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In this paper, we study the problem of nonparametric adaptive estimation of the spectral density f of
a stationary Gaussian sequence. For this purpose, we consider a collection of finite-dimensional linear
spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on possibly irregular grids or
spaces of trigonometric polynomials). We estimate the spectral density by a projection estimator based
on the periodogram and constructed on a data-driven choice of linear space from the collection. This
data-driven choice is made via the minimization of a penalized projection contrast. The penalty
function depends on |||, but we give results including the estimation of this bound. Moreover, we
give extensions to the case of unbounded spectral densities (long-memory processes). In all cases, we
state non-asymptotic risk bounds in L,-norm for our estimator, and we show that it is adaptive in the
minimax sense over a large class of Besov balls.
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1. Introduction

In this paper, we consider the problem of estimating the spectral density f of a stationary
Gaussian sequence. We develop an adaptive nonparametric method that automatically selects
an estimator f » from a collection of estimators f n for varying index m. These estimators are
constructed as projection estimators based on integrals of the periodogram. The index m
denotes the linear functional subspace of L,([—m, t]) on which the estimator is computed.
Our method is very flexible and allows us to look for piecewise estimators associated with
possibly irregular partitions of the interval [—m, ;t]. This is of particular interest for the
recognition of peaks, which is often an important goal of spectral analysis. This explains why
an appropriate method needs to be adaptive with respect to a possibly varying degree of
smoothness of the function to be estimated.

We measure the performance of our estimator via the Lj-integrated risk and we give
non-asymptotic risk bounds. We show that, without any prior knowledge of f, our estimate
automatically reaches the minimax optimal rate on Besov balls.

We use a method of model selection inspired by Birgé and Massart (1997; 1998) and
Barron et al. (1999), who studied several types of contrast and estimate in various contexts,
but under assumptions of linearity or independence which are not valid here.

The problem of estimating the spectral density of a stationary (Gaussian) sequence has a
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very rich history, of which it is beyond the scope of this paper to give an exhaustive
presentation. Let us just mention that it was first studied mainly in a parametric framework:
see, for example, the seminal paper by Whittle (1953), or the book by Hannan (1970), as
well as the methods developped by Davies (1973). Minimum contrast estimation for spectral
densities has also been explored in a parametric setting by Taniguchi in several papers (see,
for example, Taniguchi 1987). A new wave of studies were published more recently (Fox
and Taqqu 1986; Dahlhaus 1989) due to the development of fractional (long-memory)
models in which the standard assumptions of boundedness from above and below of the
spectral density are not fulfilled.

In the nonparametric framework, Bentkus and Rudzkis (1976) proved large-deviation
results for a projection spectral estimate based on a tapered periodogram. Bentkus (1985)
computed optimal rates of convergence of spectral estimates in some spaces of dif-
ferentiable functions. In both cases, the variables are Gaussian but the rates of conver-
gence are asymptotic and the methods are not adaptive: this means that the definition of
their estimator requires a priori knowledge of the smoothness of the function f. Golubev
(1993) builds a tapered estimate fn(a)) = k‘gnhk'ykeiwk and proposes an adaptive
procedure with respect to the choice of the weights 4j;. His estimate is asymptotically
minimax on some families of neighbourhoods of the true spectral density, under
assumptions on f which are a little stronger than ours and for well-chosen families of
weights among which the best is selected. Finally, Neumann (1996) considers a tapered
wavelet projection estimator in a non-Gaussian framework. His conditions on f are given
mainly in terms of the cumulants of the sequence. He uses first a fixed (unknown) and then
a random thresholding method inspired by Donoho and Johnstone (1994; 1998). He reaches
the optimal rates of convergence on standard Besov spaces with the fixed threshold. But the
minimax rate is obtained up to a power of In(n) with the random threshold. The adaptive
method we develop here does not include this In(z) factor. Again, in contrast to Neumann
(1996), we give non-asymptotic results.

Note that Birgé and Massart (1997) have shown that wavelet thresholding can be
obtained as a particular case of a model selection method similar to the one described here.
It is also worth mentioning that we recover the adaptive result found by Efromovich (1998),
who presents an adaptive method in the particular case of linear processes estimated with
trigonometric bases. Most recently, an adaptive method selecting the optimal degree of a
Fourier expansion has been developed by Soulier (1999): his method is based on log-
periodogram regression in a semiparametric framework allowing long-memory cases to be
dealt with.

The paper is organized as follows. Section 2 presents the model, the estimator, the
collections of models and the assumptions under which we work. Section 3 gives the results
obtained for our penalized minimum constrast estimator: we provide a uniform and non-
asymptotic bound for the L,-risk of our estimator. We work under the assumption of
boundedness from above of the spectral density f, and we consider very general collections
of models. But we find a || f]|2, multiplicative factor in the penalty function which must be
used to implement the method. Therefore, we give an extension of our first theorem
showing that we can preserve our result by replacing the ||/ Hic factor in the penalty by an
estimate. Moreover, we show how the bounds provided in our first two theorems lead to
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asymptotic minimax rates of convergence of our estimate on Besov spaces: the adaptivity
lies in the fact that no prior knowledge on the smoothness of f is required to reach the
right rate. In Section 4, we present a robustness result proving that our fundamental
inequality also holds when the spectral density is not bounded (long-memory case) in the
case of trigonometric bases. Note that in any case, and contrary to a great deal of other
work on the subject, we do not require the spectral density to be bounded away from 0.
Finally, in Section 5 we give some simulation results that allow our method to be compared
with Neumann’s (1996) wavelets and kernel methods. Section 6 and the Appendix gather
together the proofs of all our results.

2. The framework

2.1. The model
Throughout the following, we consider X;s satisfying the following assumption:

Assumption 1. The sequence (X, ..., X,) is an n-sample drawn from a stationary sequence
of Gaussian random variables.

Let f be the spectral density of the process:

1 .
f@)=5-> ye?,  wel-mal,
T keZ

where vy = cov(Xy, Xiix), t € Z. We need the following standard assumption on f:

Assumption 2. The autocovariance function is such that Y ez |yi| = M <+oco and
> kez |kV%(| = M; <+oo.

This condition is similar to the one given by Golubev (1993) for his set 2 except that he
requires f to be separated from 0.

Assumption 2 implies in particular that the spectral density f is bounded by the constant
M. As a consequence, it is also square-integrable. Nevertheless the boundedness of f is not
necessary for square integrability, as illustrated by the fractional examples below. Moreover,
Assumption 2 implies the following bound on the bias, which is proved in the Appendix:

Proposition 1. Let X be a stationary sequence satisfying Assumption 2. Then

M +39M> M,
2nn o

| v ety = (n

Remark 2.1. Assumption 2 does not require the spectral density to be bounded away from
zero. Thus fractional models with intermediate memory are allowed. For instance, consider
the process X, defined by (1 — B)*P(B)X;= Q(B)e,, where ¢, are independent and
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identically distributed (i.i.d.) variables with mean 0 and variance o2, « is a real number in
1- %, %[, B is the backward operator (BX; = X,_;) and P and Q are polynomials with roots
outside the unit circle. Then X admits the following spectral density f:

o (. (w\) 0E”)? 2
=5 ((5)) ez

where C is a constant (see, for instance, Brockwell and Davis 1991, Section 13.2, p. 520).
Consequently, for negative a, the spectral density is zero when w = 0. Moreover, the
autocovariance function y; is equivalent when k — +o0o to C'k**~!, where C’ is a constant.
This implies that Assumption 2 is satisfied for o <0.

2.2. The collections of models

We begin the presentation of the collections of models with some examples. We describe five
specific families of models (S,,)me ~, Which are suitable for estimating a spectral density f
in Lo([—m, «t], dx). These fall into three categories: trigonometric polynomials, wavelets and
piecewise polynomials.

(T) Trigonometric polynomials. We consider spaces S, generated by the functions
@i(x) = a2 cos(jx), for j=0, ..., d, where D,, = d + 1 is thus the dimension of
Su. In other words, any function # in S, can be written #(x) = Zf:”bfla ;cos(jix) for
some real numbers a;, j =0, ..., D, — 1. Such a space S, is thus entirely defined
by its dimension D,,. The family of models .7#, is in that case the set of all
possible dimensions: .7, = {1, ..., n}.

(P) Regular piecewise polynomials. We consider the dyadic partitions of [0, ] given by
T =A{lmj2™, n(j+1)/2™), j=0,...,2™ — 1}. Given some positive integer 7,
we define §,, as the space of piecewise polynomials with degree bounded by » — 1
on the partition .7, and defined on [—m, 0] by #(—x) = #(x). Here D,, = r2™. This
family is regular in the sense that the partition .7, has equispaced knots. Another reg-
ular family is obtained by considering general regular partitions .7, = {[mj/m,
a(j+ 1)/m), j=0, ..., m—1}, D, = rm.

(GP) General piecewice polynomials (of degree less than r —1). The spaces are
generated by polynomials of degree no greater than » — 1 on each subinterval of
the grid whose knots are now all possible subsets of cardinality m — 1 of {mj/n,
j=L1L...,n—1}, D, =rm<n.

(W) Regular compactly supported periodic wavelets. An orthonormal basis of the
L, space of 2m periodic functions on [—m, ;t] is given (see Daubechies 1992,

Section 9.3) by {@; } (1—( .k keA(j),jeNy = 1P Lk reay U LWk} j=1ken(j)» Where A(j) =

{1, ..., 2/} and
@ (x)*LZQZ; X (x)fLZ PP
Lk —\/2—3”62 Lk 5 ) Yik _‘/ﬁnezwl’k o )

where @ 4(x) = 2/2¢;,(2"x — k) and ;4(x) = 2//%¢; x(2/x — k) are such that ¢
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and vy are compactly supported and {¢;;} keny U{¥x}j=1keny forms an
orthonormal basis of L,(R), denoted by (¢,);. Then S,, is the space generated by
the ¢; for A€ {(j, k),0=<j<J, k€ A(j)} which has dimension D, =
S2f =271 —1 for J=0,...,J, where 2/ —1<n, ie. J,= [In(n)/
In(2)] + 1 ([.] denotes the integer part). The basis is used on [0, 7] and extended
by parity to [—u, O].

(GW) General compactly supported periodic wavelets. For a description of these, see
Barron et al. (1999, Section 3.2.1).

The definition of f implies some particular interest in the family (T) which is the most
commonly used. Regular piecewise polynomials are used to estimate the bound || /||~ and
in the simulation study. General piecewise polynomials are often very flexible for the
estimation of f. Wavelets are often considered, for instance by Neumann (1996) in a not
necessarily Gaussian context for a similar estimator.

Remark 2.2. The first reason for the interest in general collections of models (and not just the
regular ones) lies in the interest in peak detection for spectral densities. The second reason
can be found in approximation theory. Let f be in the unit ball of a Sobolev space W(ﬁ)(R)
B integer (ie. ||fP|, <1). Assume that we are looking for some 7 € .7, and for an
optimal approximation f € S; of f. If p =2, it is well known that what we described as
regular collections of models give an adequate approximation with an adequate rate (namely
D;f). But this is not true if p <2. For instance, let f belong to W1(R). There is no hope in
general of approximating f in L, at the optimal rate D;l using piecewise constant functions
on a partition with D,, equal pieces (see Pinkus 1985, Theorem 1.1, p. 232; Birgé and
Massart 2000). But Birman and Solomjak (1967) reached the rate again by considering
nonlinear procedures and piecewise polynomials based on some special irregular partition of
[0, 1]. For details, see the discussion in Birgé and Massart (2000). This is illustrated by
Corollary 4.

2.3. Assumptions on the collections of models

The general assumptions required for the collections of models are now described. The
general set-up is as follows:

Assumption 3. Each S,, is a linear finite-dimensional subspace of L,([—mn, m]) with
dimension dim(S,,) = D,,. Moreover, D, := maXmc_», Dy < n.

General collections of models are required to satisfy the following technical condition:

Assumption 4. Let  (¢9;)ienmmn be an orthonormal basis of Sy + Sw qnd b=
(Birenmm) € RIMSn+Sm) spith |B|oe = SUpieA(mm'y |B1]. Then, for all m, m" € 7,

~ 1 ||Z/{€A(mm)ﬂﬂ.¢l|‘00 n
L <Ciy|—o—— 2
) M,y + S o Bl dim(S + S ()




272 F Comte

Remark 2.3. We know from Barron et al. (1999, pp. 322-323) that for the family (W),
Fmmy < C, with C=2+ V2, and the same holds for (P), but with C=
{(r+ D@r + 1)}'/2, where r is the degree of the polynomials. In other words, 7, »» can
in both these cases be bounded independently of (m, m').

Remark 2.4. The family (GP) satisfies inequality (2) with C; = 2r/r (see inequality (3.8) in
Barron et al. 1999). The family (GW) satisfies (2) with an unspecified C; depending on the
wavelets (Barron ef al. 1999, p. 321). The family (T) satisfies (2) with C; = n~'/2, provided
that D, < \/n.

Finally, we need the following control on the number models in each collection:

LD,

Assumption 5. > ey, € P < T <400, for some positive weights L,,.

Remark 2.5. For the families (W) and (P), L,, is of order 1. For the family (P), for example,
L,, = 1/r can be used. Since there is at most one model per dimension, Y e #, e LnDn jg
less than Y )_ e /< 1/(1—¢e}).

Remark 2.6. For the families (GP) and (GW), L,, is of order In(n). Consider, for example,
piecewise polynomials of degree r — 1. There are C‘,f possible subdivisions for a given
dimension d. Thus, if we choose L,, = L,/r, then

dooettr=N cde =14y —1<e-1.
d=1

me

Therefore £ =e — 1 can be used when L,, = In(n)/r. For details, see Barron et al. (1999,
p. 328).

2.4. The procedure

Let {S,, m € .%,} be some finite collection of models as described above. We associate
with each S, the projection estimator f,, of f on §, that minimizes over all ¢ in S,, the
contrast function

7T

%mzfﬁww—ﬁrwmmw

—TT
where
2

1| = - I
I(w)=— X, — X, , X, ==Y X, 3
(@)= 5| 2 X0 = Xe DI 3)

First, we look for f m such that

Va(fm) = miny (1) “
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ThlS is the same as looking for f,,, SO as to minimize j (I ,(w) — t(w))* dw. Note that
= Jen, A1, With d; = f I, (w)p)(w)dw, if (¢;) is an Lj-orthonormal basis of §,,.
Second, we choose m among the family .7, such that
i = argmin [y ,(f,n) + pen(m)],
me.,
where pen(m) is a penalty function to be specified later. Then the estimator of f* that we wish

to study is /= fy. Denotlng by | g|| the usual L,-norm ||g|* = [* g*(w)dw, we wish to
bound the risk E(|[f — f]%).

2.5. The aim

Let us briefly explain what kind of bound for the L,-risk we are looking for. Under suitable
assumptions on f, it is easy to prove (see Appendix) that the risk of f,, is bounded by

A dim(S,,
EIf — full < 1 = P 4 s 250 ©)

where £, is the orthogonal L, projection of f on S, and s is a constant depending on f. The
first term of the right-hand side of (5) is known as the bias term, and the second as the
variance term of the risk.

We aim to propose some suitable data-driven selection procedure to select some m from
./, in such a way that the projection estimator f #» performs almost as well as the best f m
over the collection, the criterion for comparing the estimators being the L,-risk. This
implies that for a good choice of the penalty function, we aim to find inequalities

. . dim(S
Elf — falP < C int [1f — ful? + Ln S| ©)

where C is a multiplicative constant and the L,s are weights. When L,, = 1, our estimate
turns out to minimize the risks among the collection, up to the multiplicative constant C.

3. General theorems

3.1. The bound on f is known

With L,-L., chaining methods (Barron ef al., 1999) we can prove our main theorem, which
holds for general collections of models, whether regular or not.

Theorem 1. Suppose that Assumptions 1 and 2 hold and consider a family of models
satisfying Assumptions 3—5. Then the penalized projection estimator (PPE) defined by (4)
and

f = f >, Where m = arg min (min Jn Hw)(t(w) — 21, (w))dw + pen(m)), (7)

me, \'€9mJ_g
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with
pen(m) = x| f]%.(1 + C2)(1 + L2)Dy/n, (8)

in which x is a numerical (universal) constant, satisfies

1+ A2 7112
C,( + n) /1%

~ M
E(If =71 < C inf [If = full +pen(m)] +8==+ SO

where C and C' are universal constants.

From Remarks 2.5 and 2.6, it follows that the penalty is of order D,/n for regular
collections of models ((T), (P), (W)) and of order In*(n)D,,/n for general collections ((GP),
(GW)).

3.2. Estimating the bound on f

Obviously the main drawback of Theorem 1 is that the (deterministic) penalty depends on an
unknown quantity, namely |f|l. In this subsection, we give an extension that leads to
consideration of a random penalty function which no longer depends on the bound on f. The
estimator of || /]|« is constructed as proposed by Birgé and Massart (1997) in the following
way: we take the infinite norm of f 5 , the (empirical) orthogonal projection of the
periodogram I, on a space of regular dyadic piecewise polynomials (a space of the family
(P) based on dyadic partitions) of dimension depending on # and denoted by N,. We denote
by f f the L;-orthogonal projection of f on the same space.

Theorem 2. Suppose that Assumptions 1 and 2 hold and consider a family of models
satisfying Assumptions 3-5. Then if || f — fhllec <3| fllx and

!

K n
Ny S ——5—r7,
(r + 1)? In(n)

the PPE f defined by (4) and (7) with
pen(m) = x|/ 7]%,(1+ CH( + L2,) Dy /n (10)

where k and k' are numerical constants, satisfies

f i L%.D,,
E(lf =Py < C inf JIIf = ful + /RO + CH=2=

4 COL2, %, | €)
n b

(11)

where C is universal constant and C(M3, Z, || f||«, C7) a constant depending on M,, Z,
|fllc and Cp.

It remains to examine the condition ||/ — 7« < 1||f||x. If some regularity conditions
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are set on f, then it is generally satisfied, as is known from approximation theory. Indeed
for f € 75 poo, B>1/p, we know from DeVore and Lorentz (1993) that

1 = S Pl < CBf 15, N, PP,

where the definitions are quickly recalled below. Therefore |f — f f oo < %H Sl if
N, = ACPB\ S 1./ I flloc) /B2 = C(f, B, p), where C(f, B, p) is a constant depending
on f, f and p.

Note that if C in (9) and (11) is allowed to depend on M;, C;, = and || f]|, then both
inequalities can be written

L% D,

n

E(|lf = fIH < C inf ||If — ful®+
me.,

3.3. Adaptation to unknown smoothness

It is easy to derive adaptation results from inequalities such as (9) or (11). We give here an
adaptation result with respect to the unknown smoothness of f. Moreover, we consider
f(@2m:) on [0,1]. We recall quickly that a function f belongs to the Besov space
Bp poo([0, 1]) if it satisfies

flgp = sup y Pwa(f, y)p <+o0, d=[B1+]1, [tloc = sup |1(x) — 1(y)],
y>0 x,y€[0,1]

where wq(f, y), denotes the modulus of smoothness. For a precise definition of these
notions, see DeVore and Lorentz (1993, Section 2.7), where it also proved that
Lo poo([0, 11) C Bp2 ([0, 1]) for p = 2. This justifies our now restricting our attention
to Zp2(10, 1.

Let us consider the three families (T), (P) and (W) previously described. It is well known
from classical approximation theory that if » = and f € %p, ([0, 1]), then

If = full < CBIf1p2D5F (12)
where 7 is the regularity. See, for instance, Barron er al. (1999, Lemma 12, p. 404). It
immediately follows from (9) and (11) that the following result holds:

Corollary 3. Suppose that Assumptions 1 and 2 hold and that f(2mw-) belongs to some
L2,50([0, 1) N Lo ([0, 1]). Moreover, assume that {Sy} me.z, is one of the families (T), (P)
or (W) with ﬁ>% Let f be the estimator defined by (7) with penalty (8) or (10). Then

ELS — fIP1 < L[y 0 2P/CD,

where the constant C only depends on 5, M, ||f]|s and Cs.

In other words

sup E[||f — fII*] < Cn=2P/@PHD),
SE€Bg2(R)
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where Bgy(R) = {f € #Bpr0c, |flp2 = R} and where the constant C now depends on f3, R,
My, ||f |l and 7.

Remark 3.1. 1t is known from Bentkus (1985) that the minimax risk over some Besov ball
{f/If|g2 < R} cannot be smaller than C'R¥(+2P)p=26/@F+D \where C' is some positive
constant, and therefore our estimator is minimax (up to constants) over all such balls
simultaneously.

Remark 3.2. For the family (T), the bias—variance trade-off leads to the choice of
D,, = n'/0+20)_which is less than /7 when 5 = 1/2.

Remark 3.3. The rate obtained by Neumann (1996) in the non-Gaussian case with random
thresholding and wavelet estimates is (n/In(n))~*%/f+D_We have improved this rate in the
Gaussian case.

Remark 3.4. We recover the rate In(n)/n found by Efromovich (1998) in the particular case
of a spectral density with y; < Ce . Indeed then, using the family (T), ||f — f| is of
order e *P»; thus the optimal choice on the collection is D,, = 21In(n)/p, which gives the
global bound In(n)/n.

For general collections of models, if L, =In(n) we find the same rate up to
a In(n) factor, that is to say, we have, for (GP) or (GW),
supfegﬁ_z(R)E[Hf—sz] < C(n/In*(n))2A/@A+1_ But general collections of models can
also be used, as per Remark 2.2, to handle the case of Besov bodies of the form
Bg po(R1, R) ={t € Bp ([0, 11)/|t]g., < Ri, |t|]c < Ry} with 1 < p <2. The method
is thus the same as in Baraud et al. (1999) and implies the same result.

More precisely, a modification of the general spaces allows us to use results of the
compression algorithm field given in Birgé and Massart (2000). Let us define

K; =[2Q7 )2, with % (x) = (1 - E—;C) i , s>2,x€(0,1),
and
L) =1+ Z 1 +((fif)‘fz))f. (13)

Then we define, using the notation of Section 2.2, the following restriction of (W):

(W) Wavelets of regularity r. For J € {0, 1, ..., J,} with (M) denoting the set of all
the subsets of M, let

) I P(A())) ifo<j<J,
My = U my/m; € {{A e 2NG)/|A =Ky ifj=J }
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Let #, = Uj:"o //di and define S,, as the linear span of the ¢, for A € m, m € .7,, and
by 1: x— 1, Vx € [0, 1].

An analogous restriction of (GP) could be given for piecewise polynomials. Then the
following result holds:

Corollary 4. Suppose that Assumptions 1 and 2 hold. Consider the collection of models (W")
with 27» = n/T for some T =1, and 27" < n. Let p € [1, +oo[ and

A l(l_l> 14 23 e
2p) S L Ny
0 otherwise.

If B, <P <r, then VR, R, € R X R", the PPE f defined by (7) with penalty defined by
(8) or (10) and by L,, = L(s) given by (13) Vm € #,, satisfies

sup  E[|lf — fI*1< Cin 2P/,
JEBg, poo(R1,R)

where the constant C| depends on f3, Ry, R, and T.

For the proof of this result, see the proof of Proposition 4.1 in Baraud et al. (1999).

4. The long-memory case

In this section, we study the case of unbounded f. This case, often known as the ‘long-
memory’ case, has been extensively studied in recent years. It occurs for fractional models
when the spectral density satisfies:

f()~ KA  whenl—0,0<a<l (14)

which implies that y; ~ C),kza’1 when k — 400 (see Adenstedt 1974). Therefore,
Assumption 2 is not satisfied for O<a<%. An example of such models is given by the
fractional ARMA models described in Remark 2.1 above when 0 <a <%.

In this framework, we can prove the next theorem, which must be considered as a
robustness result only, for two reasons. First, there is a constraint on o which cannot easily
be checked. Second, the penalty depends not on the bound on f, but on the bound on
f(w)w** which, like a, is unknown and not easy to estimate. Note that it also depends on
the Lp-norm ||f|| which may be estimated in the light of work by Laurent and Massart
(1998).

Theorem 5. Suppose that Assumption 1 holds and that f satisfies
f(A) < KA, VA€ [-m n], with0<a<i. (15)
Consider the family of models (T) with D, < n. Then the PPE f defined by (7) with
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pen(m) = k(K> + || f1* + C))In*(Dy) Dy / n,

where Kk is a numerical constant, satisfies

2 2
i), 6

E(lf = fI») < C inf [lf = ful®+ pen(m)] + C’
where C and C' are numerical constants and C, is such that yy < C,k**~" for all k = 1.
The restriction on a comes from the non-square integrability of f when a is greater than %.

Remark 4.1. This result shows that we keep (up to a factor In?(D,,)) the same order for the
penalty and for the variance term of the risk as in Theorems 1 and 2, even for non-bounded
spectral densities (or non-summable covariance functions). The loss here comes from the
order of || — fu||, which is different from that found for classical functions in Besov spaces.

For instance, since f(1) = (1/2m)(yo + 2372y, cos(4/)) then |f — fml|* has the same
order as ) ;=p,y7; and since, in the fractional case, y; ~ C)/**"!, ||f — ful* is of order
D*=1 Optimizing both terms on the right-hand side of (16) gives a rate of order
(n/In?(n))~(1-40)/(A+(1-49)  This implies a rate of convergence tending to 0 when « tends to
}r This is what is often obtained in such cases: for example, Hall and Hart (1990) also find
a rate of convergence which has the same feature, in a regression problem with long-range
dependent errors.

Remark 4.2. Since Assumption 2 is not fulfilled, the result of Proposition 1 no longer holds.
Equation (37) in the Appendix implies that it can be replaced by

If —EU)|*=0* Yy i |y < G, Vk = 1. (17)

This is the reason why Theorem 5 holds for trigonometric bases only: improving the bound in
(17) requires a precise order for the scalar product (f —E(l,), s) for s € S,. Since
f —E(l,) admits a trigonometric development, the order is better if S,, is a trigonometric
space.

Remark 4.3. The proof of Theorem 5 does not rely on a chaining method but on some
simpler arguments. The method used to prove Theorem 1 and 2 would give a result of the
same kind but with a different penalty function. The loss in the penalty implies a loss in the
global rate (which is therefore less accurate than that found in Remark 4.1). More precisely,
in the case of models satisfying Assumptions 4 and 5 and under the same assumptions on f
and y; as in Theorem 5, we would find, for 0 <a <1,

pen(m) = KK2(1+ C2)(1 + Ly, Dy/n' =,
where « is a numerical constant, and a penalized least-squares estimator f* satisfying

_ , LA+ C
E(L/ = FIPY= C inf [l = full + pen(m)] + €' = ¢ (18)
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where C, C' and C” are numerical constants and C, is such that y, < C,k**~! for all k = 1.
See the note on the proof of this result at the end of Section 6.

5. Simulations

The programs for our simulations were implemented in collaboration with Y. Rozenholc
using the Matlab programming environment. Attempts to test the performance of the method
described in this paper have already been made by Birgé and Rozenholc (2000) and Comte
and Rozenholc (2000). They are very convenient to use, but have high initial cost; indeed, the
constants in the penalty functions are unknown. Therefore, many investigations must be
carried out over large families of theoretical functions f to find the right formula. On the
other hand, once the right calibration is found, the method is very flexible and all choices are
data-driven. For instance, one can try both regular and irregular piecewise polynomials with
arbitrary degree (say) 0, 1, 2, 3 to be automatically chosen on each considered subinterval of
any subdivision. Various degrees have been tested for regression and volatility function
estimation by Comte and Rozenholc (2000). General histograms have been investigated for
density estimation of i.i.d. random variables by Rozenholc, but this implies a great number of
models to examine: the algorithms must be highly optimized for the computational time to
remain reasonable.

This is the reason why we have concerned ourselves here with simple regular histograms.
This collection of models quickly gives a very good idea of the potential of the method. We
simulated the same model as Neumann (1996), namely

X[ = Y[ + OZ[,
where Y, is an ARMA(2,2) process,
Yi+a Y1 +ayY, o = boe; + bre,—1 + brg;a,

and {¢;}, {Z,} are independent Gaussian white noise processes with unit variance. The
constants were chosen as a; =0.2, a, =0.9, bp=1, b1 =0, b =1 and o0 =0.5. We
simulated 7 = 1000 samples with length n = 1024, whereas Neumann (1996) used 7 = 100
samples of the same length: this has no influence on the mean value of the L;-risk nor on its
standard deviation O, but may slightly reduce the +95% intervals computed as in Neumann
(1996) as 1.96 0/\/T.

A given dimension D,, = d is associated with a histogram basis

d ;
(p;d) = \/;j[nj/d,ﬂ(j+l)/d[a fOI'] = 0, 1, ey d— 1,

and with the estimated coefficients

d) e 15¢ a(j+ Dr mjr
Ad) 0 e J : J
4 _\/; ﬁ+ﬁr_l7lsm(7 g

for j=0,1...,d—1, where ¢, =c¢,,, r=0,1,..., n—1, are the empirical covariances
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defined by (32) in the Appendix. The penalized contrast values leading to the selection of the
optimal dimension among d =1, 2, ..., 100 are

d—1

() 42 (e, (19)
—0 n

-

where Coo(drer) = MaXo<j<d,,—1 |d§-d“'\’| is the estimate of |||« and x is a constant.

We experimented with several values of the constant ¥ and of the dimension dir. We
found dier = [n/361n(n)] = 4 to be a good choice: this is the maximal value authorized by
Theorem 2. Since the constant 1/36 in the bound seemed somewhat arbitrary, we expected
a much higher dimension to be chosen. We also found xk =4 to be a good choice. The
results of these experiments are given in Tables 1 and 2, in terms of the L,-risk and the
confidence intervals (CI). Table 3 recalls Neumann’s results as a benchmark.

We can see that with this rough version of our method, we already achieve results as good as
those of Neumann (1996), who uses a somewhat more complicated wavelet thresholding.
Figure 1 illustrates also the type of estimated spectral density found with our method. The
oscillations of our histograms are clearly analogous to those of Neumann’s wavelets.

Table 1. Adaptive histogram method: different choices of x

K 3 35 4 4.5 5

L,-risk 0.053 0.049 0.048 0.047 0.048
+95% CI 0.0026 0.0023 0.0021 0.0018 0.0018

T = 1000 samples of size n = 1024. The penalized contrast is computed as in (19) with
drel‘ =4.

Table 2. Adaptive histogram method: different choices of dy.r

dref 2 3 4 5 6 10 25

L,-risk 0.048 0.050  0.048 0.054  0.047  0.049 0.052
+95% CI  0.0018 0.0024 0.0021 0.0026 0.0022 0.0023 0.0025

T = 1000 samples of size n = 1024. The penalized contrast is computed as in (19) with
K=4.

Table 3. Neumann’s results

Estimator Kernel w(l, u) w(2, u) w(l, s) w(2, s)

L;-risk 0.042 0.066 0.054 0.044 0.040
+95% C.IL 0.0032 0.0042 0.0053 0.0038 0.0043

=100 samples of size n = 1024 w(i, u) and w(i, s) refer to unshifted and shifted
versions of the thresholding with threshold /'{j) developed by Neumann. The kernel
method is based on the optimal bandwith (unknown in practice).
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Figure 1. True spectral density and regular histogram estimation.

Of course, true piecewise polynomials may be smoother and therefore nicer, but it is not
certain that the values of the L,-risk would be significantly better. What appears in the
example considered here is that irregular partitions would lead to very relevant choices. The
dimensions selected by the algorithm with regular partitions are quite high in order to

capture the peak. Irregular partitions would lead to much smaller dimensions and more
adapted choices. This is a further programming challenge.

6. Proofs

6.1. Proof of Theorem 1

6.1.1. Decomposition of the contrast

We start with a decomposition of the contrast which is common to the proofs of all theorems.
Let (u, v) = [7 u(w)v(w)dw, and ||u||> = (u, u). Then we can write:

yal0) = NP = 2{L, £) = [t = fI? = 2(L0 = £, 6) = I fI.
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By definition f = f; satisfies, Vm € .#,, the inequality y,(f)+ pen(im) < y.(fm) +
pen(m), where f, denotes the orthogonal projection of f on §,. This implies that,
VYm e My,

If = fIF =20, — £, ) +pen(im) < ||f — full> = 2{Ls — £, fm) + pen(m),

that is,
If = FIP < f = ful?> +2{Lu — f, f — fu) + pen(m) — pen(rir)
< |If = full> +2(f =B, fu—f) +2(Is —EUL), f — fm) (20)

+ pen(m) — pen(n1).

Then there are two different strategies for the proofs of Theorems 1 and 5. But they both
require a fundamental Bernstein-type inequality. For the latter the Gaussian feature is crucial.

6.1.2. A Bernstein-type inequality

Let us write X = (X1, ..., X,) and X = (1/n)>_",X;. For u € S, let
Zn(”) = <[n - E(]n)» u> (21)
Writing e = (1, ..., 1)’, which is of size n X 1, Z, can also be written as

1 - — — _
Zn(u) = [(X = Xe) Ty(u)(X — Xe) — E(X — Xe)' Ty(u)(X — Xe))],
where T,(u) is the Toeplitz matrix associated with the function u, that is,
T
[T.(w)]jx = J u(w)e U0 dw, 1<j,k<n.
-7

Since we aim to estimate a positive function, we can restrict our attention to positive
functions of §,,, without loss of generality. We prove in this section the following result:

Proposition 2. Assume that the stationary sequence X1, ..., X, satisfies Assumption 1 and
let f denote its spectral density. Then for any even bounded positive function u,
P(Zu(u) = 2||flloo(lullv/x + [lullocx)) < €™ (22)
and
P(Z,(u) = 2 ullo (| £ Vx + p(Ta( X)) < e ™. (23)

I/ loc in (22) can be replaced by p(T,(f)), where p(M) denotes the spectral radius of a
symmetric matrix M.

Proof. Since u is even positive on [—m, 7], T,(u) is a symmetric positive definite matrix in
M, (R) (see Dacunha-Castelle and Duflo 1993, p. 41). We denote by /7,(u) the usual
symmetric square root of a symmetric positive matrix. Then
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1 = —
Zy(w) = [V Taw)(X = Xe)[[; = B/ Ta(u)(X = Xe)[[)]

with ||x||, denoting the Euclidian norm in R”. We use the following inequality, valid in the
Gaussian case only, which is a result proved by Laurent and Massart (1998, Lemma 1, p. 24):

Proposition 3. Let € =(e1, ..., €,)" be a vector of n iid. centred Gaussian random
variables with common variance o2, and let A be some matrix in M,(R). Let A1, ..., A, be
the eigenvalues of the positive symmetric matrix AA', v* = ipzlﬂ.lz- and b = max;—i__ pi;.
Then y*(A) = ||A€||i7 satisfies, for each x>0,

P(x*(4) = tr(44")0? 4 20* Vv x + 2bo°x) < e %, (24)
where tr denotes the trace of the matrix.

Let % =n(l,, u) = (X — Xe)' T,(u)(X — Xe). If u=E(X;), since X —Xe=(X —
ue) — (X — u)e, we can assume without loss of generality that u = 0 (otherwise we work
with X = X — ue). Let H be the hyperplane Vect(e)- (i.e. the orthogonal in the Euclidian
space R" of the linear space generated by the vector e). Since Xe is the orthogonal
projection of X on Vect(e), X — Xe = Py X, where Py is the matrix of the orthogonal
projection on H. Therefore, X — Xe is a Gaussian vector with degenerated variance,
var(X — Xe) = Py=y P}, where the rank of Py is n—1 and =y denotes the variance
matrix of X. Since Xy is symmetric positive semi-definite (it would be positive definite and
thus invertible if we had assumed f to be bounded away from zero), =y can be written

2y = P'DP where P'P=1d, (the nXn identity matrix) and D = diag(d, ..., 4,,
0,...,0)with A;>0 fori=1, ..., p, with p < n denoting the rank of Zy. Let ¥ = APX,
where A = diag(1/v/41, ..., 1/\/A,, 1 ..., 1). We have var(Y) = diag(l, ..., 1, 0, ..., 0),
where there are p ones and n — p zeros on the diagonal. Since E(Y) = 0, this implies that
Y,t1, ..., Y, are almost surely null random variables. Moreover,

2 = IVTa@Pu X% = VTl Pu(APY Y |2 = Y'(AP) ' Py To(u)Pu(AP) Y
= (Y")PLAP) ' Py T, (u)Puy(AP)'],YP),

where Y(P) =(1,, ..., Y,), and M, = (m;)i=ij<p is the p X p truncated matrix deduced
from M = (m,;)1=i j<,. We can apply inequality (24) to x? with

A4' = [(AP)'" Py T,(u)Pu(AP)"'], = [BB'],, B = (AP) "' Py/Tu(w).
First, it is clear that E(y?) = tr(44") and x> — E(x?) = nZ,(u). Moreover, b = p(AA")
< p(BB') since any eigenvalue of A4A’' is clearly an eigenvalue of BB’ (complete the

eigenvector with zeros) and

v? = tr((44")?) < tr(BB')?) = tt(Sx Py Tp(u) Py Zx Py Tp(u) Ppy).
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Then we use the inequalities tr((MN)?) < p(M)* tr(N?) and tr((MN)?) < p(N)?* tr(M?) for
any pair (M, N) of symmetric matrices. Since p(Py) =1 and p(Zx) = p(Tn( 1) < ||/ |lco»
we have p(Pu2xPh)<p(Ey) and therefore we find that tr(Py=yPluTa(u))?) <
£1I%, tr(T(u)?). Moreover, we know from Davies (1973, Lemma 3.1(iii)) that, for any
function u € Ly([—m, 7)),

tim 11327, (0) = J
=1

n—+oo n

u?(x)dx

for any Toeplitz matrix 7,(u) and with 1;(T,(u)), i =1, ..., n denoting the eigenvalues of
T,(u). Then tr(T,(u)?) =>.7 A> is of order n|/ul|> when n grows to infinity, and in
particular tr(7,(x)?) < n||u||>. Finally, since p(BB’) = /p((BB')?), we also find that
b < pEx)p(Tw(1)) < ||f]lco||t||0- Then inequality (24) gives (22).

Inequality (23) is derived in the same way but with the inequalities b < p(T,.(f))||u|c
and v? < p(T,(w))* tr(T,(f)?) < ||u||iotr(T,,(f)2). Then we note that tr(7,( f)?) is less than
n " f2(x)dx. O

6.1.3. Proof of Theorem 1

Since m is fixed and m' is varying, let S(m')=S, + S,, D(m')=dim(S,, + S,)
< Dy, + D,y and A(m’) a set such that (¢;)ica(m) is an orthonormal basis of S(m’). Then
from (20) we obtain

If = FIP < IIf = Sl +20f =B, fu = F) +2|lf — fullGGit) + pen(m) — pen(rn),
with Z, defined by (21) and

G(m,) = sup <In - E(]n)s u) = sup Z,,(u), (25)
u€ By (0,1) u€ By, (0,1)

where B, (0, 1) is the unit L, ball of S,, + S,. This implies that
1f =717 =< IS = Sl +8ILf = BADIP +3I1S — full® +8G*(17)(26) + pen(m) — pen(ri).

Therefore we study the expectation of G?(7).

Proposition 4. Under the assumptions of Theorem 1,

2 2
EUG(m) — prlm) — pr(m).] = et LEEN

where pi(m) = r(1 + C%)Hino(l + Ly)*Dy/n, with C and K being numerical constants.
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From Proposition 4 and Assumption 5, it follows that, if p(m') = p,(m’) + p(lm),

E[G*()] < E[(G*(i) — p(i) {1+ p(i) < Y E[(G*(m') — p(m")),]1+ p(i)

m'e,

1+ C|IfI% D X
< C( )”f” Z e Ly Dy + Pl(m)+ Pl(m)
n

m'e,

2 2
< cUHEWIEE iy 4 i), “

Using the fact that ||/ — f,[|> < 2||f — 11> + 2|lf — fml?, (26) can be rewritten
L = F12 < 3I1f = Sl + 811/ = EUWI? +8G (i) + 8(pr ()
+ p1(m)) — Zpen(s) + 2pen(m), (28)
which, combined with (1) under Assumption 2 and (27), entails that

L+ DI/ I2E
C% + 3pen(m),

- M,
E(L/ = fIP) < 3If = ful +8=2+
where C is a numerical constant and since pen(m) = 8p;(m) (with k = 8x). Finally, the
infimum over .7, can be taken since the result holds for any m.

Proof of Proposition 4. The proof uses arguments similar to those developed in the proof of
Theorem 5 in Birgé and Massart (1998) and in the proofs of Proposition 7 and Theorems 8
and 9 in Barron ef al. (1999). It is based on a chaining argument from which we know (see
Barron et al. 1999, Lemma 9, p. 400) that, in a linear subspace S C L, of dimension D, we
can find a finite 0-net, Ts C .7, where .% denotes the ball of S centred in 0 and with radius
o, and a mapping st from S to T, such that:

e for each 0< 0 < o /5, |Ts| < (50/0)7;
o |lu—m(u)| <06, VueS and sup,cr1(y |4 — t]|oc < 70, Vt € T, with 7 defined as in
2.

We apply the above result to the linear space S,, + S, of dimension D(m') and 7 = #(u m)
defined by Assumption 4. We consider 0-nets, Ty = T;s,, with 0y = 002~ %, where 8y < % is
to be chosen later. We set H; = In(|T|). Given some point u € B,, (0, 1), we can find a
sequence {uy}r=0 with u; € Ty such that |lu—u]]> < 0% and |Ju — rllse < FimmrOr.
Therefore we have the following decomposition, which holds for any u € B, (0, 1):

u=u+ Z(uk —up_1).
=1
Clearly ||uol| < 0, ||ttolloc =< FimmHO0 and, for all k=1, |lux — u|I> < 2((3?( Jréifl) =

50% /2 and |Jux — u—1]lsc < 3Fmm)Ok_1/2.
Let (7x)r=0 be a sequence of positive numbers that will be chosen later on. We have
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Pl sup n(“)>77] —P[H(uk)keN e [[ 74/ 2 (UO)+ZZn(uk_uk 1)>’70+Z77k‘|

u€B (0,1) keN k=1
<P + P,
where
Py = > P(Z,(uo) > o), Z D P(Zalux = wie) > 15,
up €Ty =1 up1€T

ukETA

with 7o+ > s=117x <. Using inequality (22), we straightforwardly infer that P; <
exp(Hy — nxp) and P, < > j=y exp(Hy_1 + Hy — nxy) provided that we choose

10 = 2[|/lcO0 (/X0 + Fim.m) %),
Nk = 2||f|‘006k 1(\/2xk + r(mm)xk)

We choose xy such that nxg = Hy + L,y D,y + T and, for k =1,
nxy = Hy_1+ Hy+ kD,y + L,yD,y +T.

If D, = 1, we infer that

(sup z (t)>770+217k> < g Lw Dw T(l +Ze m) < 1.6 Lwbw—T,

1€B,y k=1

All that remains is to bound Y s=¢ 7. Since Y ;-0 =200 and > ;- (kO = 200, we
find that

(’)

(SoonrZ(Sk 1Xr < 30

(a(d9) + L) + 300 E,
=1 n

where a(dp) = (51n(5/0p) + 61n(2) +4)/3. With repeated use of the inequality (x + y)*
< (1 + 6)x* + (1 4+ 1/6)y? for positive x, y and 6, we obtain

2

2
o0 5 o0 o0

(Z 77k> < 4|11 (50\/360 + \/;Z 5k1\/xk> + L.57(m,m (50)60 +3° 5k1Xk>
=0 P K=
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2
5 o0 (o) o0
< 8|If1% (50 +§Zék—1> (50xo + Zék—lxk> + (1-5)2”%,,, m)<5oxo + Z%-N%)
= =

k=1
101 /11 D(m’ 2
( e (100) (m)fﬁn,m')( (;n )(a(éo)Jerr))

< 81/I.3
T s, T

+ 1805 + 9(1.571007,, ) —
n ’ n

< (8 X 0.385)[| 1% ( .

2
D(m'’ T 7
+L )+4 (mm)( ( )> (1+LM')2+_+f%mm’)71
n n ? n

2
<31/ (1+C2)M+ s ),
n

provided that we choose g = 1/100 < 1/5, a(d¢) ~ 13.08. The last inequality holds due to
Assumption 4. This implies

1 2D(m')(1 + Ly )? 2
Pl p 220> 2, (LR ) +2<§wan,m»%m
uc

B,w(0,1) n

<P| sup ZZw>n*|<2P| sup Z,w)>n| <32 P
€B,m(0,1) UE By, (0,1)

Therefore, for k = 3.1,

(@) — w1+ €3y 2L L)

+

00 2
$J (Gz<m>>x<1+cz)||f||2 Pt )(InH ) “)d”

0

00 . 5 2KHinc/f(2m,m') -
< oL D J o/l gy 4 J NN I
261! Py 0

2 2
= ot 261 (J oo gy g o [ Mdv) — etn, L HACHITIE
0 0

n n n

using Assumption 4 again. This completes the proof. O

6.2. Proof of Theorem 2

Recall that f 5 is the L, orthogonal projection of f on the space 77, of piecewise
polynomials of degree r on a dyadic partition with step 2777, The dimension of 7, is
N,=+1)27". Let f f similarly be the orthogonal projection of 7, on &7, and
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)
Qn,b:{ |f"|°°—1‘<b}, 0<b<l.

1l
On Q, 5, the following inequalities hold:
1 N .
11l Sm”fﬁ,)”ooa 1/ P lloe = (1 + D) f oo

We start from (28), with p;(m) as defined in Proposition 4. On 2, , we have

K AP2 2 Dm’(l + Lm')2

pi(m') <

Then the choice

48 | pp2 > Du(1+ Ly)?
= 1 C, _—
pen(m) = G I/l + CH——
ensures that, on €, 5, 8pi() — 2pen(m) < 0 and

(1 + b)?

D,(1 + L,,)?
(1 —b)? n '

8 p1(m) + 2pen(m) < 8|1+ N &l I (1 + C2)

Therefore, (28) becomes, on €2, 5,

7 (1 + Ly)?
If = £11P <30l - fm||2+8 218G () + CO)|If 1% (1+c2)%.

Taking the expectation on €2, 5 gives
E(lf = 7%,

+ CO|IS 130+ c@M'

Next we must study E(||f —f||2ﬂgc ). We note that
If = 1P = f = fall> + 1 fa = Fal® < 20A1F+ If — L))
<2|fI% + 2|/ — EL|P? + 2|1, — EL,|?

using Pythagoras and the fact that f; — f i 18 the L,-orthogonal projection of f — 7, on Sj.
This implies that

B(S — FlPia:,) < (2|f|| +—)P<9 )+ 2(E|1, — EL [P

For E||1, — El,||*, we have the inequality
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> (o (-5)n)

|k <n

<|2n > E(Ck,n—<1—@)yk)4)2,

|kl <n

2

7 2
Bl B = || ) - B2 | = 4

where ¢y, is the empirical covariance defined by (32) below. With rough bounds it can be
proved that E(c., — (1 — |k|/n)y)* is uniformly bounded the computations are somewhat
tedious. Therefore E||7, — E(1,)||* is of order less than n?, and we need to prove that P(Qf, ,)
is of order 1/n* for sqme choice of N,.

We note that [/l — I/l < 177 = £l + /% — fllwe Since (£ = fll <
1 fllocs if we take b =3, this implies || /2 — fllw < (5/3)||fll~. We follow the line of
Section 5.3 in Birgé and Massart (1997) and use their relation (2.8). Denoting by I; the
intervals [rt(j — 1)/277, 7j/27") of the partition involved in &°,, we have

N . V41272 i
IF0 =Sl = sup =1 0l < sup =[5 = /D1
< <2/n <;j<2/n

(r + 1)27/2
ST (L0 = £ @2)]
E n

< (r+ 127/ *x"12 ( sup (1, — E(1,)), ;)| + sup |(E(1,)) — f, <m>|)
AeA, AEA,

< ((r+ DVNu/m) (Astga 1Zu(on)| + \/%>,

where (¢;);ea, is the orthonormal basis of &7,, and using Proposition 1 and the definition
(21) of Z,. This implies

PR, ) = P(I[L/ 7 lloe = 1flloc| > BI1f1loc)

b
< P<<r+ 1y [ (sup |Zuon)| + \/M> +3||f|oo>b||f||oo>
NP 12
P(ﬂs;fn|zn<m|>3(r+l) Tl =/ )

- 1 Zﬁbnf”oo M N,
\2ZP<Zn(<p,1)>m< 30+ 1) —/ . ))

AEA,

Let
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&=

VN, \ 3(r+1) n

If we set the constraint (M, N, /n)'/> < (br'/?||f||~)/(6(r + 1)), i.e. the constraint on N,
given by

! <2x/ﬁb|f|oo_ Mzzv,,)

2
_ (VA s
N“%(W) ’ (29)

then &= brt'/?||f|/Q(r + DNY?). 1t follows from (22) that, since |@;]| =1 and
[@illoc < {(r+ DNy /m}'/2,

P(Z,(012) > 2||f |loo(v/x + /(r + DN, /7tx)) < e ™.

This entails that

2
PZio0 =5 =ew(-n( S0 5)).
where v = 22|/ || and ¢ = 2||f]|c{(¥ + )N, /m}'/2. Since

S S L IR eV @b
20 4| f|2, 16(r+ 1PN, 2¢ 4||fllor/(r+ DN,/ 8(r+1)*2N,’

we find that

b2
LEATAESSE exp(—ﬁﬁ,

and consequently

¢ nb? n
P(Qn,b) = Nn exXp (-my) .

Then choosing

4 5 3 1 n
b=24/2~0841=" and Ny<-— - "
6 \/; g M 36(r + 1) In(n)
implies that
1 1
P(Q] ) <

36(r + 1)2 n* In(n)

provided that n = exp(mh? M,/ M?)) = exp(9M,/20M?). For small values of 7, the result is
trivially fulfilled as soon as the universal constant is chosen large enough.
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6.3. Proof of Theorem 5

We use the same notation as in the proof of Theorem 1. We start from equation (20). The first
problem is to find the maximum value of the term 2(f — E({,), /. — /) because the result of
Proposition 1 no longer holds. Consequently a more precise study must be carried out. We
can prove the following lemma (see Appendix):

Lemma 6.1. For any m € ./, and s € S,, where Sy, is a space of family (T), ||s|| =1,

2
Dy (&
(f =B, )| <2v2, | Z Py 436 (Zw) :
=0
This implies that

21(f —E(Ln), fm — >|\—||fm fI> +8(f —El,),

f f >2
D(m) 1

1fw =71
1 -
$§||fm—f|\2+64 . 27

D) [ z
S 1y
=0 h =0

~ [ D‘:;H—l +D4a+1 D
_”fm fII? +64 Ci(T —|—36C2(——|-7)

e ]

1 ~ D,, Dy
< gl 7P + 3 (24 22), 60
n n

using the inequalities y; < C,, 2% and 4a — 1 < 0, and where x is a numerical constant.
For the bound of E(G?*(m')), with G given by (25), we do not use Proposition 4 and
proceed more simply. We know that

2
G(m') = [ sip Y aAZn((PA)] =3 Zo.

> @<l ZeA(m’) AEA(m')

Under assumption (15) on f, we straightforwardly derive from Dahlhaus (1989, p. 1781) that
o(T,(f)) < Kn**, and this holds for a € (0, %). Here, we use inequality (23) instead of (22),
since for 0 <a <i, f is still square-integrable:

P(Z,(92) = 2l @allc(lf [V + Kn*“u)) < ™™ €3]

Here ¢;(x) = Bcos(Ax) and B = ||g;||c = /2. This leads to the following bound: for
every y = 0,
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AEA(m") AeA(m")

P(Gz(m’>>y2)P< > zi<m>>y2> = > KZieN>7D)

= 3 PZuo) > 7) FP(Zu(—o) =y =2 Y e,

AeA(m") AEA(m")

with y? = > seamy; and y, = ZB(||ﬂ|x/11/2 + Kn**x;). Choosing

5In(D(m’
R LGIDN

, n >0,

implies that

2e "

DA(m')’

P(GH(m')>y?) <
Let C be a numerical constant that may change from line to line. We find

v =D vi <88 ) [If1Px + K2 n* ]
A A

D(m)In(D(m' D(m")n?>(D(m’ D(m’ D(m')?
- C{' 2RO o DOIADO) 2 DO o D)
< c{(K2 + ||f||2)w} + K1D(m’)[%\/D(mT’)nz}

using the fact that 1 —4a >0 and setting K; = 2C max(||f]|?, K?).
This gives the following choice for p(m'):

D(mNIn2(D(m’
pm’) = C(K? + | 7|2y 2 (D0m))

and leads to

D(m")n?
P(Gz(m’) > p(m') + 2K, D(m") ["v(’”)"D <2e"D(m')"*.
n n
Now we set
ntr
- if 1<2K
=3k Dy L T2K/m
and

= " otherwise
=\ 2K, D2(m) :

whence
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JOOP(Gz(m’) > p(m') + 1)dr
0

2K /n 00
= J P(G*(m')> p(m') + 1)dr + J P(G*(m')> p(m') + 1)dr
0 2Ki/n
2K\ /n
_ 4 _ nt
< 2D(m") {Jo exp{ } dr + LKl/n exp{ —2K1D2(m')}}
D(m")™3 D(m")~2 D?

s41<1#+81<17s 12K, :

since D(m') = D,y and [;° e *du =1, [* e V*du = 2. This gives the bound
12K,

E(G*(m') — p(m")); = —1D,2.

Since in families (T), D(m') = D,, V D,y, we have p(m) < p;(m)+ pi(m), where p;(m)
= C(K> + ||£1*) (Dm In%(D,,))/n. The end of the proof is the same as the end of the proof of
Theorem 1 using

Y b= Zk s%,
m'e,

instead of Assumption 5. Gathering these bounds with (30) gives the result claimed in
Theorem 5, provided that pen is chosen such that pen(m) = p;(m) + KCf,Dm/n, Vm.

Comments on the proof of Remark 4.3. Under assumption (15) on f, we use the inequality
o(T.(f)) < Kn** in the proof of Proposition 4 and Theorem 1. We apply inequality (22)
again with ||f|. replaced by p(T,(f)). The order of E|[f — I,|* is no longer given by
Proposition 1 but is computed from equation (37) in the Appendix, and is of order n**~!.

Appendix

Proof of (5). Trivially, |/ — fm”2 1f = ol + 11 fm = meza and if (¢1)gzen,} is an La-
orthonormal basis of the linear space S, with card A,, = Dy, then fi, = > sen, (> ®1) @2

and f,, =Y sen, (In @2)¢;. Therefore,
fm = Full? = (f = Lu02)* <2 > ((f —EULn). @2)* + (EUL) = Ly 91)%)

AEA , AEA

< 2Dyllf = Ll +2 ) (EUn) = L0, 02).
AEA,

First, Proposition 1 implies
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Dy,
DmE(”f - [n||2) = M27

under Assumption 2. Second, Theorem 10.3.2 (ii) in Brockwell and Davis (1991) implies that
under standard assumptions on linear processes, cov({ (), I,(w")) = O(1/n), uniformly in
w, o' for w # w'. Thus

ES (B — L o2)? =Y Jqouw)w(w/)cov(ln(w), 1,(0")do do’

AEA L AEA,

2
< % Z (J(pﬂa))du)) < c%.

AEA M

Gathering all terms gives the result. O

Proof of Proposition 1. First we rewrite 1°(w) and I ,(w) as follows:

-1 -1
1
(w) = (Co a2 E cr , COS rw) I (w) = (co nt2 E Cr,n COS rw)

r=1 r=1

where, for 0 <r<n-—1,
1 n—r l n—r _ _
A=Y o= )Kpr =), Cnn =3 (X = X)Xpiy = X0 (32)
k=1 k=1

Then we have

QM) (f (@) — El(0))* = 210)*(f(@) — El5(®) + El,(0) — El,(w))*

1
= (2n)? ({ZZyk cos ka — 22 ¥ COS kw}

k=n

2
n—1
+ {Ecgﬁn —Ecp,, +2 Z cos rw(Ecgﬁn — Ec,,,,)}>

r=1

= 2m2 (A% () + 24,() By(w) + B2 ().

We obtain
—1
2nM
J Az(w)da)—45t<z;/k 2Zk2yk> <4ﬂ:(—Zkyk Z ) L (33
k=n k=n k=
Next

J B(w)dw = 2m(Ec),, — Eco,)* + 4 Z(Ec —Ec,.,)

r=1
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It is easily seen from Theorem 8.3.2 in Anderson (1971) that if Y ;7 |y4| <oo, then
[n(E, —Ec, )| <3 ) vl <6 |yl (34)
k]| <n k=0

for all » and r. Therefore, we derive that

7T 2
J Bi(w)dwslsfcM <2+%>. (35)

. n
Finally, the same arguments yield

1 2

M
2 lyel < 24m— . (36)
n

TT n
J A,,(w)B,,(a))dw’ <24nM ) —
x — n

=1
Then combining (33)—(36), we derive that

7T M1 M2 M2
—EI 2do < — + 15— +9—
L(f(w) @) do = st g M

which concludes the proof. U]
Note that, using (33) and (34), we obtain more generally the bound
7T 1 n—1 6 n 2
J (f(@) = E(ly(@)) do <8x| > yi+—> Kri+- (Z |yk|> (37)
- k=n k=1 k=1

which allows us to compute an order even if » |yx| is not finite. In particular, if
lyk| ~ k%71, then all terms are of order n**~!.

Proof of Lemma 6.1. Let s € S,, with ||s|]| = 1. Then s(x) = BZJL.):V"O_laj cos(jx) and

D, —1
|(f —E(,),s)| =B Z a;{f —E(,), cos(j-)>‘
j=0
- 1/2 b1 1/2
<B[ Y @| | U —EU), cos(j))’
=0 Jj=0
D1 1/2
< B| > (f —EU), cos(j))’
j=0

With the same notation as previously,
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B*(f —E(l,), cos(j-)) = Jn (f(w) — EI,(w))B? cos(jw)dw

= J” (A (@) + Bu(w))B? cos(jw)dw
= 1)) + L))
Here,

1L()) = Ji (2 Z yrcos(kw) — 2 Z Vi cos(kw)) B? cos(jw)dw

k=n

2jy;
= ——Z kaJ B cos(kw)cos(jw)dw = _]TV/’

T

all terms ffﬂ B? cos(kw)cos(jw)dw being zero in the first sum because j < D,, < n < k so
that j = k never holds. For (), we use (34):

7 n—1 7
L()) = J (Ecg’n — Eco,,,)B2 cos(jw)dw + 2 Z(Ecg’n — Ecr,,,)J B? cos(rw)cos( jw)dw
—T r=1 —TT

6 n
= (Ecy, — Econ)d;0 + 2(Ec) , — Ec, )0, 1,21 < ;E el + 20,51 ,21).
k=0

Gathering the terms gives:

1/2 1/2
Dy—1 D, —1
[(f —E(L), s)| < Z L)+ L) | < | D 2050) + B())
=0
D,—1 2 1/2
n_4j2y3 144D
SN B oA (zw) ,
j=0
which ends the proof of Lemma 6.1. O
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