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We show the law of large numbers, the central limit theorem and the large-deviation principle for the

Bessel clock
� t

0
ds=(R(í)

s )2, where (R
(í)
t , t > 0) is a Bessel process of index í. 0. We also give

functional versions of these limit theorems.
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1. Introduction

Consider (Bt, t > 0), a Brownian motion (BM) in Rd , with d > 2, and B0 6� 0 almost surely

(a.s.). It is well known that (Bt, t > 0) a.s. does not visit 0, hence the increasing process

Ct �
� t

0

ds

jBsj2 , t > 0, (1)

is ®nite. We shall call this process the Bessel clock, since, on the one hand, it involves only

the Bessel process (jBtj, t > 0) and, on the other hand, (Ct, t > 0) is the time-change, or

`clock', which appears in the skew product decomposition

Bt � jBtjèC t
(2)

of (Bt, t > 0) into its radial part (jBtj, t > 0) and its angular part Bt=jBtj � èC t
, where

(èu, u > 0) is a BM taking values in Sdÿ1, the unit sphere of Rd , and independent of

(jBtj, t > 0) (see, for example, ItoÃ and McKean 1974; Revuz and Yor 1999).

More generally, if (R
(1)
t , t > 0) and (R

(2)
t , t > 0) are two independent Bessel processes

with respective dimensions d1 and d2, and if d1 � d2 > 2, and R
(1)
0 � R

(2)
0 . 0 a.s., then

there is the skew product representation

R
(1)
t � r tYC

(í)
t

, (3)

where

C
(í)
t �

� t

0

ds

r2
s

and í � (d1 � d2 ÿ 2)=2, and where r t � f(R
(1)
t )2 � (R

(2)
t )2g1=2 is a Bessel process with

dimension d1 � d2, independent of (Yu, u > 0), a so-called Jacobi process with dimensions

(d1, d2). See, for example, Warren and Yor (1997; 1998) for a discussion of these processes,
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and Hu et al. (1999) for some applications to asymptotics of diffusions in (Brownian) random

media. See also Karlin and Taylor (1981).

A third natural occurrence of the Bessel clock concerns geometric Brownian motion

(exp(â t � ít); t > 0) which may be represented in Lamperti's form as

exp(â t � ít) � R
(í)

A
(í)
t

, (4)

where (R(í)
u , u > 0) is a Bessel process with dimension d � 2(1� í) and

A
(í)
t �

� t

0

ds exp 2(âs � ís): (5)

Here, of course, R(í) and A(í) are not at all independent. In fact, they are closely related and,

in particular,

(A
(í)
t . u) � t . C(í)

u �
�u

0

ds

(R(í)
s )2

� �
, (6)

that is to say, the inverse of A(í) is the Bessel clock associated with R(í). This relationship

and the knowledge of the law of C(í) obviously yield some results on A
(í)
t ; see, for example,

Yor (1992) and Geman and Yor (1993) for some applications to the pricing of Asian options.

The previous discussion shows that there is some interest in studying the asymptotic

behaviour of (C
(í)
t ; t! �1), the Bessel clock associated with a Bessel process of

dimension d . 2. The following law of large numbers (LLN) and central limit theorem

(CLT) are essentially given in Revuz and Yor (1999).

Theorem 1.1. Let (R
(í)
t , t > 0) be a Bessel process starting from R

(í)
0 6� 0 a.s., with

dimension d . 2, i.e. í. 0. Then we have

1

log t
C

(í)
t ÿ!

t!�1
1

d ÿ 2
� 1

2í
a:s: and in Lp; (7)

���������
log t

p 1

log t

� t

0

ds

(R(í)
s )2
ÿ 1

d ÿ 2

� �
ÿ!law

t!�1 N , (8)

where N is centred Gaussian with variance ó 2 � 1=2í3.

Proof. These results are stated respectively as Exercise (4.23), Chapter IV and Exercise

(3.20), Chapter X in Revuz and Yor (1999). In fact, in these exercises (Rt, t > 0) denotes the

radial part of the BM in Rd , d . 2, but the proofs easily extend to Bessel processes (as

de®ned and studied in Revuz and Yor 1999, Chapter XI) with dimension d . 2. To give a few

details, we show how (8) follows from (7). In this proof, we skip the exponent í for the sake

of clarity. From ItoÃ's formula,

log Rt � log R0 �
� t

0

dâs

Rs

� d ÿ 2

2

� t

0

ds

R2
s

; (9)

hence
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���������
log t

p d ÿ 2

2 log t

� t

0

ds

R2
s

ÿ 1

2

� �
has the same asymptotic law as

1���������
log t
p

� t

0

dâs

Rs

� ãs t
(10)

where

St � C
(í)
t

log t

and where (ãu, u > 0) is a (Dubins±Schwarz) BM obtained after `log-scaling'. Finally, from

(7) the right-hand term of equality (10) converges in law towards

ã1=2í �law 1�����
2í
p ã1:

h

Since Bessel processes form the core of this paper, we devote the following section to

their most important properties. The remainder of the paper is organized as follows. In

Section 3, we complement the result (7) in Theorem 1.1 with a large-deviation principle

(LDP). In Section 4, we give functional versions of the LLN, CLT and LDP for fC(í)
t g.

Finally, in the Appendix, we show, informally, how to ®nd the rate function of the one-

dimensional LDP, by means of a contraction technique.

Some related work on large deviations for exponential functionals of BM can be found in

Zani (2000, Chapter 5).

2. A few facts about Bessel processes

The Bessel process (R
(í)
t , t > 0) of index í is an R�-valued diffusion with in®nitesimal

generator L (í) given by

L (í) f (x) � 1

2
f 0(x)� 2í� 1

2x
f 9(x), f 2 C 2

b(]0, �1]): (11)

Let r . 0 and let P(í)
r denote the law of (R

(í)
t , t > 0) starting from R

(í)
0 � r on C (R�, R�),

the set of continuous functions from R� to R�. Let (Rt, t > 0) be the canonical process on

C (R�, R�), and R t � ófRs, s < tg the canonical ®ltration. From Girsanov's theorem, for

í > 0, the mutual absolute continuity relation holds:

P
(í)

rjR t
� Rt

r

� �í

exp
ÿí2

2

� t

0

ds

R2
s

� �
P

(0)

rjR t
: (12)

If í, 0, the Bessel process reaches 0 a.s.; and for í, 0, we need to modify (12) as follows:
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P
(í)

rjR t\( t , T0)
� Rt

r

� �í

exp
ÿí2

2

� t

0

ds

R2
s

� �
P

(0)

rjR t
, (13)

where T0 � inffu . 0; Ru � 0g.
Moreover, we shall need a slight extension of the family of Bessel processes, for

dimension ä varying with time, ä(t) � 2(1� í(t)), and for í a simple function given by

í(t) �
Xn

i�1

íi1] t i , t i�1](t),

and the íi are real numbers. The construction of such processes is done step by step on each

time inverval: we still denote the corresponding law Pí(:). It is easily seen that the absolute

continuity property extends to this family; we leave the computation of the Radon±Nikodym

densities to the reader.

3. Large-deviation result

Write

S
(í)
t �

1

log t
C

(í)
t :

We state an LDP for (S
(í)
t , t > 0), and we show how this translates to (A

(í)
t , t! �1) via

property (6).

Theorem 3.1. Let (R
(í)
t , t > 0) be a Bessel process starting from R

(í)
0 6� 0 a.s., with

dimension d . 2. Set í � d=2ÿ 1. Then fS(í)
t g satis®es an LDP with speed (log t) and good

rate function

Ë�í (x) � (2íxÿ 1)2

8x
, x > 0: (14)

In particular, for any s . 0,

1

log t
P S

(í)
t .

1

2í
� s

� �
ÿ!

t!�1ÿË
�
í

1

2í
� s

� �
:

An immediate consequence is the following corollary:

Corollary 3.2. Let (âu; u > 0) be a real-valued BM starting from 0, í. 0 and A(í) given by

(5). Then, for any a . 0,

1

v
log P

1

v
log A(í)

v , 2íÿ a

� �
ÿ!

v!�1ÿ
a2

8
:

Proof of Corollary 3.2. This is immediate from Theorem 3.1 and relation (6).
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Proof of Theorem 3.1. With the notation introduced in Section 2 we obtain, for ö < í2=2,

E(í)
r (eöC t ) � E(íö)

r

Rt

r

� �2s(ö)

, (15)

where

s(ö) � 1

2
(íÿ íö)

and

íö �
�����������������
í2 ÿ 2ö

p
:

From the scaling property,

E(íö)
r (Rt)

2s(ö) � E
(íö)

r=
��
t
p (R1)2s(ö) t s(ö):

We compute the normalized cumulant generating function of Ct:

Ë t
í(ö) :� 1

log t
log E(í)

r (eöCt ) � s(ö)� 1

log t
log E

(íö)

r=
��
t
p (R1)2s(ö)

h i
ÿ log r2s(ö)

log t
:

Moreover,

E
(íö)

r=
��
t
p (R1)2s(ö) ! E

(í(ö))

0 (R1)2s(ö)

as t! �1, hence

Ëí
t (ö)! Ëí(ö) � s(ö):

Since s is an essentially smooth function on its domain, we can apply the GaÈrtner±Ellis

theorem (see Dembo and Zeitouni 1998). This yields the LDP, with rate function Ë�í � s�,
the Legendre dual of s. h

Remark 3.3. Similar results hold for
� t

a
ds=R2

s, where a . 0. The only change is that r should

be replaced everywhere in the above proof by Ra 6� 0 a.s. Asymptotically, this makes no

difference.

4. Functional results

In this section, we consider the functional version of Theorems 1.1 and 3.1. Let (R
(í)
t , t > 0)

be a d-dimensional Bessel process starting from R
(í)
0 6� 0 a.s. Denote by fZ(í)

n g the family of

random functions de®ned on [0, 1] by

u! Z(í)
n (u) � 1

n

�enu

1

ds

(R(í)
s )2

: (16)

Let C 0([0, 1]) be the set of continuous functions from [0, 1] to R such that f (0) � 0,

endowed with the supremum norm topology. We have the following theorem.

Large deviations for the Bessel clock 355



Theorem 4.1.

(i) The family fZ(í)
n gn converges a.s. on C0([0, 1]) towards u=(2í).

(ii) The family f ���
n
p

(Z(í)
n ÿ E(Z(í)

n ))g converges in distribution in C0([0, 1]) towards

1

2í
ãu, 0 < u < 1

� �
,

where (ãu, u > 0) is a Brownian motion.

For the proofs of Theorem 4.1 and 4.2, í is ®xed, and we make no further mention of this in

the notation.

Proof. (i) We know that Z n(u)! u=2í for any ®xed u 2 [0, 1]. This is a family of increasing

functions on a compact, converging pointwise (outside of a set of measure 0) to a continuous

function. Hence from Dini's theorem, the convergence is uniform (a.s.).

(ii) From formula (9),���
n
p d ÿ 2

2n

�e nu

1

ds

R2
s

ÿ u

2

� �
� 1���

n
p

�enu

1

dâs

Rs

� 1���
n
p log

Renu

enu=2

� �
: (17)

Denote by Hn(u) the above right-hand term. Then

sup
u<A

jHn(u)j � 1���
n
p sup

1< t<e nA

����log
Rt��

t
p
� �����, (18)

which tends to 0 as n!1, using on the one hand the law of the iterated logarithm, which

takes care of the large values of Rt, and on the other hand the Dvoretsky±Erd}os law (see, for

example, ItoÃ and McKean 1974) which takes care of the probability of Rt being bounded

away from 0. Furthermore

1���
n
p

�enu

1

dâs

Rs

� ã(n)

A
( n)
u

(19)

where

A(n)
u �

1

n

�enu

1

ds

R2
s

:

Now let us estimate, for any å. 0,

pn � P sup
u<T

jã(n)

A
( n)
u

ÿ ã(n)
cu j > å

� �
,

where c � 1=(2í). We can bound

pn < P sup
u<T

jã(n)

A
( n)
u

ÿ ã(n)
cu j > å; sup

u<T

jA(n)
u ÿ cuj < ä

� �
� P sup

u<T

jA(n)
u ÿ cuj > ä

� �
From BienaymeÂ ±Chebyshev,
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pn <
1

å2
E sup

u,í<2T

ã(n)
u ÿ ã(n)

v

(vÿ u)1=3

 !2
24 35ä2=3 � P sup

u<T

jA(n)
u ÿ cuj > ä

� �
: (20)

Let us ®x è. 0. Since the ®rst term on the right-hand side of (20) does not depend on n, we

can ®x ä small enough to have this term smaller than è=2 (see, for example, Stroock and

Varadhan 1979). Now, since An
u ! u=(2í), there exists N large enough such that, for any

n > N , the second right-hand side term of (20) is smaller than è=2. This proves that pn ! 0

as n!1. h

We also give a functional version of the previous LDP. The paths of Zn are increasing

and continuous. Therefore they belong to D , the space of cadlag functions on [0, 1]. Let

X be the set of functions f [0, 1]! R such that f (0) � 0, with the topology of pointwise

convergence. Let, for ö 2 D

I(ö) �
�1

0

Ë�í ( _ö1(s))ds� í2

2
ö2(1) if ö is non-decreasing, ö(0) � 0,

�1 otherwise,

8><>:
where ö1 and ö2 are the absolutely continuous and singular components of ö (see de Acosta

1994; Lynch and Sethuraman 1987).

The singular part in the action functional comes from the fact that the underlying log-

Laplace transform is not ®nite everywhere; see formula (26).

Theorem 4.2. The family fZ(í)
n g satis®es an LDP in X with speed n and good rate function

IX which coincides with I on D .

Proof. We proceed in three steps, detailed below. First, we state an LDP for a ®nite-

dimensional vector (Zn(u1), Zn(u2), . . . , Zn(up)) for any p-tuple (u1, . . . , up). Then a projective

limit argument leads to a functional LDP in X, endowed with the pointwise convergence

topology. A small improvement on this argument gives the result of the theorem. h

First step: Finite-dimensional result. Let p 2 N, and let u: 0 , u1 , u2 , . . . , up < 1

be a subdivision of [0, 1]. We set ti � enui , and we look for an LDP for the family

f(Zn(u1), Zn(u2), . . . , Zn(up))gn2N.

Theorem 4.3. The family f(Zn(u1), Zn(u2), . . . , Zn(up))gn2N satis®es an LDP with speed n

and good rate function de®ned by

Iu(y1, y2, . . . , yp) �
Xp

k�1

(uk ÿ ukÿ1)Ë�í
yk ÿ ykÿ1

uk ÿ ukÿ1

� �
if for every i 2 f1, . . . , pg, yi . yiÿ1,

�1 otherwise,

8><>:
(21)

where u0 � y0 � 0.
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Proof. Let (ö1, ö2, . . . , ö p) 2 R p. We compute the Laplace transform Eí
r(expfPök

~Ctk
g),

where tk � enuk , k > 1, t0 � enu0 � 1, and ~Ctk� � Ctk ÿ Ct0
. From Girsanov,

Eí
r exp

Xp

k�1

ök
~Ctk

( ) !
� Eí

r E0
Rt0

exp
Xpÿ1

k�1

ök
~Ctk
ÿ øp

~Ctp

( )
Rtp

Rt0

� �í
 !

(22)

where øp � í2

2
ÿ ö p:

Furthermore, the right-hand term of (22) can be written

Eí
r E0

Rt0
exp

Xpÿ1

k�1

ök
~Ctk
ÿ øp

~Ct p�1

( )
Rtp

Rt0

� �í Rt p

Rt pÿ1

� �ÿ ������
2øp

p
Rt p

Rt pÿ1

� � ������
2øp

p
expfÿøp( ~Ctp

ÿ ~Ct pÿ1
)g

 ! !
:

(23)

Proceeding in this manner, step by step, we can state that

Eí
r exp

Xp

k�1

ök
~Ctk

( ) !
� Eí(:)

r (Rá0

t0
Rá1

t1
Rá2

t2
. . . R

áp

t p
), (24)

where í(t) is a time-varying parameter for the changed Bessel process (see Section 2).

Let í0 � íp�1 � 0 and for any 1 < k < p,

vk �
Xp

i�k

öi, (25)

and let

DË � f(ö1, ö2, . . . , ö p); 8k 2 f1, . . . , pg, vk < í2=2g: (26)

Now if g(v) �
����������������
í2 ÿ 2v
p

, then

í(t) � g(vk) for t 2 (t kÿ1, tk], 1 < k < p, tÿ1 � 0:

The exponents ák are given by

ák � g(vk�1)ÿ g(vk) v p�1 � 0:

As in the previous section, we compute the normalized cumulant generating function. From

the scaling property,

Ëu
n(ö1, ö2, . . . , ö p) � 1

n
log Eí

r exp
X

öiCti

( ) !

� 1

n
log Eí(:)

r (Rá0

t0
Rá1

t1
Rá2

t2
. . . R

ápÿ1

t pÿ1
E
í( tp)

Rt pÿ1
(Rtpÿ t pÿ1

)áp )

� 1

n
log (tp ÿ tpÿ1)áp=2 � 1

n
log Eí(:)

r (Rá0

t0
Rá1

t1
Rá2

t2
. . . R

ápÿ1

t pÿ1
E
í( tp)

Rt pÿ1
=
������������
tpÿ t pÿ1
p (R

áp

t0
)):

It is easily seen that
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1

n
log(tp ÿ tpÿ1)áp=2 � 1

n
log(enup ÿ enu pÿ1 )á p=2 ! ápu p

2
:

Hence

Ëu
n ! Ëu,

where

Ëu(ö1, ö2, . . . , ö p) �
1

2

Xp

k�1

ák uk on DË

�1 otherwise:

8><>:
We now determine the Fenchel-Legendre dual of Ëu de®ned on R p by

Ë�u (y) � sup
ö2R p

fy � öÿËu((ö)g,

where y � (y1, y2, . . . , yp). Tedious but easy calculations lead to

Ë�u � Iu,

where Iu is given by expression (21). h

Second step: Projective limit. We now de®ne a projective system so that we can transport

the discrete result to a continuous one. Let J denote the collection of all ordered ®nite

subsets of [0, 1]. A partial order by inclusion can be de®ned on J as follows: for any

u � f0 , u1 < u2 < . . . < up < 1g and v � f0 , v1 < v2 < . . . < vq < 1g, u < v if and

only if, 8i < p, ui � vh(i) for some applications h: N! N. Set the natural projection pu,v:

pu,v: Rjuj ! Rjvj, u < v:

Denote Y u � Rjuj and let ~X be the projective limit of (Y u, pu,v)u<v2J. For f 2 X and

u � fu1, u2, . . . , u pg 2 J , let

pu( f ) � ( f (u1), f (u2), . . . , f (u p)):

Actually ~X can be identi®ed with X as follows: for any f 2 X , ( pu( f ))u2J 2 ~X since

pu( f ) � pu,v( pv( f )) for any u < v. Conversely, for any (xu)u2J of ~X , we can associate

f 2 X such that pu( f ) � xu, i.e. f (ti) � xti
. The projective topology on ~X coincides with

the pointwise topology on X . Note that the Y u are Hausdorff spaces and that the Iu of

Theorem 4.3 are good rate functions. Hence, we can apply the Dawson±GaÈrtner theorem (see

Theorem 4.6.1 of Dembo and Zeitouni 1998): the family fZ ng satis®es an LDP with rate n

and good rate function

IX (ö) � sup
u2J

Iu( pu(ö)):

Third step: Conclusion. If ö is not increasing, IX (ö) � �1. If ö is increasing and

cadlag, IX (ö) � I(ö) as a consequence of Lynch and Sethuraman (1987) page 617. This

ends the proof of Theorem 4.2. h
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Appendix

The rate function of Theorem 3.1 can be found, informally, by the contraction principle (see

Dembo and Zeitouni 1998). Let us consider for the sake of simplicity the case ä � d integer,

d . 2.

On the one hand, large deviations on St can be carried to large deviations on as

(1=t)
� t

0
jX sjÿ2 ds, via the classical transformation Xs � eÿs=2 R(es), where X s is the d-

dimensional stationary Ornstein±Uhlenbeck process with in®nitesimal generator Ld given by

Ldö(x) � 1
2
(Äö(x)ÿ h=ö(x), xi):

On the other hand, let us consider the level 2 LDP for X s, i.e. the LDP on the occupation

measure (1=t)
� t

0
äX s

ds. From Donsker and Varadhan (1975a; 1975b; 1976; 1983), the rate

function governing this LDP is

I2(ì) :� 1
2

�
Rd

j= f j2 dm0 � ÿ
�

Rd

f (x)Ld f (x)dm0(x), (27)

where m0 is the standard Gaussian measure, ì is a probability on Rd and dì=dm0 � f 2. The

use of this result ± and the classical transformation above ± in large-deviation theory has

been studied by Heck (1998) (see also March and SeppaÈlaÈinen 1997).

Let us now consider a contraction. If g 2 C b(Rd , R), the mapping ì 7! �
g dì is

continuous, and by the contraction principle, the LDP for (1=t)
� t

0
g(Xs)ds has rate function

I1(a) � inf I2(ì);

�
gdì � a

� �
: (28)

If g is a radial function, say g(x) � g(jxj2), we may look for radial f , say f (x) � f(jxj2). Let

us denote by m0 the gamma distribution, the image of m0 by the mapping x 7! jxj2.

Since j= f (x)2j2 � 4jxj2f9(jxj2)2, the variational problem (28) becomes

I1(a) � inf ÿ
�1

0

f(r)Ldf(r)dm0(r);

�
f2(r)g(r)dm0 � a;

�
f2(r)dm0(r) � 1

� �
, (29)

where Ld is the Laguerre in®nitesimal generator, Ldf(r) � 2rf 0(r)� (d ÿ r)f9(r). This

generator is the image of the radial part of Ld by the mapping r! r2. From the Lagrange

multipliers method, we ®nd the differential equation satisfed by f :

ÿLdf(r)� áf(r)g(r)� âf(r) � 0: (30)

We wish to apply this scheme to obtain large deviations on
� t

0
jXsjÿ2ds. We try

g(r) � rÿ1, which is far from continuous. In this case the partial differential equation (30)

becomes

ÿLdf(r)� árÿ1f(r)� âf(r) � 0: (31)

The only solution of (31) with the constraints as in (29) is

f a(r) � Carsa ,

with
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sa � 1

4a
ÿ í

2
and Ca � 2ÿsa

�����������������������������
Ã(í� 1)

Ã(2sa � í� 1)

s
, í � d ÿ 2

2
:

For such an f a,

I2( f dm0) � (2íaÿ 1)2

8a
,

and we check

I2( f dm0) � Ë�í (a):
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