :::, is

X
zi1

� � �
X

zis

ás(zi1 , . . . , zis )
2:

Then var(TR) can be written as

var(TR) � 1

N m
fvar(ìz)� Ez[var(g(X)jz)]g

� 1

N m

XK

s�1

j2
s � =, (1)

where

= � 1

N m
Ez[var(g(X)jz)]

(see Ser¯ing 1980, Section 5.2).
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3.2. The variance of estimators using ELHS

For any N m 3 s subarray A � faijg, i � 1, . . . , N m, j � 1, . . . , s, of the generator array D,

de®ne

L(s, h) �
XN m

i�1

XN m

l�1

I
Xs

j�1

I(aij � alj) � h

 !
, 0 < h < s,

where I is an indicator function. We can interpret L(s, h) as the number of pairs of rows of A

with exactly h common elements. By symmetry among the columns of D, L(s, h) is common

to all N m 3 s subarrays A. Theorem 1 of Owen (1994a) implies that

var(TEL) � 1

N2m

XK

s�m�1

Xs

h�0

L(s, h)(1ÿ N )hÿsj2
s � =: (2)

Owen (1994a) does not give an explicit form for L(s, h). We obtain an explicit form of

L(s, h), which leads to Theorem 1 below. We have given an alternative proof of (3) in the

preprint form of this paper (Hoshino and Takemura 1997) available from us.

Theorem 1.

var(TEL) � 1

N m

XK

s�m�1

j2
s 1ÿ (1ÿ N )1ÿs

Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �( )
� =: (3)

Note that in (3) interaction effects up to order m, that is, j2
s , s � 1, . . . , m, are cancelled out.

This has to be the case for ELHS(m). In ELHS(m) we stratify an m-variate margin, such that

for s < m all elements of Zs
N appear an equal number of times in each combination of s

axes. In view of
P

zi1
� � �Pzis

ás(zi1 , . . . , zis ) � 0, interaction effects of the cell mean

function up to order m vanish for each realization of TEL. Expression (3) may also be written

as

var(TEL) � 1

N m

XK

s�m�1

j2
s (1ÿ Nÿ1)1ÿs

Xsÿmÿ1

u�0

sÿ 1

u

� �
(ÿN )ÿu

( )
� =,

using the fact that 1 � (1ÿ N )1ÿs
Psÿ1

u�0(ÿN )u(sÿ1
u ). This expression was suggested to us by a

referee.

Theorem 1 is an immediate consequence of the following two lemmas, whose proofs are

given in Appendix A.

Lemma 1. Let m , s < K. For 0 < h < mÿ 1,

L(s, h) � s

h

� � Xmÿhÿ1

t�0

(ÿ1) t(N mÿhÿ t ÿ 1)
sÿ h

t

� �
N m: (4)

L(s, h) � 0 for m < h < sÿ 1, and L(s, s) � N m.
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Combining Lemma 1 and (2),

var(TEL) � 1

N m

X
s . m

Xmÿ1

h�0

(1ÿ N )hÿs s

h

� � Xmÿhÿ1

t�0

(ÿ1) t(N mÿhÿ t ÿ 1)
sÿ h

t

� �
� 1

 !
j2

s : (5)

The coef®cients of j2
s in (5) can be simpli®ed as follows.

Lemma 2. For m , s < K,Xmÿ1

h�0

(1ÿ N )hÿs s

h

� � Xmÿhÿ1

t�0

(ÿ1) t(N mÿhÿ t ÿ 1)
sÿ h

t

� �
� 1

� 1ÿ (1ÿ N )1ÿs
Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �
: (6)

4. A suf®cient condition for variance reduction

In this section we obtain a suf®cient condition for the variance reduction var(TEL) < var(TR).

McKay et al. (1979) showed that monotonicity of g(X 1, . . . , X K ) in each argument Xi,

i � 1, . . . , K, is a suf®cient condition for the variance reduction at m � 1. Here g(X) is

monotone in X i if g(X), regarded as a function of the ith argument (with all other arguments

arbitrarily held ®xed), is monotone in the usual sense. The direction of the monotonicity

(increasing or decreasing) must not depend on the values of the other arguments. Their proof

of the variance reduction depends on the results of Lehmann (1966). Our proof is completely

different and we use the monotonicity in a different way. In the following, we clarify their

condition and generalize the condition to m . 1.

First, let us introduce the difference operator Äxi,x9i, de®ned by the formula

Äxi,x9i g(X) � g(X 1, . . . , X iÿ1, xi, X i�1, . . . , X K)ÿ g(X1, . . . , X iÿ1, x9i, X i�1, . . . , X K):

Then

Äx1,x91Äx2,x92 � � � Äxt ,x9t g(X) (7)

corresponds to the mixed partial derivative with respect to X1, . . . , Xt. We make the

following de®nitions. Monotonicity of g(X) in (X1, . . . , Xt) holds if the sign of (7) remains

the same, when (7) is regarded as a function of the t arguments with all other arguments

arbitrarily held ®xed. Also tth-order monotonicity of g(X) in X1 holds if g(X) is monotone

in (X 1, X i2 , . . . , Xit ) for all (Kÿ1
tÿ1 ) combinations (1, i2, . . . , it), 1 , i2 , . . . , it < K. The

monotonicity in other arguments is similarly de®ned. Our generalized monotonicity implies

that for differentiable functions the sign of the partial mixed derivative remains the same

regardless of the values of the variables.

Now we state our main theorem.

Theorem 2. If tth-order monotonicity holds in K ÿ t arguments of g(X 1, . . . , X K ) for all t

such that 1 < t < m, then var(TEL) < var(TR).

1040 N. Hoshino and A. Takemura



We denote TEL under LHS, that is, m � 1, simply by TL.

Corollary 1. If g(X 1, . . . , X K) is monotone in K ÿ 1 arguments, then var(TL) < var(TR).

The suf®cient condition given by McKay et al. (1979) for LHS requires that g be

monotone in all K arguments for variance reduction. Actually K ÿ 1 monotonicities are

suf®cient.

Since (3) can alternatively be written as

var(TEL) � 1

N m

XK

s�1

j2
s 1ÿ (1ÿ N )1ÿs

Xmÿ1

u�0

(ÿN )u
sÿ 1

u

� �( )
� =

� var(TR)� 1

N m

XK

s�1

j2
s ÿ(1ÿ N )1ÿs

Xmÿ1

u�0

(ÿN )u
sÿ 1

u

� �( )
, (8)

the variance reduction holds if and only ifXK

s�1

j2
s (ÿ1)s(N ÿ 1)1ÿs

Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �( )
< 0: (9)

We rewrite (9) as Xmÿ1

u�0

N u
XK

s�1�u

j2
s(ÿ1)s�u(N ÿ 1)1ÿs sÿ 1

u

� �
< 0: (10)

Our objective is to obtain a suf®cient condition for (10). If, for 0 < u < mÿ 1,XK

s�1�u

j2
s(ÿ1)s�u(N ÿ 1)1ÿs sÿ 1

u

� �
< 0, (11)

then (10) holds. Let t � 1� u. In Appendix B, we show that t th-order monotonicity in K ÿ t

axes is a suf®cient condition for (11).

The monotonicity condition of Theorem 2 may be dif®cult to check in practice. If we can

assume that higher-order interaction effects are small, then variance reduction holds without

the full monotonicity condition of Theorem 2. For example, assume that j2
1 > j2

i holds for

all i. Then var(TL) < var(TR) for N > 3 by

j2
1 > j2

1

N ÿ 1

(N ÿ 1)2 ÿ 1
� j2

1

X1
i�0

(N ÿ 1)ÿ2iÿ1 >
XK

s�2

j2
s(ÿ1)s(N ÿ 1)1ÿs:

Hence LHS gives the variance reduction in quite a number of situations. Similarly, if we

assume that j2
2 > j2

i for i > 2, then (11) holds for N > 4 with u � 1 by

j2
2

N ÿ 1
> j2

2

2(N ÿ 1)2

(N2 ÿ 2N )2
� j2

2

X1
i�0

2� 2i

(N ÿ 1)2i�2
>
XK

s�3

j2
s(ÿ1)s�1(N ÿ 1)1ÿs sÿ 1

1

� �
:
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We summarize these simple suf®cient conditions for variance reduction in the following

proposition.

Proposition 1. If j2
1 > j2

i for all i, then the variance reduction of LHS holds for N > 3. If

j2
1 > j2

2 > j2
i for i > 2, then the variance reduction of ELHS(2) holds for N > 4.

5. Some simulation results

In this section we con®rm our theoretical results by simulation. We choose a rather simple

situation where the exact variance of ELHS(m) can be computed. Note that this is not a

realistic situation in which simulations are actually used.

Let K � 4, and consider

W � exp(X1 � X2 � X 3 � X 4), (12)

where Xi, i � 1, . . . , 4, are independently and identically distributed as U [0, 1]. In this

example all mixed derivatives are positive and hence monotonicities of all orders hold.

We obtained the simulation variance with 1 000 000 replications for each TR, TL and TEL

of m � 2. The sample size was 25. Thus N � 25 for LHS and N � 5 for ELHS(2). The

simulated sampling distributions of SRS, LHS and ELHS(2) are plotted in Figure 1. We see

Figure 1. Simulated distributions of TR, TL and TEL (Section 5).
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that TEL is much more concentrated around the true value ì. The numerical results of our

simulation are summarized in Table 1. Observe that the true values and the simulated values

in Table 1 are in close agreement, and this con®rms our theoretical results.

In this example j2
1 � 23:825 679, j2

2 � 2:801 345, j2
3 � 0:146 388, j2

4 � 0:002 869 for

ELHS(2) with N � 5. For LHS with N � 25, j2
1 � 24:873 724, j2

2 � 3:053 217, j2
3 �

0:166 568, j2
4 � 0:003 408 and these are different from those for ELHS(2) with N � 5. Our

choice of m � 2 seems to be appropriate in this example.

6. Further discussion

It is desirable to compare ELHS(m) schemes for different m under the same sample size. In

the example (12) of the preceding section, ELHS(2) dominates ELHS(1). However, general

monotone variance reduction in m might not hold for small sample size. The dif®culty lies in

the fact that jss depend on N and signs in the summation of (3) are alternating. For large

sample size js becomes stable with respect to N , but the monotone variance reduction in m

obviously holds asymptotically.

The method of mapping zij into X ij is a controversial point. Although it produces bias,

we can make = � 0 by choosing xij deterministically given zij. Hence one needs to consider

the trade-off between bias and variance. Owen (1992a) discusses the midpoint rule and

rectangular rule, and Tang (1993) introduces a Latin hypercube structure to the cells, that is,

the sample points in the given cells are generated by using a method like LHS. Under this

strati®cation, = is reduced when W is additive.

To achieve speci®c objectives some authors impose restrictions on the Latin hypercube

design. Handcock (1991) proposed a `cascading' Latin hypercube design. Sample points

were obtained by using modi®ed LHS with midpoint rule, and a few points from the same

cells are added with LHS. In the literature of experimental design, optimality of permuted

generator arrays is discussed. Uniformity of the sample points is improved by restricting

permutations. Tang (1994) introduced a criterion for comparing design arrays. Shaw (1988)

reviewed the criteria of uniformity.

Table 1. Simulation results (1 000 000 replications)

SRS LHS ELHS(2)

True E[W ] 8.717 212 8.717 212 8.717 212

Sample mean 8.716 336 8.716 541 8.717 124

True variance of ìz ± 0.134 005 0.009 239

True = ± 0.002 221 0.055 047

True variance of T 1.126 098 0.136 226 0.064 286

Sample variance of T 1.123 594 0.136 028 0.064 175

Minimum T 4.991 916 7.612 060 7.613 056

Maximum T 15.304 256 10.909 609 10.060 986
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In our assumption, each axis is independently distributed. Iman and Conover (1982)

treated dependency in LHS, and Owen (1994b) proposed another algorithm for controlling

correlations. Stein (1987) discussed the central limit theorem for LHS and Owen (1992b)

gave a proof of the central limit theorem using the method of moments. Loh (1996)

established a Berry±Esseen-type bound for LHS. It is natural to expect that the central limit

theorem holds for TEL under appropriate regularity conditions (see Figure 1).

Appendix A. Proofs of lemmas in Section 3

Proof of Lemma 1. We ®rst show that L(s, h) � 0 for m < h < sÿ 1 , K. Note that any

N m 3 s submatrix of OA(N m, K, N , m) becomes OA(N m, s, N , m). In an orthogonal array

OA(N m, s, N , m), the rows of each N m 3 m submatrix are all distinct. This implies that two

rows of OA(N m, s, N , m) can only have less than m elements in common. Therefore

L(s, h) � 0 for m < h < sÿ 1, and L(s, s) � N m.

Now let h , m. We consider a particular OA(N m, s, N , m), say A, whose ®rst row is

assumed for the moment to be y � (1, 1, . . . , 1). With the remaining N m ÿ 1 rows of A,

we want to know the number of rows that have just h axes indexed as 1. There are

N mÿh ÿ 1 rows z of A such that z1 � z2 � � � � � zh � 1. Using an inclusion±exclusion

formula, we can count the number of rows that satisfy z1 � � � � � zh � 1, zh�1 6� 1,

. . . , zK 6� 1 among these. Note that the ®rst row (1, 1, . . . , 1) has to be subtracted from the

count. Therefore the number is

Xmÿhÿ1

t�0

(ÿ1) t(N mÿhÿ t ÿ 1)
sÿ h

t

� �
: (13)

This times (s
h) yields the total number of rows that have just h axes indexed as 1.

Note that the above argument does not depend on the assumption y � (1, 1, . . . , 1).

Therefore, multiplying (13) by N m(s
h), we obtain the lemma. h

The following identity is easily shown by induction on c > 0:

Xc

b�0

(ÿ1)b a

b

� �
� (ÿ1)c aÿ 1

c

� �
: (14)

Now we need the following lemma to prove Lemma 2.

Lemma 3. For 0 < l , mÿ q, q > 1, s > m,

Xmÿq

h� l

(ÿ1)mÿhÿq sÿ hÿ 1

mÿ hÿ q

� �
sÿ l

hÿ l

� �
� 1:
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Proof. Note that sÿ l > 0, sÿ m� q > 0. Consider the series expansion of

(1� x)sÿ l

(1� x)sÿm�q
� (1� x)mÿqÿ l:

We obtain the lemma by comparing the coef®cients of x mÿqÿ l. h

Proof of Lemma 2. The left-hand side of (6) equals

1ÿ (1ÿ N )1ÿs
Xmÿ1

h�0

(1ÿ N )h s

h

� � Xmÿhÿ1

t�0

(ÿ1) t N mÿhÿ t ÿ 1

N ÿ 1

sÿ h

t

� �
:

Thus we need to show thatXmÿ1

h�0

(1ÿ N )h s

h

� � Xmÿhÿ1

t�0

(ÿ1) t N mÿhÿ t ÿ 1

N ÿ 1

sÿ h

t

� �
�
Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �
: (15)

The left-hand side of (15) reduces toXmÿ1

h�0

(1ÿ N )h
s

h

� � Xmÿhÿ1

t�0

(ÿ1) t
Xmÿhÿ tÿ1

j�0

N j
sÿ h

t

� �

�
Xmÿ1

h�0

Xh

u�0

h

u

� �
(ÿN )u

s

h

� � Xmÿhÿ1

j�0

N j(ÿ1)mÿhÿ1ÿ j
sÿ hÿ 1

mÿ hÿ 1ÿ j

� �
(16)

by (14). Furthermore, (16) equalsXmÿ1

h�0

Xh

l�0

(ÿN ) l
s

l

� �
sÿ l

hÿ l

� � Xmÿhÿ1

j�0

N j(ÿ1)mÿhÿ1ÿ j
sÿ hÿ 1

mÿ hÿ 1ÿ j

� �

�
Xmÿ1

u�0

Xu

l�0

Xmÿq

h� l

s

l

� �
sÿ l

hÿ l

� �
sÿ hÿ 1

mÿ hÿ q

� �
(ÿ1)mÿhÿq(ÿ1) l N u, (17)

where q � 1� uÿ l. Using Lemma 3, (17) equalsXmÿ1

u�0

Xu

l�0

s

l

� �
(ÿ1) l N u �

Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �
by (14). This is the right-hand side of (15). h

Appendix B. Proofs of results required for section 4

It is straightforward to show that

var(TEL) � var(TR)� N m ÿ 1

N m
cov(ìy, ìz),
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where cov(ìy, ìz) � E[(ìy ÿ ì)(ìz ÿ ì)] is the covariance of two cell mean functions under

the cell selection. Comparing this with (8), we have

(N m ÿ 1)cov(ìy, ìz) �
XK

s�1

j2
s (ÿ1)s(N ÿ 1)1ÿs

Xmÿ1

u�0

(ÿN )u sÿ 1

u

� �( )
:

We are interested in a suf®cient condition for this covariance term to be non-positive:

(N m ÿ 1)cov(ìy, ìz) < 0.

Here we prefer to examine the case m � 1 ®rst and generalizing the result to m . 1 later.

B.1. LHS

For the case m � 1, we can rewrite (N ÿ 1)cov(ìy, ìz) to be non-positive as

0 >ÿ
XK

i�1

X
zi

á1(zi)
2 Nÿ1(N ÿ 1)0 �

X
i1 , i2

X
zi1

X
zi2

á2(zi1 , zi2 )2 Nÿ2(N ÿ 1)ÿ1

ÿ
X

i1 , i2 , i3

X
zi1

X
zi2

X
zi3

á3(zi1 , zi2 , zi3 )2 Nÿ3(N ÿ 1)ÿ2

� . . . � (ÿ1)K
X

z1

� � �
X

zK

áK (z1, . . . , zK )2 NÿK (N ÿ 1)1ÿK :

Lemma 4. If ìz is monotone in z1, then

0 <
X

z1

á1(z1)2 Nÿ1(N ÿ 1)0(ÿ1)0 �
X
1 , i

X
z1

X
zi

á2(z1, zi)
2 Nÿ2(N ÿ 1)ÿ1(ÿ1)1

�
X

1 , i1 , i2

X
z1

X
zi1

X
zi2

á3(z1, zi1 , zi2 )2 Nÿ3(N ÿ 1)ÿ2(ÿ1)2

� . . . �
X

z1

� � �
X

zK

áK(z1, . . . , zK )2 NÿK(N ÿ 1)1ÿK(ÿ1)Kÿ1:

Proof. By the monotonicity in z1,

(ìz1 z2:::zK
ÿ ì91 z2:::z K

)(ìz1 y2::: yK
ÿ ì91 y2::: yK

) > 0, 8z1, z91, z2, . . . , zK , y2 6� z2, . . . , yK 6� zK :

ThereforeX
z1

X
z91

X
z2

� � �
X

zK

X
y2 6�z2

� � �
X

yK 6�zK

(ìz1 z2:::zK
ÿ ìz91 z2:::zK

)(ìz1 y2::: yK
ÿ ìz91 y2::: yK

) > 0: (18)

For 2 < t < s,
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X
yt 6�zt

(ás(z1, y2, . . . , ys)ÿ ás(z91, y2, . . . , ys))

� (ÿ1)(ás(z1, y2, . . . , zt, . . . , ys)ÿ ás(z91, y2, . . . , zt, . . . , ys)):

Further, X
z1

X
z91

(ás(z1, . . .)ÿ ás(z91, . . .))2 � 2N
X

z1

(ás(z1, . . .))2:

Using these facts, (18) divided by 2N is

0 < N Kÿ1(N ÿ 1)Kÿ1
X

z1

á1(z1)2 � N Kÿ2(N ÿ 1)Kÿ2
X

2<i<K

X
z1

X
zi

á2(z1, zi)
2(ÿ1)

� N Kÿ3(N ÿ 1)Kÿ3
X

2<i1 , i2<K

X
z1

X
zi1

X
zi2

á3(z1, zi1 , zi2 )2(ÿ1)2

� . . . � N 0(N ÿ 1)0
X

z1

� � �
X

zK

áK (z1, . . . , zK )2(ÿ1)Kÿ1: (19)

Multiplying by NÿK (N ÿ 1)1ÿK proves the lemma. h

By Lemma 4, under the monotonicity of ìz in z1, our new suf®cient condition for the

variance reduction of LHS is given by

0 <
X
1 , i

X
zi

á1(zi)
2 . Nÿ1(N ÿ 1)0(ÿ1)0 �

X
1 , i1 , i2

X
zi1

X
zi2

á2(zi1 , zi2 )2 . Nÿ2(N ÿ 1)ÿ1(ÿ1)1

�
X

1 , i1 , i2 , i3

X
zi1

X
zi2

X
zi3

á3(zi1 , zi2 , zi3 )2 . Nÿ3(N ÿ 1)ÿ2(ÿ1)2

� . . . �
X

z2

� � �
X

z K

áKÿ1(z2, . . . , zK )2 . N 1ÿK (N ÿ 1)2ÿK (ÿ1)Kÿ2: (20)

Note that ÿ1 times the right-hand side of this inequality corresponds to the covariance of

partially averaged cell mean function:

ì.z2 z3:::zK
� 1

N

XN

z1�1

ìz1 z2:::zK
,

which can be regarded as a function with K ÿ 1 arguments. In fact (20) is equivalent to

cov(ì.z2:::zK
, ì. y2::: yK

) < 0 under LHS.

Therefore by assuming the monotonicity in any one axis, we have reduced our problem

from K arguments to K ÿ 1 arguments. Employing the monotonicity in z2, we can further

reduce the number of arguments. To complete this inductive argument we need the

following initial condition.
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Lemma 5. Let m � 1, K � 2. Then monotonicity in one axis implies

cov(ìz, ìy) < 0:

Proof.

(N ÿ 1)cov(ìz, ìy) � ÿNÿ1
X

z1

á1(z1)2 �
X

z2

á1(z2)2

8<:
9=;� Nÿ2(N ÿ 1)ÿ1

X
z1

X
z2

á2(z1, z2)2:

As in (19) the monotonicity in z1 implies

0 > ÿNÿ1
X

z1

á1(z1)2

8<:
9=;� Nÿ2(N ÿ 1)ÿ1

X
z1

X
z2

á2(z1, z2)2:

Now the lemma follows from
P

z2
á1(z2)2 > 0. h

Summarizing the above arguments we have established the following Proposition.

Proposition 2. If the cell mean function ìz is monotone in any K ÿ 1 of the K axes, then

var(TL) < var(TR).

Since the ranges of Fÿ1
i (((zi ÿ 1)=N , zi=N ]), i � 1, . . . , K, are monotone in zi's, if g is

monotone in the i-th axis then the cell mean function is also monotone in the i-th axis.

Hence Corollary 1 holds as a consequence of Proposition 2.

B.2. ELHS

For general m we establish the proposition below.

Proposition 3. Suppose that for all 1 < t < m, tth-order monotonicities of ìz concerning

K ÿ t axes hold, then var(TEL) < var(TR).

Proof. In view of (11) the variance reduction holds if

ct � (ÿ1) tÿ1
XK

s� t

j2
s(ÿ1)s(N ÿ 1)1ÿs sÿ 1

t ÿ 1

� �
< 0

for 1 < t < m. We claim that t th-order monotonicity in any K ÿ t axes implies ct < 0. The

monotonicity in (z1, z2, . . . , zt) implies

(Äz1,z91 . . . Äzt ,z9tìz)(Äz1,z91 . . . Äzt ,z9t ìy) > 0,

for all z, z91, . . . , z9t, yt�1, . . . , yK . Summing these as in Lemma 4 yields
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0 <
X

z1

X
z2

� � �
X

zt

á t(z1, z2, . . . , zt)
2(N (N ÿ 1))ÿ1

ÿ
X
t , i

X
z1

� � �
X

zt

X
zi

á t�1(z1, . . . , zt, zi)
2(N (N ÿ 1))ÿ2

�
X

t , i1 , i2

X
z1

� � �
X

zt

X
zi1

X
zi2

á t�2(z1, . . . , zt, zi1 , zi2 )2(N (N ÿ 1))ÿ3

� . . . � (ÿ1)Kÿ t
X

z1

� � �
X

zK

áK (z1, . . . , zK)2(N (N ÿ 1))ÿ(Kÿ t�1):

In order to use induction on z1, we utilize (Kÿ1
tÿ1 ) monotonicities concerning z1. By symmetry and

K ÿ 1

t ÿ 1

� �
K ÿ t

sÿ t

� �
K ÿ 1

sÿ 1

� � � sÿ 1

t ÿ 1

� �
,

t th-order of the monotonicity in z1 implies

0 <
X

1 , i1 , :::, i tÿ1

X
z1

X
zi1

� � �
X
zi tÿ1

á t(z1, zi1 , . . . , zi tÿ1
)2(N (N ÿ 1))ÿ1 t ÿ 1

t ÿ 1

� �

ÿ
X

1 , i1 , :::, it

X
z1

X
zi1

� � �
X

zit

á t�1(z1, zi1 , . . . , zit )
2(N (N ÿ 1))ÿ2 t

t ÿ 1

� �

�
X

1 , i1 , :::, i t�1

X
z1

X
zi1

� � �
X
zi t�1

á t�2(z1, zi1 , . . . , zi t�1
)2(N (N ÿ 1))ÿ3 t � 1

t ÿ 1

� �

� . . . � (ÿ1)Kÿ t
X

z1

� � �
X

z K

áK (z1, . . . , zK)2(N (N ÿ 1))ÿ(Kÿ t�1) K ÿ 1

t ÿ 1

� �
:

We see that the monotonicity leads to the reduction of one argument by N tÿ1(N ÿ 1) tÿ2 > 0.

By induction K ÿ (t � 1) t th-order monotonicities lead to the initial condition

0 <
X

i1 , :::, it

X
zi1

� � �
X

zit

á t(zi1 , . . . , zit )
2(N (N ÿ 1))ÿ1 t ÿ 1

t ÿ 1

� �

ÿ
X

z1

� � �
X
z t�1

á t�1(z1, . . . , zt�1)2(N (N ÿ 1))ÿ2 t

t ÿ 1

� �
,

which is implied by t th-order monotonicity in z1. This proves the proposition. h

Then, as in Corollary 1, Theorem 2 is an immediate consequence of Proposition 3.
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