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1. Introduction

Let ãn be the canonical Gaussian measure on Rn with density dãn(x)=dx �
(2ð)ÿn=2 exp(ÿjxj2=2), and let X and Y be two independent random vectors in Rn with

distribution ãn. Then, for any smooth functions f and g on Rn,

cov( f (X ), g(X )) �
�1

0

Eh= f (X ), =g(áX �
��������������
1ÿ á2
p

Y )i dá, (1:1)

where cov( f , g) � E fg ÿ E f Eg, where = stands for the usual gradient, and where h�, �i is

the Euclidean inner product in Rn. In an in®nite-dimensional setting (for functionals of the

Wiener process) the above identity is present in HoudreÂ and PeÂrez-Abreu (1995), and it was

then explicitly connected to the Ornstein±Uhlenbeck semigroup by Ledoux (1995); a related

approach is the work of Herbst and Pitt (1991). Indeed, if Pt, t > 0, is the Ornstein±

Uhlenbeck semigroup associated with ãn and acting on the space L1(ãn) via

(Pt g)(x) �
�

R n

g(eÿ t x�
�����������������
1ÿ eÿ2 t
p

y) dãn(y), x 2 Rn,

then (1.1) becomes

cov( f , g) �
��1

0

Eh= f , =Pt gi dt: (1:2)

The covariance representation (1.1) which somehow hides the presence of the Ornstein±
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Uhlenbeck operator was further studied in HoudreÂ et al. (1998). There, it is treated as a

particular case of a more general representation for the expectation of functions of in®nitely

divisible random vectors ± see HoudreÂ et al. (1998) and the references therein. It turns out

that (1.1) is a powerful tool in the study of a number of problems on Gaussian measures, such

as correlation inequalities and comparison results (HoudreÂ 1998). (It is also useful in the

corresponding studies of in®nitely divisible measures; HoudreÂ 2000).

In relation to (1.2), properties of the Ornstein±Uhlenbeck and other Markovian

semigroups have been deeply investigated in the isoperimetric context by Bakry (1994),

Bakry and Ledoux (1996) and Ledoux (1992; 1994; 1995; 1996; 1998; 1999). In particular

(Ledoux 1998), the semigroup technique is a tool for recovering the Gaussian isoperimetric

inequality due to Sudakov and Tsirel'son (1978) and Borell (1975). This isoperimetric

inequality implies the following inequality for the deviations of a Lipschitz function f on

Rn from its medians m( f ) with respect to ãn:

ãnfj f ÿ m( f )j > hg < 2(1ÿÖ(h)), h . 0: (1:3)

Here Ö(h) � ã1((ÿ1, h]) is the distribution function of ã1.

In this paper, we present (among other results) another related application based on (1.1).

We prove that, for every Lipschitz function f on Rn, that is, such that k f kLip < 1,

ãnfj f ÿ E f j > hg < Ej f ÿ E f j e
ÿh2=2

h
, h . 0: (1:4)

The proof of this estimate is given in Section 2, where we also discuss how it improves some

known deviation inequalities. However, we would like to stress here that it is unlikely that it

is possible to derive (1.4) from (1.3) or from the Gaussian isoperimetric inequality in its full

strength. The latter allows one to reduce (1.4) to dimension 1, but even in this case we are

faced with analytic dif®culties.

Another easy application of (1.1) worth mentioning is the following exponential moment

inequality: for any smooth function f on Rn such that E f � 0,

Ee f < Eej= f j2 : (1:5)

With a worse constant (ð2=8) in the exponent, inequality (1.5) is due to Pisier (1986), while

as stated above it was proved in Bobkov and GoÈtze (1999). Actually, the result obtained in

Bobkov and GoÈtze (1999) shows that under a logarithmic Sobolev inequality, a result similar

to (1.5) always holds.

If ìá denotes the Gaussian measure on Rn 3 Rn which is the distribution of the random

vector (X , áX �
��������������
1ÿ á2
p

Y ), and if ðn denotes the probability measure
� 1

0
ìá dá, then (1.1)

becomes

cov( f (X ), g(X )) �
�

Rn

�
Rn

h= f (x), =g(y)i dðn(x, y): (1:6)

It is the form (1.6) that we apply to obtain (1.4), only using the fact that the marginals of ðn

are ãn. One may also wonder whether or not it is possible to ®nd a representation similar to

(1.6) for random vectors X in Rn with other, non-Gaussian distributions. As it turns out, for
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n > 2 this is not the case: the existence of a measure ðn in (1.6) implies that X is Gaussian.

We prove this characterization at the end of Section 2.

There exists, however, one remarkable exception: if we let = denote a discrete gradient

for functions on the discrete cube fÿ1, 1gn, it is possible to ®nd a discrete analogue of

(1.6) for the canonical Bernoulli measure ìn on fÿ1, 1gn (which assigns the mass 2ÿn to

each point). Our main result in this situation asserts that for all f and g on fÿ1, 1gn,

cov( f , g) �
�
fÿ1,1g n

�
fÿ1,1gn

h= f (x), =g(y)i dín(x, y), (1:7)

where the mixing probability measure ín on fÿ1, 1gn 3 fÿ1, 1gn has density

dín(x, y)

dìn(x) dìn(y)
�
�1

0

Yn

i�1

(1� áxi yi) dá:

We prove this representation in Section 3. It also has a semigroup version: introducing a

family of operators

(Qt g)(x) �
�
fÿ1,1g n

Yn

i�1

(1� eÿ t xi yi)g(y) dìn(y), x 2 fÿ1, 1gn, t > 0,

where g is an arbitrary function on fÿ1, 1gn, then (1.7) becomes

cov( f , g) �
�1

0

Eh= f , =Qt gi dt: (1:8)

The semigroup Qt enjoy properties similar to the Ornstein±Uhlenbeck semigroup Pt, and we

refer to Bakry (1994) for the precise relationship between Pt and Qt.

The main point of the representation (1.7) is that it can be regarded as an independent

approach, via the central limit theorem, to large deviations in Gauss space such as the

inequalities (1.4) and (1.5). However, in contrast to the Gaussian case, the range of

applications of (1.7) to concrete functions on the discrete cube seems to be much more

restricted, due to the fact that the discrete gradients are not local. An easy direct application

of (1.7)±(1.8) to functions f on f0, 1gn, when we can work freely with the discrete

gradient and the discrete perimeter, involves only the classical functions f (x) �
(x1 � . . . � xn)=

���
n
p

. In this case, it can be shown that, for a universal constant K,

ìnf f > hg < K
eÿh2=2

h
, h . 0: (1:9)

As in (1.4), the main point in (1.9) is the factor 1=h on the right-hand side. Without this

factor, the inequality is trivial and holds for arbitrary linear functions f (x) �
a1x1 � . . . � anxn with a2

1 � . . . � a2
n � 1 (this is the so-called sub-Gaussian inequality

for Bernoulli sums), and even more generally, for all f on fÿ1, 1gn with j= f j < 1, E f � 0

(as a consequence of the Gross logarithmic Sobolev inequality on the discrete cube).

However, we do not known if the `true' Gaussian tails (with the factor 1=h) can be reached

for such a general family of functions. In the class of linear functions, the problem of

obtaining (1.9), known in the literature as Eaton's conjecture, was af®rmatively solved by
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Pinelis (1994) by comparing suitable moments of f with corresponding moments of a

normally distributed random variable. We conclude by giving in Section 4 a simple inductive

proof of this result.

2. Deviation inequalities in Gauss space

Since on Rn 3 Rn the probability measure ðn in (1.6) has marginals ãn, as an immediate

consequence we obtain:

Theorem 2.1. For all locally Lipschitz functions f and g on Rn such that k f kLip < 1,

cov( f , g) < Ej=gj, (2:1)

where the covariance and the expectation are taken with respect to ãn.

More precisely, as soon as Ej=gj,�1, we have Ej f j jgj,�1 so that the covariance

cov( f , g) is well de®ned and satis®es the inequality (2.1).

To better understand how this inequality is sharp, let us observe that for the linear

functions f (x) � ha, xi with jaj � 1 and for the indicator functions g of half-spaces H of

the form H � fx 2 Rn : ha, xi > cg there is (in an asymptotic sense) equality in (2.1).

Let us apply (2.1) to g � e tf , t > 0, assuming for the time being that E f � 0:

E f e tf � cov( f , e tf ) < t Ej= f je tf < t Ee tf :

For the function u(t) � log Ee tf , we have E f e tf � u9(t)eu( t), hence, u9(t) < t. Since

u(0) � 0, we conclude that u(t) < t2=2, that is, Ee tf < e t2=2. Thus, for all f on Rn with

k f kLip < 1,

Ee tf < e t E f� t2=2: (2:2)

By Chebyshev's inequality, it follows that, for all h > 0,

ãnfj f ÿ E f j > hg < 2 eÿh2=2: (2:3)

Using stochastic integrals, inequality (2.2) was proved by G. Pisier and B. Maurey (Pisier

1986, pp. 180±181). This type of idea goes back to Ibragimov et al. (1976). They expressed

the functional f in the form f � E f � W (ô), where W is the standard Wiener process and ô
is a stopping time with 0 < ô < 1, so that f ÿ E f < sup0< t<1 W (t). Since the last supremum

is distributed as jW (1)j, they deduced from this the following:

ãnf f ÿ E f > hg < 2(1ÿÖ(h)):

Applying the above to ÿ f , we obtain an analogue of (1.3) which is of course stronger than

(2.3) for large h:

ãnfj f ÿ E f j > hg < 4(1ÿÖ(h)): (2:4)

Different proofs of (2.2) based on semigroup techniques and on Gross's logarithmic

inequality were given by Ledoux (1992; 1994). A stronger in®mum-convolution inequality
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was found by Maurey (1991); see also Bobkov and GoÈtze (1999) for more general measures.

We now make precise the argument used in the derivation of (2.2) from (2.1) and show, in

particular, how the constant 4 in (2.4) can be improved.

Theorem 2.2. For every Lipschitz function f on Rn with k f kLip < 1, the function

Tf (h) � eh2=2E( f ÿ E f )1f fÿE f >hg

is non-increasing in h > 0. In particular, for all h . 0,

ãnf f ÿ E f > hg < E( f ÿ E f )
eÿh2=2

h
, (2:5)

ãnfj f ÿ E f j > hg < Ej f ÿ E f j e
ÿh2=2

h
: (2:6)

Note that Tf is a constant function when f is linear. To connect (2.6) with (2.4), let us

recall Pisier's inequality Ej f ÿ E f j < (2=
������
2ð
p

)Ej= f j (cf. Pisier 1986) from which it follows

that Ej f ÿ E f j < 2=
������
2ð
p

when k f kLip < 1. Hence, inequality (2.6) implies that

ãnfj f ÿ E f j > hg <
2������
2ð
p eÿh2=2

h
:

Recalling the asymptotic relation

1ÿÖ(h) � eÿh2=2

h
������
2ð
p (1� o(1)), as h! �1,

we also obtain

ãnfj f ÿ E f j > hg < 2(1ÿÖ(h))(1� o(1)), (2:7)

as h! �1. Thus, for h large, (2.7) is a little better than (2.4). As in (1.3), here the constant

2 is optimal, as the example of linear functions shows. It can be made even smaller in some

special situations when we have additional information about the value of Ej f ÿ E f j (e.g. for

f (x) � maxi<n xi).

Similar inequalities can be written for one-sided deviations, but we cannot then apply

Pisier's inequality. Instead, in order to obtain a sharp constant, one can apply a related result

of Pinelis (1996) showing that, for every convex function Ø on Rn, the value of

EØ( f ÿ E f ) is maximized within the class of all Lipschitz functions f on Rn for linear

functions of Euclidean norm 1. In particular, taking Ø(x) � x�, we obtain that

E( f ÿ E f )� < 1=
������
2ð
p

. Thus, by (2.6), for all h . 0,

ãnf f ÿ E f > hg <
1������
2ð
p eÿh2=2

h
� (1ÿÖ(h))(1� o(1)):

Actually, as shown in Bobkov (2000), for every h . 0, we have

sup
k f kLip<1

ãnf f ÿ E f > hg � 1ÿÖ(á(h)),
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where á � á(h) is the unique solution of the equation áÖ(á)� j(á) � h.

Proof of Theorem 2.2. One may assume that E f � 0 and that, moreover, as a random

variable on (Rn, ãn), f has a continuous positive density p on the whole real line. Otherwise

one can apply the statement of the theorem to functions fä(x1, . . . , xn, xn�1) �
(1ÿ ä) f (x1, . . . , xn)� äxn�1, 0 , ä, 1, and then let ä tend to 0. As in obtaining (2.2),

applying (2.1) to g � U ( f ), where U is a non-decreasing (piecewise) differentiable function

on R, gives

E f U ( f ) < EU 9( f ): (2:8)

Let F be the distribution function of f . Given h . 0 and å. 0, applying (2.8) to the function

U (x) � min((xÿ h)�, å) leads to� h�å

h

x(xÿ h) dF(x)� å

�1
h�å

x dF(x) < F(h� å)ÿ F(h):

Dividing by å and letting å tend to 0, we obtain, for all h . 0,�1
h

x dF(x) < p(h):

Thus, the function V (h) � �1
h

x dF(x) � �1
h

xp(x) dx satis®es the differential inequality

V (h) < ÿV 9(h)=h, that is,

(log V (h))9 < (ÿh2=2)9:

This is equivalent to saying that log V (h)� h2=2 is non-increasing, and therefore so is the

function Tf (h) � V (h) exp(h2=2). Combining (2.5) with the same inequality applied to ÿ f ,

we get (2.6). Theorem 2.2 is proved. h

We now present the proof of the exponential inequality (1.5).

Theorem 2.3. For any smooth function f on Rn such that E f � 0,

Ee f < Eej= f j2 :

Proof. De®ne the constant â by

Eðn
eh= f (X ),= f (Y )i � eâ,

where ðn is the measure from (1.6). De®ning â is equivalent to saying that, for all

g � g(x, y) > 0,

Eðn
(h= f (X ), = f (Y )i ÿ â)g < Entðn

g � sup
fh:Eðn eh<1g

Eð n
gh:

Taking g � e f ( y) gives
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E f e f ÿ âEe f � cov( f , e f )ÿ âEe f

� Eð n
h= f (X ), = f (Y )ie f (Y ) ÿ âEe f

< Ent e f � E f e f ÿ Ee f log Ee f :

Hence, â > log Ee f , that is, eâ > Ee f , and thus,

Ee f < Eðn
eh= f (X ),= f (Y )i < Eðn

ej= f (X )j2�j= f (Y )j2=2:

The Cauchy±Schwarz inequality ®nishes the proof. h

To ®nish this section, we turn to a characterization of Gaussian measures via covariance

representations of the form (1.6).

Theorem 2.4. Let X � (X 1, . . . , X n) be a random vector in Rn, n > 2, and assume there

exists a ®nite measure ð on Rn 3 Rn such that, for all bounded smooth functions f and g on

Rn,

cov( f (X ), g(X )) �
�

R n

�
Rn

h= f (x), =g(y)i dð(x, y): (2:9)

Then, for some a 2 Rn and ó > 0, X has characteristic function

ø(v) � Eeihv,X i � eiha,vi�ó 2jvj2=2, v 2 Rn:

Proof. For the functions f (x) � eihv1,xi, g(x) � eihv2,xi, the identity (2.9) has the form

ø(v1 � v2)ÿ ø(v1)ø(v2) � ÿhv1, v2iØ(v1, v2),

where Ø is Fourier transform of the measure ð. In particular,

hv1, v2i � 0) ø(v1 � v2) � ø(v1)ø(v2):

This extends easily to n vectors v1, . . . , vn 2 Rn:

hvi, v ji � 0 for all i 6� j) ø(v1 � . . . � vn) � ø(v1) . . . ø(vn):

Hence, if (ei)1<i<n is an orthonormal basis of Rn, for all t1, . . . , tn 2 R,

ø(t1e1 � . . . � tnen) � ø(t1e1) . . . ø(tnen):

But this means that the random variables hX , e1i, . . . , hX , eni are independent. In particular,

X 1, . . . , X n are independent. Now by the assumption that n > 2, we can take two linear

forms of these independent random variables, say, Y1 � X1 � X 2 and Y2 � X 1 ÿ X2, and

since Y1 and Y2 are independent, we conclude by the Darmois±Skitovitch theorem (cf. Kagan

et al. 1973) that X 1 and X2 are Gaussian. In the same way, all the X i are Gaussian. The rest

of the proof is now clear. h
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3. Covariance representations on the discrete cube

For functions f on fÿ1, 1gn, we de®ne a discrete gradient = f (x), x 2 fÿ1, 1gn, as the

vector (=1 f (x), . . . , =n f (x)) with coordinates

=k f (x) � 1
2
f f (x1, . . . , xkÿ1, 1, xk�1, . . . , xn)ÿ f (x1, . . . , xkÿ1, ÿ1, xk�1, . . . , xn)g:

That is, =k f (x) represents a sign-invariant normalized increment of f along the kth

coordinate. In particular, it does not depend on xk . There is another important difference

operator Ã f (x) � (Ã1 f (x), . . . , Ãn f (x)) de®ned by

Ãk f (x) � xk=k f (x) � 1
2
f f (x)ÿ f (sk(x))g,

where

[sk(x)]i � xi, i 6� k,

ÿxk , i � k,

�
is the neighbour of x along the kth coordinate.

Recall that the measure ín on fÿ1, 1gn 3 fÿ1, 1gn is de®ned by its density

dín(x, y)

dìn(x) dìn(y)
�
�1

0

Yn

i�1

(1� áxi yi) dá,

with respect to the uniform probability measure ìn on fÿ1, 1gn. Clearly, ín is a probability

measure with marginals ìn. In the rest of this paper, expectations, variances and covariances

of functions on fÿ1, 1gn will always be understood with respect to ìn. We turn now to the

basic covariance representation:

Theorem 3.1. For all functions f and g on fÿ1, 1gn,

cov( f , g) �
�
fÿ1,1g n

�
fÿ1,1g n

h= f (x), =g(y)i dín(x, y): (3:1)

As in the Gaussian case, (3.1) can be rewritten in terms of the semigroup Qt, where

Qt(u1, . . . , un) � (Qtu1, . . . , Qtun), and becomes

cov( f , g) �
�1

0

EhÃ f , Qt(Ãg)i dt

�
�1

0

EhÃ f , ÃQt(g)i dt �
�1

0

Eh= f , =Qt(g)i dt: (3:2)

For large values of n, the covariance functional can also be developed in terms of the

difference operators of higher orders (see also HoudreÂ and PeÂrez-Abreu 1995; Ledoux 1995;

HoudreÂ et al. 1998; HoudreÂ 1998). We illustrate this general procedure with the example of

the second-order difference operators =ij f (x) � =i(= j f (x)), where we assume that n > 2,

and 1 < i, j < n. Note that =ij f � = ji f , that this function does not depend on (xi, xj) and

that, moreover, =ii f � 0. When n � 2,
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=1,2 f (x) � 1
4
f f (1, 1)ÿ f (1, ÿ1)ÿ f (ÿ1, 1)� f (ÿ1, 1)g,

and similar expressions can be written in the general case. Introduce the matrix

=2 f (x) � (=ij f (x))n
i, j�1 and the trace tr(=2 f (x)=2 g(y)) �Pi, j=ij f (x)=ij g(y). With this

notation, we have:

Theorem 3.2. For all functions f and g on fÿ1, 1gn, n > 2,

cov( f , g) � hE= f , E=gi �
�
fÿ1,1gn

�
fÿ1,1gn

tr(=2 f (x)=2 g(y)) dën(x, y), (3:3)

where

dën(x, y)

dìn(x) dìn(y)
�
�1

0

Yn

i�1

(1� áxiyi)(1ÿ á) dá:

Note that ën(fÿ1, 1gn 3 fÿ1, 1gn) � 1
2
, and that 2ën has marginals ìn.

Both sides of the identities (3.1)±(3.3) are bilinear forms in f, g, so to prove them it

suf®ces to verify their validity for some generating system of functions, for example for

Walsh's functions. Here, we are in the typical situation where it is more dif®cult to ®nd an

identity than to prove it. So, the proof of Theorem 3.2 is omitted, and we prove Theorem

3.1.

The Walsh functions åð : fÿ1, 1gn ! fÿ1, 1g are de®ned for an arbitrary set

ð � f1, . . . , ng by

åð(x) �
Q

i2ðxi, ð 6� Æ,

1, ð � Æ:

�
For simplicity of notation, we set åk � åfkg, k � 1, . . . , n, and thus åð �

Q
i2ðåi for ð 6� Æ.

Also, we denote by 1ð the indicator function of ð, while 1ð1�ð2
is understood as 1 if ð1 � ð2,

and 0 otherwise. We recall below some elementary properties of the Walsh functions:

1. åð1
åð2
� åð1Äð2

, where Ä is the symmetric difference of the corresponding sets;

2. Eåð � 0, if ð 6� Æ; EåÆ � 1;

3. Eåð1
åð2
� 1(ð1�ð2);

4. Ãkåð � åð1ð(k), for all k � 1, . . . , n;

5. =kåð � åðnfkg1ð(k), for all k � 1, . . . , n;

6. (=2åð)ij � =ijåð � åðnfi, jg1ð(i)1ð( j), for all i 6� j, 1 < i, j < n (n > 2). In particular,

=ijåð � 0, if jðj � cardð < 1.

With the above properties, the proof of Theorem 3.1 is easy.

Proof of Theorem 3.1. Let f � åð1
, g � åð2

. We may also assume that ð1, ð2 6� Æ. Then

cov( f , g) � 1ð1�ð2
. On the other hand,

=k f (x) � =kåð1
(x) � åð1nfkg(x)1ð1

(k),

=k g(y) � =kåð2
(y) � åð2nfkg(y)1ð2

(k),
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so

h= f (x), =g(y)i �
Xn

k�1

(åð1nfkg(x)1ð1(k))(åð2nfkg(g)1ð2
(k))

�
X

k2ð1\ð2

åð1nfkg(x)åð2nfkg(y):

In addition,
Qn

i�1(1� áxi yi) �
P

ðájðjåð(x)åð(y), hence,Yn

i�1

(1� áxi yi)h= f (x), =g(y)i �
X
ð

X
k2ð1\ð2

ájðjåð(x)åð1nfkg(x)åð(y)åð2nfkg(y):

Thus, �
fÿ1,1g n

�
fÿ1,1g n

Yn

i�1

(1� áxi yi)h= f (x), =g(y)i dìn(x) dìn(y)

�
X
ð

X
k2ð1\ð2

ájðjEåðåð1nfkgEåðåð2nfkg

�
X
ð

X
k2ð1\ð2

ájðj1(ð�ð1nfkg)1(ð�ð2nfkg) � 0, if ð1 6� ð2:

If ð2 � ð1, then one takes ð � ð1nfkg above and, after interchanging the sums, this is equal

to
P

k2ð1
ájð1jÿ1 � jð1jájð1jÿ1. Finally,

� 1

0
jð1jájð1jÿ1 dá � 1, and the result follows. h

4. Large deviations for Bernoulli sums

Since on fÿ1, 1gn 3 fÿ1, 1gn the probability measure ín in (3.1) has marginals ìn, as an

immediate consequence of Theorem 3.1 and in complete similarity to the Gaussian case we

obtain:

Theorem 4.1. For all functions f, g on fÿ1, 1gn such that j= f (x)j < 1, for all x 2 fÿ1, 1gn,

cov( f , g) < Ej=gj, (4:1)

where the covariance and the expectation are taken with respect to ìn.

This is the discrete analogue of the Gaussian inequality (2.1), and at the same time it

is more general: if we apply (4.1) in dimension nk to functions of the form

f ((x1 � . . . � xk)=
���
k
p

), g((x1 � . . . � xk)=
���
k
p

), where x1, . . . , xk 2 fÿ1, 1gn and where f

and g are smooth functions on Rn with k f kLip < 1, in the limit we obtain (2.1), by the

central limit theorem in Rn. As a result, we obtain Theorem 2.1 and its consequences for the

Gauss space on the basis of Theorem 4.1.

Now let us see how to apply (4.1) to the problem of large deviations on the discrete cube
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itself. Consider the Bernoulli sums Sn � å1 � . . . � ån. Applying (4.1) to f � Sn=
���
n
p

,

g � 1fS n=
���
n
p

>hg, we obtain

hìn

Sn���
n
p > h

� �
< E

Sn���
n
p 1fS n=

���
n
p

>hg < ì�n
Sn���

n
p > h

� �
:

Here, we use the notation

ì�n (A) � Ej=1Aj � EjÃ1Aj

� 1

2
E card1=2fi < n : (x 2 A, si(x) =2 A) or (x =2 A, si(x) 2 A)g,

which de®nes the discrete perimeter of a set A � fÿ1, 1gn (1A is the indicator function of

A). Thus, in order to obtain the Gaussian tails, that is, the inequality of the form

ìn

Sn���
n
p > h

� �
< K

eÿh2=2

h
, h > 1, (4:2)

where K is a universal constant, we need just an estimate

ì�n
Sn���

n
p > h

� �
< Keÿh2=2: (4:3)

The latter is easily attained by applying Stirling's formula. One could try to prove inequality

(4.2) for arbitrary linear functions f , using Theorem 4.1 and the same argument. However,

we do not know how to prove an appropriate generalization of the anti-isoperimetric

inequality (4.3). Nevertheless, we would like to give here an alternative simple proof of

Pinelis's result:

Theorem 4.2 (Pinelis 1994). There exists a universal constant K such that, for all linear

functions f (x) � a1x1 � . . . � anxn with a2
1 � . . . � a2

n � 1, we have

ìnf f > hg < K(1ÿÖ(h)), h . 0: (4:4)

Proof. For 0 , h <
���
3
p

, since ìnf f > hg < 1
2
, inequality (4.4) holds with K �

1=(2(1ÿÖ(
���
3
p

))). Thus, we may assume that h >
���
2
p

. For these values, we prove (4.4) by

induction over n. The case n � 1 is clear. Let n . 1 and assume (4.4) holds for nÿ 1. If���
2
p

< h <
���
3
p

, there is nothing to prove, as explained above. Let h >
���
3
p

. Assume that all

the ai > 0 and set a � an, b �
�������������
1ÿ a2
p

, so that f (x) � bg(x1, . . . , xnÿ1)� axn, where g is a

linear functional of Euclidean norm 1. Thus,

ìnf f > hg � 1
2
ìnÿ1 g >

hÿ a

b

� �
� ìnÿ1 g >

h� a

b

� �� �
:

For h >
���
3
p

, (hÿ a)=b >
���
2
p

, so that we may apply the induction hypothesis; therefore, in

order to perform the induction step, we need simply to verify that, for all h >
���
3
p

and for all

a, b > 0, with a2 � b2 � 1,
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1
2

Ö
hÿ a

b

� �
�Ö

h� a

b

� �� �
> Ö(h):

It suf®ces to see that the function u(a) � Ö((hÿ a)=b)�Ö((h� a)=b) is non-decreasing in

0 < a , 1. Since

b9 � ÿ a

b
,

hÿ a

b

� �
9 � ÿ 1ÿ ah

b3
,

h� a

b

� �
9 � ÿ 1� ah

b3
,

the inequality u9(a) > 0 is equivalent to

(1� ah)j
h� a

b

� �
> (1ÿ ah)j

hÿ a

b

� �
, (4:5)

which is trivial for a > 1=h. For 0 < a , 1=h, taking the logarithm, (4.5) becomes

v(a) � log(1� ah)ÿ log (1ÿ ah)ÿ 2ah

b2
> 0:

After another differentiation, we see that v9(a) > 0 if and only if

1

1ÿ a2 h2
>

1� a2

b4
,

that is, if and only if a2(1� h2)� h2 ÿ 3 > 0. Thus, v is increasing if h >
���
3
p

, and since

v(0) � 0, we obtain v(a) > 0, for all a 2 [0, 1]. Theorem 4.2 follows. h
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