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In this paper, we consider the consistency and asymptotic normality of the maximum likelihood
estimator for a possibly non-stationary hidden Markov model where the hidden state space is a
separable and compact space not necessarily finite, and both the transition kernel of the hidden chain
and the conditional distribution of the observations depend on a parameter 6. For identifiable models,
consistency and asymptotic normality of the maximum likelihood estimator are shown to follow from
exponential memorylessness properties of the state prediction filter and geometric ergodicity of
suitably extended Markov chains.
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1. Introduction

Hidden Markov models (HMMs) form a wide class of discrete-time stochastic processes,
used in different areas such as speech recognition (Juang and Rabiner 1991), neurophysiology
(Fredkin and Rice 1987), biology (Churchill 1989), econometrics (Chib et al. 1998) and time-
series analysis (De Jong and Shephard 1995; Chan and Ledolter 1995; see also MacDonald
and Zucchini 1997 and the references therein).

Most work on maximum likelihood estimation in such models has focused on iterative
numerical methods, suitable for approximating the maximum likelihood estimator. For finite
hidden state-space models, the pioneering contribution is due to Baum et al. (1970) who
presented an early and non-trivial application of the expectation—maximization principle
(Dempster et al. 1977), known as the ‘forward—backward’ procedure. The more challenging
issue of hidden Markov models with continuous state space was much studied throughout
the 1990s, mostly using simulation-based approaches made possible by recent advances in
Markov chain Monte Carlo methods (Chib ef al. 1998; Durbin and Koopman 1997; De Jong
and Shephard 1995; Chan and Ledolter 1995).

By contrast, the statistical issues regarding the asymptotic properties of the maximum
likelihood estimator for hidden Markov models have until recently been largely ignored.
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Baum and Petrie (1966) showed the consistency and asymptotic normality of the maximum
likelihood estimator in the particular case where both the observed and the latent variables
take only finitely many values. These results were recently extended in a series of papers by
Leroux (1992), Bickel and Ritov (1996), Bickel et al. (1998) and Bakry et al. (1997).
Bickel et al. generalized the method followed by Baum and Petrie (1966) to the case where
the hidden Markov process X, takes a finite number of values, the observations belonging
to a general topological space. Around the same time, LeGland and Mevel (2000a; 2000b)
independently developed a different technique to prove the consistency and asymptotic
normality of the maximum likelihood estimator (Mevel 1997) for hidden Markov models
with finite hidden state space. The work of LeGland and Mevel (2000a; 2000b) is based on
the remark that the likelihood can be expressed as an additive function of an extended
Markov chain. The key to the proof of LeGland and Mevel (2000b) consists in showing
that, under appropriate conditions, this extended chain is geometrically ergodic, in a sense
given below. The proof applies even when the hidden Markov chain is non-stationary, that
is, the initial distribution of the chain does not correspond to its invariant distribution, while
Baum and Petrie (1966), Leroux (1992) and Bickel et al. (1998) assume stationarity (see,
however, Bakry ef al. 1997, for an extension to the non-stationary case, based on a coupling
technique).

In this paper, we study maximum likelihood estimation when the hidden Markov chain
takes values in a topological space, assumed to be compact. The main result is the con-
sistency of the maximum likelihood estimator, under the usual condition of identi-
fiability of the parameters. We also identify the limit of the likelihood process as the
Kullback—Leibler divergence. In addition, we prove the asymptotic normality of the
maximum likelihood estimator in both the stationary and the non-stationary case. To the
best of our knowledge, the only contribution dealing with the maximum likelihood for
hidden Markov models taking values in a general topological space (for the definition of
Markov chains in such spaces, see Meyn and Tweedie 1993) is Jensen and Petersen (1999).
The authors show the asymptotic normality (but not the consistency) of the maximum
likelihood estimator when the hidden Markov chain is stationary, the technique being based
on an extension of Bickel et al. (1998). The technique used in our contribution to prove the
consistency and the asymptotic normality of the maximum likelihood estimator for general
hidden Markov models is completely different and is essentially based on the technique
developed by LeGland and Mevel (2000a; 2000b) in a finite state space. A distinctive
advantage of this technique is that it makes it possible to study in a common framework the
stationary and the non-stationary case. The main difficulty encountered when trying to use
the ‘extended chain method’ for hidden Markov models with a continuous state space is
that some components of the extended chain lie in an infinite-dimensional functional space.
This is in sharp contrast to the case of a finite hidden state space in which the predictive
density can always be identified with an element of RY, where M is the number of
different possible values for X,. Instead of the Riesz representation theorem (Mevel 1997),
we investigate another approach based on the asymptotic tightness of a sequence of
measures to prove the existence of an invariant measure for the extended chain (Sunyach
1975). It is then possible to extend the result of Leroux (1992) under the basic assumption
that the model is identifiable (in the sense that different parameter values lead to different
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distributions for the stationarized version of the observed process; see the definition below),
a point covered by neither Mevel (1997) nor Jensen and Petersen (1999). We stress that the
technique developed in Leroux (1992) to prove consistency, which is based on the Kingman
subadditive theorem, cannot be immediately adapted to continuous state space. For technical
reasons detailed below, we restrict our attention to cases where the hidden state space can
be assumed to be compact.

The rest of the paper is organized as follows. In section 2, we first prove the geometric
ergodicity of the extended chain. As a corollary, pointwise convergence of the normalized
log-likelihood is obtained and its limit is identified with the generalized Kullback—Leibler
divergence. The final part of Section 2 deals with the consistency of the maximum like]-
lihood estimator. Section 3 is devoted to the asymptotic normality of the maximum
likelihood estimator, using the technique of Section 2 applied to a further extended Markov
chain, encompassing the gradient and the Hessian of the prediction filter.

2. Consistency of the maximum likelihood estimator

Let {X,},—, be a Markov chain on a compact set K C.2", where .%" is a separable state
space, equipped with a metrizable topology, and .#(K) is the associated Borel o-field. We
denote by {Qy(x, 7)), x €K, . Z € #(K)} the Markov transition kernel (see Meyn and
Tweedie 1993) of the chain. We also let {Y,}), be a sequence of random variables taking
values in a space 7/ which is separable with respect to a topology that is metrizable by a
complete metric. Conditional on {X,} ", the Y, are independent, with a conditional density
go(y|X,;) dependent on X, only. Here the density is with respect to a o-finite measure v on
the Borel o-field .%(7/). 4" and %/ are usually subsets of R® and R’ respectively, but they
may also be higher-dimensional spaces. Moreover, both Oy and gy depend on a parameter 6
in ©, where O is a compact subset of R”. © is equipped with a norm denoted by || - ||. The
true parameter value will be denoted 6* and is assumed to be in the interior of ©.

Assume that each transition kernel Oy has a density gy with respect to the same o-finite
dominating measure y on .#". For notational simplicity, it is assumed that the initial
distribution of {X;} under 0 has a density with respect to y denoted by 7. We stress that
7* is not necessarily the invariant distribution of the chain. Denote by P* the probability
distribution of {Y,},=0 induced by the parameter (0*, ), and let E* be the associated
expectation. The convergence results that will be proved throughout this paper hold under
P*. In the following, for m < n, denote by Y™ the family of random variables
(Y, .., Yu). The L, (K, Z(K), y)-norm will be denoted || -|,, and C, C’, ... will den-
ote unspecified finite constants which may take different values upon each appearance.
Moreover, for any measurable function f on (K, .Z(K), v), write esssup(f) = inf{M =0,
y{{M <|f|}) =0} and, if f is non-negative, essinf(f)=sup{M =0, y{M > f}) =0}
(with obvious conventions if those sets are empty).

As outlined in Section 1, the central idea consists in writing the log-likelihood of the
observations as an additive function of a Markov chain, comprising the observations {Y,},
the current state X, of the initial Markov chain and the predictive density of the state, often
referred to as the filter in the HMM literature.
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We define a family of probability density functions (pdfs) {f g,n}n;() over (K, .Z(K), y),
by the recurrence relations

f50) = &),

S a0, ©)go(Yalw)£5, )y (u)
RO R , (1)
Gt o Ju go(Yulu) £ (u)dy(u)

for all vek, where € is an initial pdf. Note that f5 g.ns1 18 @ deterministic function of
(Ya, f o) If ¢ = a*, it is easily checked that f7 9* is the predictive density distribution, that
is, the dens1ty of the conditional distribution of X, given Y? . Otherwise, f g,n is usually
called the prediction filter.

We consider the following family of contrast functions:

1,6, §) = Z log (Jng(Ym|x)f§,m<x>dy<x)>. @)
When ¢ is fixed and equal to s, then [,(0, n*) is the log-likelihood function for the
parameter 6. We show below that the choice of the initial predictive density function { does
not affect the limiting value of (1/n)1,(6, §). This parameter can thus be chosen by the user.
Moreover, the parameter 8™ is the only one that can be consistently estimated. As usual, for
ergodic non-stationary chains, the initial dlstrlbutlon cannot be consistently estimated. We
define the state space E = s KX 7 X S+, where S* *{f e LK, £K),v), f=0,
711 = 1}. In the following, St is equipped with the topology induced by the L;-norm,
and .%(S™) denotes the corresponding Borel o-field. We denote by .%(E) the Borel o-field on
the space E itself, induced by the product topology. On the state space E, define the extended
Markov chain Z, é(Xn, Y., Fo, F j:) by an initial law A, and the following transition kernel:
for all (x, y, f, f*) in E and .2y X .4y X 2, X 25 in BEK) X B(Y) X BEST) X
LS,

Ho((x, v, fo 5 Ay X Ay X Ay X AL 3)
=P(Xy41 € Ao, Yurt € Ay, Fup1 € 2y, Fip € 25 |X, =1,
Yl’l:yﬁFn:f’Fj::f*)
= J iy G- (x5, X) 2o (' [Ny (YN (@13, [ O)T_ - (Pi(y, £75 67)),
290 X v

where @(y, f; 0) is defined in (1).
In what follows, we will often consider the particular initial distribution A({) defined for
each pdf & on (K, .#(K), y) by

MEN Az X Ay X Ay X Ay) = J 7 () 2o+ (YPdy)dv()1. 2, ()1 (). (4)

Ay Ay

This initial distribution generates a Markov chain {Z,} where the first coordinate corresponds
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to the Markov chain {X,}, the second to the observations {7, }, the third to the predlctlon
filter { 75 g..; and the fourth to the predictive density of X, given Y? ,, that is, { e
Flnally, we denote by Py, the probability distribution of the chaln {Z,} 1nduced by
the initial distribution A and the transition kernel Ily (Py; is classically defined on
Voo, #(E,), where (E,),=o is a sequence of copies of E).
Using this definition, and assuming that {Z,} has the initial distribution A({), the
normalized log-likelihood may be expressed as

1 1 n—1
- 1,00, 0 = " ;} ho(Zy,) Py, ;&) almost surely, (5)
where
o, . £ /%) 2log (J ge(ylu)f(u)d)/(u)) | ®)

Equation (5) shows that the normalized log-likelihood of the observations for the parameter 6
can be written as an additive functional of Z,. Thus, following ideas of LeGland and Mevel
(2000a; 2000b), geometric ergodicity of the extended Markov chain will be the key in-
gredient in proving the consistency of the maximum likelihood estimator.

It is clear from (2) that the log-likelihood is indeed a function of the first three
components of Z,, which themselves form a Markovian process. Extending the chain Z, so
as to include the prediction density corresponding to the actual value 8™ of the parameter
is, however, needed to obtain the consistency result of Section 2.4 below (for a closely
related idea, see Leroux 1992).

The following definitions and assumptions are stated for future reference. For y in 7,
define

ess sup, go(y|x)
0 Zsup () 2 sup [ S5 S0 7

A A . . essinf o(x, x’
e—1nf69—1f o ol )
6O 6€© esssupy v go(x, x')’

®)
Assumption 1. 0 <e<1.
For s> 0, define A, 2 ess supx | supg[00(1)]° g+ (¥|x)dv(y).

Assumption 2. A| is finite.

For s>0, define Iy S ess supy | supg[ko(1))* go+(v[x)dv(y), where ko() 2 ess supy
|log go(y[x)].

Assumption 3. There exists some s> 1 such that Ty is finite.

If Assumption 1 holds, then infyessinf,, gg(x,x)>0 (note that esssup,,
go(x, x') = y(K)~!). Doeblin’s condition is then satisfied for the Markov chain associated
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with Oy (see Meyn and Tweedie 1993, p. 391). Moreover, the kernel Qy is strongly
aperiodic (see Meyn and Tweedie 1993, p. 118). Thus, by Theorems 16.0.2 and 16.2.4 in
Meyn and Tweedie (1993, p. 384), there exists some real number 0 < py <1 (uniform in 8),
such that, for all § in ©, there exists a probability measure on .%#(K), having density ag
with respect to y, such that, for all x in K,

106(x, ) — aa()dy()lltv < pg, )

where | - ||ty is the total variation norm, and Qj is the kernel Qp iterated n times. Then
ag(-)dy(-) is the unique invariant probability measure of the chain. Thus, for all 8 in O, the
Markov chain associated with the kernel Oy is uniformly ergodic.

Remark 1. Note that we may relax € € ]0, 1[ (Assumption 1) and derive the same results
under the following:

Assumption 1'. There exists m in N* such that for all 6 in ®, Qp is aperiodic and

. essinf, v g”(x, x’
0 <inf i qfn( ’ /)
0 esssupyy qg'(x, x')

where qp' denotes the density of the kernel Qy iterated m times.

In that case, all the properties concerning the Markov chain associated with Qy are derived
from properties concerning the m-skeleton (see the definition in Meyn and Tweedie 1993,
p. 68).

2.1. Exponential memorylessness of the prediction filter

Ergodic properties for {¥,} are inherited from those of {X,} (see, for instance, Leroux 1992;
Celeux et al. 1993). The point of this subsection is to obtain those of the extended chain
Z, =X, Y, Fu, F j) from the exponential memorylessness of the prediction filter. Iterating
the recurrence relation (1) n—m+1 times backwards (m < n) yields f g’n =
D, 1 (Y0, £ 0), Where

D, (Y7, f3 O)(0) £

J q@(una U)ga‘)(Ynlun) e J qﬂ(umy um+l)g0(Ym‘um)f(um)dy(un) o dV(um)

Um

j go(Y,lun) -+ J G6(ttms 101GVt i)y 11) - - - dy(it)

m

Using this expression, we may show the following exponential memorylessness inequality,
which is a non-trivial adaptation from Mevel (1997, Proposition 2.2, part A).

Proposition 1. Suppose that Assumption 1 holds. Then for all f, f' in ST,
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1@ i1 (Y7 5 0) = @i (Y1, f15 Ol < 265" 00(Y)(1 = )" " HIf =[]l (10)

The proof is given in Appendix A. The upper-bound of the right-hand side only depends on
the initial conditions (Y, f, f'). Note that Assumption 1 implies that €y is bounded from
below by a strictly positive ¢. Hence, 1 — ¢y is bounded from above by 1 —¢ and the
geometrical rate of the right-hand side of (10) can be bounded uniformly for 6 in ©, provided
that 6(Y,,) is finite.

2.2. Geometric ergodicity of the extended Markov chain

In this section, it is shown that the exponential memorylessness of the prediction filter
implies the geometric ergodicity (in a sense to be defined) of the extended chain {Z,}.

Definition 1. Lip(E) is the set of real-valued measurable functions h on (E, Z(E)) such that,
Sfor all (x, y) in KX 7/, there exist lip(h, x, y) and k(h, x, y) such that, for all fi, fT, 1,
f5 in S*,

|h(x, v, f1, 1) = h(x, v, fo, £ < lip(h, x, (|1 = folli + 1FT = S5 1),
|h(x9 Y, fln f;k)| = k(ha X, y)

and

lip(/) £ ess sup, an(h, %, 1) gy (y1)du(y) < 00,

k(h) éess sup, Jk(h, X, V) gy (y|x)dv(y) < 0.

These functions are of Lipschitz type with respect to the two last components and are
bounded independently of the two last components by a function which satisfies an
integrability condition. We will prove that, for all % in Lip(E) verifying some moment
condition (see (15)), a law of large numbers holds for {4(Z,)} 0.

Proposition 2. Suppose that Assumptions 1 and 2 hold, and define

p Emax(py?, (1 — '), (11)

where € and py are as defined in (8) and (9). There exists a constant C >0 such that, for all
0 in O, for all h in Lip(E), for all z, z' in E, and for all n = 1,

g A(z) — Hgh(z")| < Cllip(h) + k(h)]p",
where T1j; denotes the nth iterate of Mg and Ijh(z) = [T1j(z, dw)h(w).

The proof of this proposition is given in Appendix B. As a consequence, the extended
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Markov chain satisfies a geometric ergodicity property, stated in the following corollaries,
also proved in Appendix B.

Corollary 1. Suppose that Assumptions 1 and 2 hold. Then there exists a constant C >0 such
that, for all 6 in © and for all h in Lip(E), there exists Ag(h) < oo such that, for all z in E
and for all n = 1,

[IGh(2) — Ag(h)| < C[lip(h) + k(h)]lp_—p- (12)

This inequality may be used in the following way: for any initial probability measure A on
(E, Z(E)), and for any function h in Lip(E),

Ag(h) = lim Eg 2(h(Z,))- (13)

In addition, for all h in Lip(E), there exists a unique solution V of the Poisson equation

[1 =]V (2) = h(z) — Ag(h).

Corollary 2. Suppose that Assumption 1 and 2 hold. The kernel 1lg admits a unique
invariant probability measure Ly on (E, .Z(E)), and, for any function h in Lip(E),

Ag(h) = Jh(z)/lg(dz). (14)

The type of convergence in Corollary 1 does not coincide with the usual definition of
uniform geometric ergodicity (see Meyn and Tweedie 1993, Theorem 16.0.2, p. 384) since
our result applies here only to certain Lipschitz functions on E, whereas in the standard
literature about Markov chains the ergodicity is expressed in terms of exponential decrease
to zero of the total variation norm, implying that (12) applies to all measurable bounded
functions.

Note that it is easy to show that Ag(#) is a linear form. Nevertheless, it is not straight-
forward to prove that there exists a measure 1y on E representing Ay(%). This is because
the Riesz representation theorem does not apply. To prove the existence of an invariant
probability measure, we use a technique based on asymptotic tightness of an ap-
propriately defined sequence of probability measures, exploiting the basic ideas of Sunyach
(1975).

Remark 2. We will often make use of the following property. Let E, be a sequence of copies
of the space E, let .7 belong to \/,=0.Z(E,) and let T a real-valued function on [],=¢ E,,
measurable with respect to \/,=¢.Z(E,). Note that, due to the initial distribution A(J),
(Fy, Fil‘) is Pp ;) almost surely equal to (fg,n, f’g:)n) for all » in N. This implies that

T[{Zn}nBO] = T[{(an Yna f(g,ns fg:,,,)}nzo] PHJ.(C)'a“S-
Thus,
Po sy (Y{ Zu}uzo) € 4) = P [Y{(Xs You [0 Foe Dbnm0) € A1
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since the marginal distribution of Py ) on events only depending on {(X,, ¥,)},=0 is equal
to P*.

Proposition 3. Suppose that Assumptions 1 and 2 hold. For any 0 in ©, for any pdf ¢ on
(K, . B(K), y), and for any function h in Lip(E) such that there exists s> 1 satisfying

ess sup ij(h, % ) gy (Vdv(y) < oo, (15)

the following convergence results hold:

() lim,—oo(1/ W) (Z) = Ap(h) P yp-as.;
(ﬁ)lhnwﬁm(LhQEZZ;LhLYM,Y@Lfam,jgim)::Aﬁ(h) P*-as.

The proof of this proposition (see Appendix C) is based on the ergodicity of {Z,} and,
more precisely, on the existence of a solution to the Poisson equation stated in Corollary 1
using a classical martingale decomposition method (the proof is analogous to that of Meyn
and Tweedie 1993, Theorem 17.4.3). Note that the statement (ii) is a direct consequence of
(i) using Remark 2.

2.3. Pointwise convergence

The following proposition ensures that, under some regularity conditions, the normalized log-
likelihood of the observations converges almost everywhere to a finite function of 6, and
identifies the limit function. It is a straightforward application of Proposition 3.

Proposition 4. Suppose that Assumptions 1-3 hold. Then, for any 6 in ©, there exists a finite
value I(0) such that, for any initial pdf & on (K, . Z(K), y),

gg%M&®=K® P*-a.s.
Moreover,
16) = Jlog “ge(ylu)f(u)dy(u) Zo(dx, dy, df, df*) (16)

Note that the limiting value /() does not depend on the initial distribution A(C). This
means that the limiting value of /,(0, §)/n does not depend on the initial distribution of the
chain {X,} (which does not necessarily coincide with the stationary distribution of the
chain, in contrast with Bickel et al. 1998 and Jensen and Petersen 1999) or on the initial
value of the prediction filter {, which may be chosen arbitrarily. The limiting value /(6) is
the integral of Ay with respect to the invariant measure of {Z,}.
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2.4. Consistency of the maximum likelihood estimator

In order to prove the consistency of the maximum likelihood estimator, we need to check that
the limit of the normalized log-likelihood is maximized only at 0, the true value of the
parameter; that is, /(0) < I(6™) with equality if and only if @ = 6*. Define

A
20,0105 X0) de(yo|Xo)J(19(Xo, u)gonlur) - .. qo(un—r, un)go(Vnlutn)dy(ur) . .. dy(uy),

(17)

the density under the parameter 6 of {Y 9,} conditionally on X, with respect to the measure
®(n+1)
v .

We make the following assumption:
Assumption 4. The equality

J 80,p+1(30s - - - Yplug)dag(uo)dv(yo) - .. dv(yp)
KX AgX XA,

- g0 (o - )y (o)dv(n) - vy (18)
KX g Xe XA,

holds for all non-negative p and all Borel sets .#; in B(y/), 0<i=< p, if and only if

0=206"

(Recall that ag is the invariant measure for the kernel gg.) This condition is equivalent to the
following:

Assumption 4'. The equality

qu(u, ur) - qo(up—1, up)go(yolu) - - go(yplup)dag(u)dy(uy) - - - dy(uy,)

= J(Io'(% uy) - qo(up—1, up)gor(yolu) - - - gor(yp|up)dag (w)dy(ur) - - - dy(up)

almost everywhere with respect to the measure v®PV) for all non-negative p, if and only if
0=20".

Note that when the state space K is finite, Assumption 4 is implied by Condition 2 in
Leroux (1992). In fact, Assumption 4 is the minimal assumption guaranteeing identifiability
for the model.

Remark 3. In many models of interest, the parameter itself is identifiable only up to a
permutation of states. It is most often possible to reparametrize the model to avoid this type
of degeneracy. When it is not possible, one should define a slightly extended notion of
identifiability, based on an equivalence relation, for example 8 = 6’ if and only if 6 is equal
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to 6’ up to a permutation of its components. The results presented below can be straight-
forwardly adapted in such a situation.

Theorem 1. Under Assumptions 1-4, 1(0) < 1(6*) and 1(0) = (0™) if and only if 6 = 6*.

The key point in the proof is that the difference 1(6™) — I(6) can be written as the
expected difference between two functions under the same measure. This is possible since
the fourth coordinate of Z, is the prediction filter associated with the true value of the
parameter 0*. This is the main motivation for extending (X, Yy, Fy,) to (X, Yy, Fp, F j:).

Proof. The first part of the proof follows an idea from Leroux (1992, Lemma 6), but the
conclusion has to be adapted to cope with general state space. We first express /() in a more
tractable way.

Using Corollary 1,

200) = 1inm Eo, 1) (ho(Z,) + ho(Z,41))-

By direct application of the recurrence relation between f g , and f g 41> WE have

ho(Zy) + ho(Z,11) = log Uge,z(Yn, Yo |u)f§,n(u)d)/(u) Py p0)-a.s.

A
:He(Yna Yi’l+1’ fg,n)a
where gp, is defined by (17). Then, using Remark 2,

200) = M E* (" (Ho(Y,, Y, £5,)| Y5 1). (19)

A .
Let Go(x, y, f, /) = [ Ho(30, y15 )€ 230, y1|1)f ™ (w)dv(yo)dv(y)dy(u). It is easy to
check that Gy is in Lip(E). Thus, by Corollary 1,

Ng(Gy) = lilgn Eo 16)(Go(Z,)). (20)
Using the equality

E*[Ho(Ya, Va1, £, V011 = EXE [ Ho(Yu, Yosr, [, )1 Xn Yo 1Y)

= Go(Xo Yoo [0 5
combined with (19) and (20), yields that
21(0) = Ao(Gy)

= Jlog Uge,z(yo’ yiluo) f (uo)dy(uo)

X g 2 (v, 1) f* W dv(yo)dv(y)dye(K, 7, df, df).
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Define the function 4A*(x, y, f, /™) Zlog( [ gg+(y|u)f* (u)dy(u)). Replacing the function
hg by h*, it is easily checked in the same way that

200%) = Jlog Uge*,z(yo, yiluo)f *(uo)d)/(uo)}

X gy (0, 1) (Wdv(yo)dv(y)dy(wie(K, 77, S*, df™).

Hence,

2(16™) — 1)) = J Uge*,z(yo, yilwf *(u)dy(u)}

% 1o fgo*,z(yo, 1 |u)f*(u)dy(u)
Jgo2(vo, yilu)f (u)dy(u)
which is the integral of a Kullback—Leibler divergence and is thus non-negative. We now

show that the equality /(9) = I(6™) implies that O = 0* under the assumption of identi-
fiability (Assumption 4). If /() = /(6™) the Kullback—Leibler divergence is null, and thus

)dV(yo)dV(yl VoK, 7, df, df)

Jga*,z(yoa ) f* )y (u) = Jge,z(yO, il f(u)dy(u) @1

almost everywhere with respect to the measure dv(yo)dv(y1)le(K, 7, df, df *). This tech-
nique can easily be generalized by computing the quantities (m + 1)/,(6, §) for each integer
m, such that 1(6) = 1(6™) implies almost everywhere with respect to the measure 19(K, %,
df, df™), that, for all m =1,

Jge*,mﬂ(yo, coos Yl f dy(u) = Jg(?,erl(yO, <o Ymlw) f(w)dy (u)

(dyy) ® -+ @v(dyp)-a.e. (22)

Now, let us prove that Assumption 4 holds. Let (fo, ff,k ) be in ST X S* such that
property (22) is satisfied. Let p < m and h be any bounded, continuous function on %/7*!.
Multiplying both sides of the equation by A(yu—p, ..., ym), and then taking the integral
with respect to dv(yp) - - - dv(y,), yields

er)(um,p)q;”"’(uo, - ) folito )y (i) )
= | For s w FS dy )), 23)
where, for any f,

A
Fﬁ(u) :Jh(ymfp, cees ym)gﬁ,erl(ymfpa cees ym|u)dv(ym7p) o dV(ym); (24)

which is continuous and bounded by ess sup,cy ri1
any u in K,

h(u)| on K. Now, using (9), we have, for
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< pg ¥ X esssup | h(u)).
ue///;ﬂrl

UFe<u')q;”"’(u, W )dy(u') — JFH(M')daa(u')

This implies, by dominated convergence,
Tim JFH(M')qu_p(u, ') fo(u)dy(updy(u') = JFe(u')dae<u').
This result also holds with the parameter 6™ instead of 6. Now, combining with (23) yields
JFg(u’)dag(u’) = JFH*(u’)da(,*(u’).

Replacing Fyp and Fy+« by their definition in (24) and knowing that 4 is any bounded
continuous function in /7",

Jg9,p+l(y03 <y Yplug)dag(ug) = Jge',p+l(y03 <oy Ypluo)dag (uo)

almost everywhere with respect to the measure dv(yy) --- dv(y,), for any p in N. Thus
6 = 6* by Assumption 4. This completes the proof. O

Let é,,(@) éarg maxg [,(6, §) be the maximum likelihood estimator for a fixed initial pdf
C (the existence of which is guaranteed under assumptions stated below). It has been proved
in Proposition 4 and Theorem 1 that the normalized log-likelihood for a fixed 6 converges
P*-a.s. to I(A), which is maximum at the point 8*. Under additional assumptions on the
regularity of some functions with respect to 0, uniformity (in a sense to be defined) in the
convergence of the normalized log-likelihood may be shown, and thus, consistency can be
stated, using Wald’s (1949) consistency proof for the M-estimator.

Define for all y in % and for #5>0, the expression w2(y,n)
SUP|g—e'|| <y €8S SUpy |ga(¥]x) — go(¥|x)|. Let >0 and 6, 6’ € © such that [|0 —6'|| <.
Then, for all pdfs ¢ on (K, .Z(K), y),

ln(ea C) - ln(0,7 C)

1>

_ Z‘ oe[ 1+ JLgo(Ynlu)f5,,(1) — gor(Yul) £ ,,(1)]dy (1)
= g0 (Yulu)f5,(u)dy(u)

_ Zl T go(Yulu) = gor(Yult)| 5, (u)dy(ue) . g0 (Yul)|f () = 1 (@)l dy(ue)
prr’ g0 (Yul)f5 ,,(w)dy(u) g0 (Yul)f G, (u)dy(u)

n—1
, W8(Yy, 1)
_ =
‘ln(ea g) ln(e > §)| 2 mz_o(lnfg €SS infx gﬁ(Ym|x)

+ 6(Ym)||f(€,m _fg',mHl) . (25)

Define for all y in %/, for all s, ¢ in N and for all >0,
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/ A w8(y, n)
0= [infa essinf, gg(yl)C)]’ (26)

Al Sesssup [ 160 1" () @)

(AA")s, /(1) £ ess sup J[(SO/)]S[(S'(% M1’ gg+ (y]x)dv(y), (28)

i) 2 sup Jess sup|qe(u, V) — qor(u, V)|dy(v). (29)
lo-o=n) u

Assumption 5. For all y in ¥/,

lim wi(n) = 0,
n—0
lim w®(y, ) = 0.
=0

Assumption 6. A, is finite and, for some positive 19, Ai(179) and (AA"),,1(r0) are finite.
We prove in Appendix C the following lemma:

Lemma 1. Under Assumption 1,

m—1
sup 1S5 = Fonlli <2603 0Yi)p™ H@(g) + 20" (Vi )] + [@7(7) + 20" (Y, )],
es* k=0
(30)

Combining (25) with this lemma, we prove under Assumption 5 that 8 — [,(0, §) is con-
tinuous. The continuity of 6+ I(0) is then straightforward: the family of functions
(I1g ho(z)) =0 converges uniformly in 6 to /(6) as we have

n

p
1—-p’

[TI5ho(z) — Ao(he)| < C[A; +I']
Moreover,
[y ho(2) = J log (J go(yulw)f g,,,(u)dy(u)) Gy (X, X1) -+ g (Xn—1, Xn)

X ggrnlx) -+ g (ulxa)dy(xr) - - - dy(xn)dv(y1) - - - dv(yn)

The functions 6 — log(Jge(ya|u)f, g’n(u)d)/(u)) are continuous (by the same argument as for
1,(0, £)) and uniformly integrable as Iy is finite for some s>1. Then we obtain that
0 — Il hg(z) is continuous, and so is 6 — I(6).
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Now write @’ (1) ésup~{(l/rz)|l,,(t9, O — 1,6, 9), |6 — 0'|| <n}. Combining (25), (30)
and Assumptions 5 and 6, we obtain that

N
. . %k l - —
11km hmnsup E {wn ( k) | 0.

1 1 [ 1
Prlol(=) =¢| <—E*|o (- 31
|:wn (k) 6k:| P -C()n I ) ( )
it is easy to choose €; decreasing to 0 such that
1
11krn hmnsup P {a)n <k> 6k] 0.

Then a straightforward adaptation of Dacunha-Castelle and Duflo (1986, Theorem 3.2.8,
p. 93), shows that the maximum likelihood estimator is consistent.

Thus, using that

Theorem 2. Suppose that Assumptions 1—6 hold. Then for all initial pdf C,
6,(6) — 6 in P*-probability.

2.5. Examples

Let us give some illustrations.

Example 1 Markov chain in additive noise.

Define Y, = h(X,) + B;, where {B;} is a sequence of independent and identically distributed
centred Gaussian random variables with variance o2, and {X,} is a Markov chain on a
compact set in R, independent of {B,}, and with transition Q,. The parameter here is
0 = (a, 0?). Let ¢, be the log-Laplace function of the marginal distributions of {Y,},

b () = log(E(e"")) = log (") + log (¢°7/2),
so that
2 2, 2 uh(X ) 2
—¢uu) =0 +— log(E(e"""")) — o
u u U—00
0?2 is thus identifiable. If different parameters a lead to different stationary distributions for

the process {A(X,)}, then Assumption 4 holds. Such models are used in the following
applications:

e Underwater acoustics (see Quinn 1995), where A(x) = 4 cos(2mx), and A4 is a constant.
e Speech processing, count data analysis, and so on (see Pagano 1974), where A(x) = x
and {X,} is an autoregressive process of first order, with bounded innovations, or more
generally an ARMA process. In this last case, just note that Theorems 1 and 2 may be
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generalized when Assumption 1 holds only for a power of the transition Q, — that is,
when Assumption 1’ holds.

Example 2 Markov chain in multiplicative noise.
Define Y, = B, - h(X,), where {B,} is a process of independent and identically distributed,
centred Gaussian random variables with variance o2, {X,} is a Markov chain on a compact
subset of R, independent of {B,}, and /4 is any measurable function. Such models are used in
a number of different areas (see Chib et al. 1998).

3. Asymptotic normality of the maximum likelihood estimator

The asymptotic normality of the maximum likelihood estimator involves a second-order
Taylor expansion of the log-likelihood. We shall use similar arguments to those for the
extended chain Z,, but we will now consider Markov chains involving both the gradient and
the Hessian of the prediction filter. These chains have an exponential lack of memory of the
initial condition, and we prove that they are uniformly ergodic. Denote by () the first-order
partial derivative with respect to the component 6; of 0, and by V, V? the Jacobian and
Hessian operators with respect to the parameter 6. Define, for all y in ¥/,

ess supy |0 go(y|x)|
0'(») _sup 121k$p|: essinf, gg'(y|x) 32
and, for all s, ¢ in N,
Al 2 ess sup J[é’(y)]“'gg*(y\x)dV(y), (33)
(AN, Eesssup (101100 g (), (34)

Assumption 7. (i) For any (x, x', y) in KX K X ¥/, the functions 6 — gg¢(y|x) and 6 —
qo(x, x") are differentiable.

(if) supg esssupyp gg(u, V) <00, MaXi<k<p SUPg €SS SUPyp|Dkqgo(u, V)| <oo. For some
s>1, Abs, As, (AA")g1 and (AN')s, are finite.

The first step consists in differentiating the recurrence relation between f5 6., and 15 funsl
(which is possible under Assumptlon 7). Then {Vf Hn} appears as a functional auto-
regressive chain. For all 1 < k <

Okf g pi1(0) = j ao(Yu, [5,)(t, 0Ok f g, (wdy(w) + Up (Yo, £5,)(0), (35)

where
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qo(s, ) go(¥]s) [ (s)dy(s) go(y|u)
Jgo(yls)f(s)dy(s) Jgo(y|s)f(s)dy(s)

ap(y, f)(u, v) 2 («m(u, o1

and

o JOkqo(u, 0)go(y[u)f(u)dy(u)

Uo.x(y, /() =

Jgo(ylu)f (w)dy(u)
Jaos, 00O | Drmlf )
| (qe(”’ DT /i) TeaGl o T

Denote by Uy the vector function (Ug i)i<i<p-
We consider the space E' = K X 7/ X §* X X, where

r= {0 = (0W)i=k=p; 0k € Li(K, Z(K), y); J o (u)dy(u) = 0}-

u

The space X is equipped with the topology induced by the L;-norm, and denote by .#(E’) the
Borel o-field induced by the product topology on E'. For all (y, f, 0) in %7 X ST X X, 0 in
®, and v in K, write

Wiy, 1, 05 0)(v) éJae(% ), v)o (w)dy(u) + Ug(y, /).

(Note that W, = (‘II )i<k<p is a vector in R”.)

We define an extended Markov chain Z, = (X, Yy, F,, G,) on (E', #(E")) by its initial
law ﬂ. and the transition kernel Iy given, for all (x, y, f,0) in E' and .7y X .72y X
Ay X A in BEK)X B(Y)X BEST)X LX), by

o((x, y, [, 0) Ay X Ay X Ay X As)
—P(Xn+le//7’ n+l€///> n+1€~~/4/a Gn+1€<f/éi|Xn:xs Yn:y,Fan, GnZO)

- J g OROB G @i f O (T S 0% O
XAy

In what follows, we will often consider the particular initial distribution /7[(@) defined for each
pdf £ on (K, .#(K), y) by

WO Ay X Ay X Ay x.//zgzj/ () gy Iy @), ()1 . 0). (36)
AgX Ay

We denote by P 0.(0) the law of {Z,} induced by A(€), and Iy, and by E 0 the cor-
responding expectation. The exponential ergodicity of the extended chain {Z } (similar to
the result obtained in Proposition 1) and convergence of normalized sums of some functions
of {Z,}, are stated in Appendix D.

These properties, combined with the results of Propositions 6 and 7, ensure the con-
vergence of the gradient of the normalized log-likelihood.
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Assumption 8. For any (x,x',y) in KXKX 7/, the functions 0 — go(y|x) and 60—
qo(x, x") are twice differentiable. We also assume that

sup max ess sup|92 ,qe(u, V)| < co.
0 u,v ’

<kl<p

Define for all y in %/, and for all s, ¢, r in N,

essinf, gg'(y|x)

ess sup.|9; ;go(y|v)|
0,0’ Iskl<p

0"(y) 2 sup max [

AlZess sup [[0" (1] gg+ (¥[x)dv(y),

X

(AA"),, Eesssup | [0 16" (]’ gge (Yx)dv(y),

(AA'A")g 1.r £ esssup | [6()]°[0' (1] "] gg+ (y|x)dv(y).

Assumption 9. There exists some s> 1 such that Ay is finite. Moreover, the quantities A,
(AA)11, (AA )02, (AA )95, (AA")s4, (AA")71, (AA'A")711 and (AA'A")eo,1 are sup-
posed to be finite.

Proposition 5. Under Assumptions 1 and 7-9 and the assumption that the maximum likeli-
hood estimator is consistent (see Theorem 2), there exists a matrix Jy= such that

n~'2V1,00%, &) — N(O, Jg+) weakly underP* .
Moreover, Jg = lim,_..(1/n)E*(V1,(6", §)".V1,(6%, O)).
This result extends Theorem 3.1 in Jensen and Petersen (1999) to the non-stationary case,
and its proof is given in Section D.1. The second-order Taylor expansion of the log-

likelihood also involves its Hessian matrix. Differentiating (35), we obtain {V?f" gn} as a
functional autoregressive chain:

A
V2 f it =0 (Ts £ Vo0 V2 05 0)-

As we have done with Z, and Z, we now consider Z, = (X,, Y., F,, G,, H,), an
extended Markov chain on a space E” defined by E” = K X 7/ X §* X X X X,, where

X ={t = (tx)); trs € Li(K, Z(K), y) and Vv € K, 7(v) is symmetric and non-negative}.

(The matrix M = (M )< j<n is said to be non-negative if for all (a;)1<;<, in R, we have
> i<ij<n aiM; ja; = 0, with equality if and only if ¢; = 0 for all 1 < i < n.) The space X, is
equipped with the topology induced by the L;-norm and .Z(E") will denote the Borel o-field
on E” induced by the product topology. The Markov chain Z, is defined by its initial law A



The maximum likelihood estimator for general hidden Markov models 399

and its transition kernel ITy: for all (x, v, fo0,7) in E" and .2y X A2y X AZ,X
Ay X Ay in BEK)X B(Y)X BT X B(X) X B(X),

Hol(x, y, f, 0, ) Ay X Ay X Ay X Ay X A1)
= P[(Xni1, Yosts Fusts Guyt, Ho)) € Aop X Ay X Ay X Ax X Ay

|(Xna Y., F,, G,, H,) = (x, , f’ o,7)]
- J g (5, ) g+ (7' [y (¢ )dv()
.///‘7/'><,/7,//

X ﬂ-//w/ (q)l(ya f7 9))ﬂ/i(lpl(y, fa (O 0))ﬂ.r//i'(al(y7 f’ g, T, 0))

We will consider the particular initial distribution /vl(é) defined for each pdf ¢ on
(K, Z(K), y) by

WAz X Ay X Ay X Ax X Asr)

- j A Ol d0) X L O 00O,
Ay XAy

We denote by Py, the law of {Z,}, induced by (&) and TIy, and by Egiq the cor-
responding expectation. In Section D.3, we prove the exponential lack of memory of the
initial condition for this chain, its ergodicity, and the convergence of normalized sums of
some functions of this chain. Then we are able to prove the convergence of the Hessian of the
normalized log-likelihood.

Proposition 6. Under Assumptions 1 and 7-9, there exists a matrix Iy such that
1o, *
—V°1,00,8) — —1Iy P -a.s.
n
Moreover, 14+ is the Fisher information matrix, that is,
1 1
Ly = —lim —E*(V*[,(6%, §)) = lim —E*(VL,(6", §)'V1,(67, 0)) = J s,
n—oo N n—oo n
where superscript T denotes matrix transposition.

Write, for all #>0 and y in %,
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a)q’(n) 2 sup max Jess sup |0kqo(u, U) — Orqg+(u, v)|dy(v),
lo—0%| <y ' =F=P )

" A
wtOn=sup glggpjess sup |93 g6 (1, 0) — O 14+(u, V)|dy(V),
lo—6*| <y ~HTFS

A
wf'(y,) = sup  max esssup |0 ,go(y|u) — 0% g+ (V0.
lo—o* )<y —HF

= &' (y, 1)
AH/ = . d ‘
o) Jinfa ess supy go(y|x) ¢ (ylx)dv(y)

Assumption 10. lim,_, w?(n) = lim,,_o w? "(7) = 0. Furthermore, there exists some 19> 0
such that A" (no) is finite.

We finally prove the following proposition.
Proposition 7. Under Assumptions 1, 5—6 and 9—10, we have, for any k, 1 in {1, ..., p},

0
”ﬁ 10—0%||<n

1
ImE* [ sup  —[07,1.(0, &) — 03 ,1,(6%, §)| | = 0.
\
Remark 4. This proposition ensures that V[lim,_..o(1/n)VI1,(6, {)]g_gx = —Ip+ and that
VIA¢(hg)lg_gx = 0.

These properties are sufficient to obtain the asymptotic normality of the maximum
likelihood estimator using the following assumption.

Assumption 11. 14 is an invertible matrix.

Theorem 3. Under Assumptions 7—11 and the assumption that én(é) is consistent,
nl/z(én —6%) — N(O, I(;*l) weakly under P*.
Remark 5. Combining Propositions 6 and 7 with Theorem 3, we obtain a confidence interval

for 0*. Moreover, we also have the local asymptotic normality conditions for our model, and
the maximum likelihood estimator is locally asymptotically minimax (see Bickel ef al. 1993).

Appendix A. Exponential memorylessness of the prediction
filter

Proof of Proposition 1. Only the main steps of the proof will be described here. It is adapted
from Mevel (1997) and uses results from Seneta (1981). The original idea comes from work
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by Arapostathis and Marcus (1990). Proofs which are not easily deduced from the finite state-
space case are described in full.
Step 1. Let p be a transition density function on (#°, . 5(%"), v). Define

A !
1(p) Sesssup | [pt. 0) ~ plr', 0ldy(o)
XX v

and, for all u, v in K, for all f measurable and non-negative, write, for n = m,

A
Az,m(% V) :J qo(ttn, V) go(Yuluty) - - - J qo(Umi1> Unmi2)€0(Ymi1|Umi1)

Un Um+1

X qg(u, um+1)g0(Ym|u)dy(um+l) T dV(un),

N(4°,)(w) éJ A9 (u, V)dy(v),

N, 1) éj NCA® )0 f )y () = J 49 (u, 0)f )y )y ().

u u,v

Lemma 2.

||(I)n7m+1(YZ: f; 0) - (anmﬂ(Y?, f’; 0)”1

= Az,m N(Az,m) N(Az,m ’
~ v, H VT
Proof. With the previous definitions, we may write
H(I)n,er](Y:, f: 0) - (I)nferl(Y;n: f,; 0)”1
B A5, v) [N, (w) N, )W)
Shil e l NG 0 G ) dyw o)

We then use the following general result. Let W be a measurable function such that
Ju®(u)dy(u) = 0. Then we have [W' = [W~ =1[|¥|, where ¥ = max(¥, 0), ¥~ =
max(—W¥, 0). We may also write

¥ (¥ (1)

W(x) = Ja(s, x)dy(s) — Ja(x, Hdy(1), where a(s, t) = &

Note that [ [ a(s, £)dy(s)dy(t) =} [ [¥(x)|dy(x). Applying this result to the function

_N(A(Z,m)(u) N(Az,m)(u) ’
YO=a o' v,

(with mean zero), we obtain
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[]]| 22 yipgyn]
ol Ju NCAS, ()
9
[ el (J ats. wdy(s) - | ate r)dy(r)) dy(w)|dy(©)
u N4, )w) \Js :
A(ZI m(x7 v)a(y, x) AZ m(y7 v)a(y, x)
= Znmye 7 7 d _ Anm\ V> DAY, X g d
Jvu ny N(A?l,m)('x) ’V(x) y(y) Jx,y N(Az’m)(y) ’V(x) y(y)’ V(U)
- w6 0) A9, )
oxy N(An @ N( A7 0) a(y, x)dy(x)dy(y)dy(v)

1
<3 (o] |5
A NA‘9
><J 1)y V) )f()‘d(u)
N(A n,m N(A n,m ’
N(A,,m HN(A I, 7,

N(Ai,mf) N,
which concludes the proof of Lemma 2. U]

n, m('x U) A?l m(y’ U)
i dy(v)
N(4 ,,,m)(X) N(4,,)(»)

Step 2. This consists in bounding from above the last term of the right-hand side of the
previous inequality.

Lemma 3.
N(Az,m) N(An m) ' — 7] ' 0 _ N(A f)
H N, Nl ’1 =20 =S where = g

The supremum is taken over the set of measurable and non-negative functions f and g such
that [fdy = [gdy = 1.

Step 3. We prove the following result:
Lemma 4. 0 < ¢;'64(Y,).

The proofs of Lemmas 3 and 4 are straightforward adaptations from Mevel (1997,
Propositions A.1 and A.2), and are omitted here for brevity.
Then we conclude that
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[4

Anm ’
1@y w1 (Y, f30) = @ (Y, 15 Ol < 265 06(Y) X 71 (N(A"" ) XALf =S

Let us now examine the behaviour of TI(AZ,m / N(Az’m)). We wish to proceed by analogy

between Az,m and a product of random matrices (which appears in finite state-space
models): this technique will bring out the term (1 — ¢5)"~"*!. We obtain an upper bound
for 7, by using another coefficient, denoted by g (Birkhoff’s coefficient), which does not
depend on the normalization N(Az,m .

Step 4. All these results are generalizations of those obtained by Seneta (1981, Theorems
3.12 and 3.13, pp. 106—110) and the proofs will be omitted. Let us define Birkhoft’s
coefficient by

d(p*f, p*g)

78(p) = sup af, 9
where
_ S(x)g(x")
A7, 8) = esssuplog [g(x)f(x’)}’

P ) = J P, ) f(w)dy(u) = j p(u, D) f (w)dy(w).

The first supremum is taken over the set of measurable and non-negative functions f and g
such that f # Ag (A € R), and p* is the transpose density function associated with p (i.e.
p*(x, y) = p(y, x)). With this definition, 7z does not depend on the normalization, and is,
moreover, submultiplicative. We now give another expression for g, and then the upper
bound of 7| by 7.

Lemma 5.

1— 1/2 {
«(p) = 11(p), where a(p) = essinf p(x, 2Py, 1) _

%
- 7 —_— = .
[+ a(p)? S oG opGr ) )

8(p) =

We now apply these results with p = A(Z’m/(N(A(Z,m)). We have

A A°
T1 n,em = Tp n,m .
(N(Amm ) <N<Ai,m )

It follows from the definition that a(4%,/N(49 ) = a(4} ), and then 75(4,/N(4 )

n,m

= ‘L'B(Az,m) by application of Lemma 5. Since 7 is submultiplicative,

8(49,) < TI}_,t8lqa(, )go(Ye|)].

Finally, again using Lemma 5, tg[qq(-, -)go(Y%|-)] = 78(gs), and, under Assumption 1,
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qo(x, 90, O _ >

a(qg) = essinf B

vzt qo(x, Dga(y, 2)
Thus 75(ge) < | — cp, which finally implies that Tp(4? )< (I — ¢g)" """ O

n,m

Appendix B. Geometric ergodicity of the extended chain

Proof of Proposition 2. Let h be in Lip(E), and z = (x, y, f, ), 2 =", ¥, ', (7)) be
in E. In order to obtain an upper bound for [IIjA(z) — IIjA(z")|, use the decomposition

I h(z) — TGh(z") = TG h(x, y, f, £ = Tgh(x, y', 17, (f5))]
+ [th(x’ y/a f’a (f*)’) - th(x,a y,a f,7 (f*)/)]

Denote by 4 and B the first and second terms on the right-hand side of this equation,
respectively. 4 and B will be treated separately.

For i< write yj = A(yj, ..., ») and, with an abuse Aof notation, dy(x;) 2
dy(x;) ... dy(x) and dv(y}) =dw(y) ... dy(y;). Write also {y%, y} =(3, ..., yi» »). Then

A= j (s e ©u( 1 b 3 0), Bul(r s v} 5 6
X1

— 1> Y P V'L 1 0), @ L Y'Y ()5 0]

X e (x, x1) -+ Ggr (Xno1y X)) Gr(V1]31) + -+ g (Wl xa)dy(xl)dv()).

Then, using Lip(E) as in Definition 1, and the fact that, for all 6 in ©, ®,(»! |, »,
f360) =@, (v}, Pi(y, f3 0); 6), we have

|4| < J lip(/, Xy Y|Pt (¥, @1(y, £3 0); 0) — Py (YL, @1, 175 0); O
X1 Vn

F @i (yys @1, f750%); 0) = @i (vh_ys @1 (S 67%); 69)1]
X qge(x, 1) -+ g (Xn1, %) g+ (1[31) -+ g () dy (0, )dv(y))-
Exponential lack of memory of the prediction filter yields
D11 Pi(rs S5 0); 0) = Pt (7,1, @1, 175 0); Oy
= 265" 00(r1)(1 = €0)" | @1(y, /5 0) = @1, 175 O
< dey ' 0p(y1)(1 —cg)" .

The same inequality holds at the point . Integrating the above expression and using
Assumption 1 yields
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4] < 4lip(W)ey' A1 — €0)" " + € Ar(1 — ¢g#)" ']

< 8lip(h)e 'A (1 — )" L. (37)

Remark 6. We may prove along the same lines that if 4 is in Lip(E) then, for any integer n,
IT; A also belongs to Lip(E), with lip(TIIj A, x, y) < lip(h)de(y) and k(IIjh, x, y) < k(h).

We now turn our attention to B, given by

B = J h(xn, yn’ q)n({yil—]’ y/}’ f/; 0), q)n({yiz—l’ y’}’ (f*)” 9*))
X1 Vn

X [qﬁ* (x’ X]) - QH*(x,: xl)]qﬁ*(xlv )Cz) e ‘10*(xn—1s )Cn)

X ggrilx) - gor (ul)dy(x,)dv(y,).
Let m = [n/2] and F, F* be fixed functions in S*. Note that

hCns Y @u({h_1s ' 15 0), @u{yh_ps ¥} (S5)'5 6%))
= "0y Yus @ (V1 @o{yy1s '3 [ 0); 0),
Dy (Vi ts Pu{yy1s Y'Y ()5 07); 67))
— (s Yus Py, Fs 0), @y, F*; 0%))
+ Wy Yoo PV, Fs 0), @y, F*; 67)).

Insert this form into B and use the fact that % is in Lip(E) for the first part and take the
integral with respect to y! | and x!, | in the second; this yields

1B < j lip(h, s 1) X ([ @032 Du({ 1o ¥ 175 ) 6) — B (5™, F; O)
o,
| @Yy, @u({Vh s ¥ ()5 0%); 0F) — @, (0, F*5 07)]0)
X |gg=(x, x1) — g+ (X', x1)|qg=(x1, X2) - - - g (Xn—1, Xn)

X ggenlx1) -+ ggr (a|xa)dy(xh)dv(ph)
+J J ‘h(-xns yn: (I)n(y;”—h F, 9)3 q’n()’?q» F*r 0*))|
R

X |qg5«(X, xm) - qg’*(x', xm)lqe*(xms xm+1) t qe*(xnfls xn)

X g (Ymlxm) - -+ g+ (yulxa)dy(x;))dv (7).
Using Proposition 1 and inequality (9) yields
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|B| < J lip(h, X, yu) X 2¢ 11 — )" ™
X1+ Y

X (| @m({hrs '} 15 0) = Fll100(m) + |@m({¥h_1s ¥ 3 (F5)5 0%) = F¥[[109+(3m))
X (G (x, x1) + qo= (X", x1))qg+ (X1, X2) - - - o= (Xn—1, X)) g+ (V1 |x1) - -

2o )y (x))dv(y),)
i J Jy K 3 i ) 0 1 )
X gor (Ym|Xm) - -+ ggr (VulXa)dy(x;)dv(y}),
that is,
|B| < 16 X lip(h)e 'Ai(1 — )" ™ + k(h)pg". (38)

Inequalities (37) and (38) complete the proof. O

Proof of Corollaries 1 and 2. The existence of Ag(h) follows from Proposition 2, using the
same ideas as in Sunyach (1975, Theorem 1). Then we can easily check that the function
defined on E by

V(z) =) [MGh(z) — Ao(h)] (39)

n=0

is a solution to the Poisson equation. As the space E is not locally compact, we cannot use
the Riesz representation theorem to show that Ag(#) is the expectation of % under a suitable
measure. Let us show that the family of probability measures (I1g(z, -)),=0 is asymptotically
tight (for definition see, van der Vaart and Wellner 1996, p. 20), using the same basic ideas as
in Sunyach (1975, Theorem 1).

Let d(-,-) be a distance in E. For D a compact set of E and J>0, define
Ps.0(2) éinf(l, (1/0)d(z, D)). 1t is straightforward to show that ¢sp(z) is in Lip(E), with
lip(pop) <O ! and k(psp)<1. Moreover, for any set .7 write .7s={z¢€E;
d(z, ) < 0} for the d-enlargement of .7

Let ¢, >0 and z in E. There exists p sufficiently large such that C[0~!+ 1]
X pP(1 — p)~' <¢/2 (where C is the constant appearing in (12)). Now, choose a compact
D¢ such that IIj[z, (D)1 <¢/2 for k=1, ..., p, which is possible since any probability
measure in a separable and complete space is tight (the superscript ¢ denotes the
complement in the space E). Note that we have 1(pe,)c < @spc < 1(pe, S0 we obtain, for
any n>p,
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Hglz, (D9s)°] = TI5(¢s,p)(2)

Nl 1 p’

< Il (psp)(z) + C 5 +1 ﬂ

<I1f[z (] +3

< e (40)

So (ITy(z, -))u=0 is asymptotically tight. Hence, by Prohorov’s theorem (van der Vaart and
Wellner 1996, p. 21), there exists a probability measure Ay and a subsequence (#;);=¢ such
that TI,(z, -) converges weakly to Ag. This proves that for any continuous and bounded
function % in Lip(E), Ag(h) = [h(z)dAg(z). Using the result of Corollary 1, we obtain that,
for any continuous and bounded function /4 in Lip(E),

AOMyh = JHZ h(ME)d2) = Eo 1) (M(Zn)) — Jh(Z)dia(Z) = No(h). (41)

Then, using the fact that, for any % in Lip(E), [1y# is still in Lip(E) (see Remark 6), 4 is the
unique invariant probability measure associated with the kernel ITy.
Now let 4 be a function in Lip(E) (4 is not necessarily continuous and bounded). Define

Gu(x, v, f, 1) £ Jh(xo, Yo, £ L) g (olx0) £ (x0)dv(yo)dy (xo) (42)

It can be easily checked that G) is a bounded and continuous function in Lip(E). Applying
the previous result to the function G, we obtain

lim Q)16 = [ Gie)d(e)

= Jh(xo, ¥0, £ 1) g (volx0) f * (xo)dv(30)dy(xo)Ae(K, 7, df, df¥). (43)
Using Remark 2,
MOMyh = Eg o) (h(Zy))

= E*[E*(h(Xo, Yar [0 fe MY o))

n—1
= E*(Gh(an Yn? fg,n’ fg[:,n))
= Eg,16(Gr(Zn))
= MO, Gy. “4)

But we already know by (41) that
Lim A(O)IIgh = Ag(h). (45)
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Combining with (43), (44) and (45),
No(h) = Jh(xo, yo, [+ /) ge (volx0) £ ¥ (xo)dv(yo)dy(xo)Ae(K, 7/, df, df™).

But we have

o+ (00]x0) /™ (x0)dv(y0)dy(x0)Ao(K, 7, df, df ™) = Ao(dxo, dyo, df, df™),

as these measures are entirely identified by their integrals on Lipschitz and bounded functions
on E. Then we obtain, for all 4 in Lip(E),

Ao(h) = Jh(z)d/le(z)-

Appendix C. Consistency of the maximum likelihood estimator

Proof of Proposition 3. (i) Denote by V' by the solution of the Poisson equation associated to

the function A (see Corollary 1) and by .7, the o-algebra generated by {Zy, ..., Z,}. It is
easy to show, using inequality (12) for » = 1, that
lip(h) + k(h
V(@) = oS Ao + Kk x. ) (46)

and thus there exist s > 1 (cf. Assumption 3) such that ITy|V|* is bounded, which implies that
Eo(|V(Zys1) — gV (Z,)|°|7) is bounded independently of n. The proof follows from the
classical identity (Meyn and Tweedie 1993, 17.4.3)

1 n—1
;mz:o h(Z )
= Ag(h) + % Z[ V(Zy) —gV(Z)-1)] + % (IIeV(Zo) — eV (Z,) + W(Zo) — h(Z,)]
m=1

by applying the corollary of Chow’s theorem (Hall and Heyde 1980, p. 36).
(i) This is a direct consequence of (i) by applying Remark 2. O

Proof of Proposition 4. 1t is easy to show that

[ugo(ln)(f1 = FHdy(w)
1 1
°g< T LTy () )‘

< 0oWIl.f1 = filh (47)

|h9(xa Y, fla fZ) - h@(xs Y, fi’ fé)| =
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and

|ho(x, v, 1, [2)] < ko(p), (48)

which proves that 4 is in Lip(E) and verifies equation (15), using Assumptions 2 and 3.
O

Proof of Lemma 1. Let >0 and ||0 — 0'|| < 5. By Proposition 1,
@1 (Y9, & 0) — ®ya (Y], & 0]y
=[|@ (Y}, D1(Yo, &; 0); 0) — D,(Y ), P1(Yo, &, 0'); )|y
< || @, (Y, P1(Yo, & 0); 0) — Pu(Y,, Pi(Yo, L, 0); 0]
+ |@u(Y . P1(Yo, & 0'); 0) — @u(Y,, P1(Yo, & 0'); 01

= 26" 0p(X)p" [ @1(Yo. & 6) = @1(Yo. & 0|y +supl| (Y. 13 6) = DoY), 12 O]
(49)
It is straightforward to show that

| ®1(Yo, &; 0) — D1(Yo, &5 0')[1

J(qo(u, -) — qor(u, ) go(Yo|u)E(u)dy(u)
Jgo(Yolu)(u)dy (u)

g

1

Jqo(u, )go(Yolu)S(u)dy () [ qo(u, -)ger(Yo|u)5(u)dy(u)
Jgo(Yo|lu)G(u)dy(u) Jgor(Yolu)S(u)dy(u)

| -

1
The first term on the right-hand side of this expression is bounded from above by w?(n). The
second term on the right is bounded from above by 26’(Yy, 77), by breaking the difference into

two terms including [qo (u, -)go(Yo|u)G(u)dy(u)/ [go (Yo|u)E(u)dy(u). Combining these two
bounds with (49),

sgpIICDnH(Y?,, & 0) — @, (Y5, & 09
< 2¢'0g(Y1)(@?(17) + 20" (Yo, m)p"(|0 — 6'|| + Slgpll@n(YL, G 0) = @,(Y,. & ).

A straightforward recurrence completes the proof. U
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Appendix D. Asymptotic normality of the maximum likelihood
estimator

D.1. Exponential memorylessness of the gradient of the prediction filter
and consequences

Iterating equation (35) at order m, m < n, yields, for all v in K,

Vfg,nJrl(U) =Wt (Y0 [ Vs ONO),
where W, is the vector function (Wﬁ)ls k=p defined by

wk (Y f, 05 0)(v)

_ J a6V, f) it D) - J a6(Yons S )ity 1) 1t )y (1t) - - - dy(itn)

Up

n—1
+ ZJ ag(Yn, fu)(ttn, 0) - - J aog(Yrit, fre) Wi, ure2)
I=m

Un UL+l

X Ug (Y1, f)(up)dy(upyr) -+ - dy(un) + Ug (Ya, f0)(0),

where, for all / < m + 1, we use the notation f; éq)l_m(Y;’i], f;0).

In this subsection, the exponential memorylessness for W of the initial conditions is
proved. It is straightforward to show that, for any & in {1, ..., p}, Uy verifies a Lipschitz
condition. For all y in ¥/, for all £, f' in ST,

1Uok(v, f) = Usi(y, /) < lip(Us,x, VIS = f'll1
||U9,k(y5 f)”l = k(UG,ka y)a
where
lip(Ugx, y) = da(¥)(1 4 S9(»)) < lgllggpj ess sup|drqa(x, X’)Idy(x’)> + 0p(»)(1 + da(¥))

+200(1)3p((1 + 09(»)?),

Ui ) =000 ma. | esssuploant, x1are) )+ 84001 + o).

Note that lip(Up,x) 2 ess Supx [y 1ip(Ug k. ¥) gy (¥|x)dv(y) < oo provided that A, and (AA")3;
are finite, and k(Upx) =esssupy [, k(Ug, »)gg+(y|x)dv(()y) <oco provided that A; and
(AA"), are finite.

Proposition 8. Under Assumptions 1 and 7, and for all f; f' in ST, 0, ¢’ in X, 0 in O, and
all 1 < k < p,
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Wt (V3 f1000) =W, (Y 0" 0)]a
< 60p(Yn)'cy' (1 — €)' " Mllow — ol + I/ = f'h( + okl + o kl)]
+1006(Yn)eg (1 = o) " |1f = f"]l
1

n—1 n—
lip(Up.ts Ya) + > 1ip(Up i Y0a(Yri1)> + > 00(Yii1)’k(Ug s> Y1) |-

I=m I=m

The proof is a straightforward adaptation from Mevel (1997, Part 1, Proposition 4.4) and
is omitted here.
Now define a class of Lipschitz functions on E’:

Definition 2. Lip(E') is the set of vector-valued functions h = (hi)i<k<p such that each hy is
a real-valued measurable function on E'; and for all (x,y) in KX ¥/, there exist

lip’(hx, x, ¥) and X'(hi, x, ¥) such that, for all f; f' in ST, for all 0, 0’ in X,
\hi(x, y, f5 0) = hix, p, f7, 0")
< lip"(hi, x, Wlllow = oklli + 11 = /" X A+ okl + llokl[D],
|heCx, p, [, 0) < K'(hie, x, y)(1+ [|ok)

and

lip'(h) = ess sup Jhp'(hk, % ) gy (V) < oo,
K'(Iy) = ess sup Jk'(hk, %, 192y (V) < oo,

The following analogue of Proposition 2 can be proved.

Proposition 9. Under Assumptions 1 and 7, there exist constants C >0 and p € |p, 1[ such
that, for all z, z' in B', for all h in Lip(E"), for all n =1, and for all 1 < k < p, we have

115 () — TG ()] <
CK' () +1ip (hi))p" (1 + lloklli + 0 kllD0(1)* + 06(¥)* + k(Ug., ») +k(Usk, »)).
Corollary 3. Under Assumptions 1 and 7, there exist constants C>0 and p € lp, 1[, such

that, for all h in Lip(E"), there exists a family of constants (Ag(hk))]gkgp, such that for all z
in B!, for all n =1, and for all 1 < k < p,

T i(2) — Ag(hi)| < C(lip' () + K (h)p" (1 + [lo k][ 1)(06(3)* + k(Upk» »)).
For any initial probability measure A on (E', B(E")), and for any function h in Lip(E’),
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Ao(h) = lim Eg;(h(Zy), (50)

and, for all 1 < k < p, there exists a solution in E' to the Poisson equation (I — )V (-)
= hi(-) — No(hy).

The proofs are similar to the proofs of Proposition 2 and its corollary, and are omitted
here (note that they assume that Aj is finite).
We can now prove the convergence of the gradient of the normalized log-likelihood.

D.2. Proof of Proposition 5
Differentiating the expression for the log-likelihood, we obtain, for all £ in {1, ..., p},

182 [0ugo (V) 5, (W)dy(w) + [g0(Y| )Dif 5, )y (u)

_ z P*-as.
nizg Jgo(Yulu) /5, (w)dy(u)

Lo, 0 =
n

1 n—1 B
==Y josZn)  Poipras.
n
m=0

where

N [0k go(y|u)f(u)dy(u) + [go(y]u)o k(u)dy(u)
J'go(y|u) f(u)dy(u) '

j@,k(xa Y, f: o

We check (using simple calculus) that jg is in Lip(E’), assuming that A, and (AA’);; are
finite. (In fact, lip'(jg, x, ) = 01 + () + dp(») and K'(jo, x, ¥) = 0g(1) + Oh(1).
Assuming, moreover, that, for some s > 1, Ay and A; are finite (in order to obtain a condition
like (15)), we prove, just as in Proposition 4, that, for all £ in {1, ..., p},

1 -
;3kln(97 &) — Ao(jox) P*-a.s.

But the score function [\9( Jo) vanishes at 6™: Propositions 6 and 7 show that the convergence
of (1/n)V?1,(0, §) happens P*-a.s. and uniformly for € in a neighbourhood of 6*, for some
subsequence; and then for the whole family, as it is still P*-as. convergent. Thus,
(1/n)V1,(6, &) is uniformly convergent, vanishes at 6,(%), and 0,() converges to 8%, which
proves the result.

Let V¥ denote the solution to the Poisson equation (I — ITy)V = Jorx — Aye( Jo* i)

(which exists by Corollary 3). We have, Py ie)-a-S-
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n—1

1
1/2 —= 0!, (9* C) 1/2 Z]g* k(Zm)_AH*(]G* k)

m=0
1 S - ~
— WZ Vi(Zn) =g Vi (Zr)
m=1
= WUy VE(Z0) ~ Ty VEZa) + e i(20) — g s 2.

The second term converges to zero as the quantities IT,+ V¥() and Jo* i are bounded. (Recall
that an inequality like (46) still holds. In fact, V*(z) = C((Sg(y) +k(Up.x, ) +
K(jg* y» X, ¥).) Thus, for all l < k< p

. 1 1 & ~ - - -
nll*)né.lo [m 8]{],,(6*’ C) _ WZI( V}({((Zm) — H(?‘* V}':(Zml))] =0 Pe*j(é)—a.s.

Now, since (H(,* vV k(Zn)),, is bounded, the convergence holds in Lz( A(z;))
2

~ 1 n - - -
Em@l 73 Okln 0%, 0 — I/ZZ_;V;E(Z,")—H@* ViZn-1)| — 0. (51)

Let u be a fixed vector of R?; >°" _ u' B, an 1uT(V*(Zm) — My V*(Z,-1)) is a real-
valued martingale adapted to the Borel o-field {2, = 0((Z)k<n)}n=0. We shall use
Theorem 3.2 in Hall and Heyde (1980). We study

n
A Z & T 2
m=1

= > ww Yy By i By oV E(Zw) = Mg Vi(Z NV (Zn) = Ty VE(Zp 1 )| Z 1]
m=1

I<kl<p
n

= witr Y By o (Vi VN Z) = Mg VE(Zn )0 Vi (Zip 1))

1<k I<p m=1
Consider the function defined by

2= (ViVHE@ =70,
We check that this function is in Lip(E’) and verifies condition (15). First,
|7 ki(2)] < CBg+(») + 0 (1))’

(where C depends on A; and Aj), with Ay, and Aj, finite for some s > 1, by assumption. The
Lipschitz criterion is verified by studying the quantity 7 i(x, y, f, 0) — Z4i(x, y, f', 0"),
where z=(x, y, f, 0) and z' = (x, y, ', 0') are elements of the space E’. We have
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ViVi@—=ViviE < Vi@ X Vi@ = ViE)|+ Vel x [Vie) - ViE)
< COg () + 0 () max | V') = VT (),
and, by definition,
Vi) = ;(ﬁz*je*,z(z) — Ay (e ) = Z; I jg 1(2).
n= n=

But jg+; is in Lip(E’) and, for n =1, the function I:Ig*je*,, also belongs to Lip(E’), with
lip" (Mg jg 4 X, ¥) < C(0e(»)* +1lip(Ug.x, ¥) + k(Ugx, ¥))p" (the same argument as in
Remark 6 can be used to see this result). Then, assuming that A4, (AA')s; and (AA')s,
are finite, we obtain that 7 ; belongs to Lip(E’).

The same argument shows that z — 1:19* V}t(z)I:IO* V}k(z) belongs to Lip(E’), and then

1< ~ ~ ~ ~
=~ VRV Zw) = Wy Villy VN Zr) =
m=1

Ap(VV @) = Age (e Vi X T V) Py ypas.

that is,

S wanl(ViViNZm) = Mg Vil VN Zn-1)]

I<k,l<p m=1

S|

njoc [\0*([/015 VT) — Ao*(ﬁg* Vj: X ﬁ@* V}k) Pe*,;l@)-a.s.

As this family is uniformly integrable under Assumption 7, the convergence also happens for
its first moment, so that

1 1 ad T 21 ~ . -t .1
O—%l Zl EQ*’E@[(u B) | Zm-1] e 1 in Pe*’i(g)—probablhty.
—
We prove now that, for any positive ¢,

Zmo1) — 0in Py 3-probability.

R
; Z ]Ega’f,;i(g)((]"T~Bm)2-1 |uT.Bu|=0 ¢
m=1

For a >0,

5 1 - T 2
Pg*j(g) (ZZEQ*,MC)[(” B) ﬂ|uT.Bm\20ne

m=1

zm—l] = (Z)
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= Ey A(@)( (O ABm>2ﬂ‘uT_BmP(,n,\émmzna)

gm—l]

By|=

1 = ~ T
=— Zl Ege o Bge 2o l(u" B
m=
1
= a ll’gn’gi(n EO* l(g)[(”T-Bm)zﬂ|uT.Bm\2V*2>(one)z~‘*2]

1 2s
= a(eo )2 1<3§nE9*M)(|u Bnl™);

as (]::6* Z(C)(|uT.Bm\25))m is bounded and 1/0, tends to zero, we obtain the result. We
conclude that

1 & 5
—> u".B, — N(0, 1) weakly under Py ;.

which means that

nl/z Z u'.B, — N, u® J g+ .u) weakly under P 0* (0

where (Jpy)is = Agr(VEVE) — Age (T VE X Ty VF). Moreover,
1N
- > Eges0(Bh-Bu) = Jg
m=1
Then, equation (51) shows that
n~'?vi, (0* &) — N(0, J}) weakly under P*

and lim E*(Vl 0%, OT.VL(0%, &) = J .

n—0o0

D.3. Exponential memorylessness of the Hessian of the prediction filter
and consequences

The chain {Z,} lies in the space E” = K X %/ X St X X X ¥, (where X, = {7 = (t1.)/Ts.:
K— R and for all v in K, ‘L'(U) is symmetrrc and positive}). We first need to find a
recurrence relatlon between V2 f g.ns1 and V2 f g.,- Using recurrence relation (35) between
\Y% f onp and V. f g, We obtain that {Vef g }isa functlonal autoregressive process

02 1S G (0) = j ao(Ya, [, 0,15 (dyu) + To (Yo, [5,, V5 )0  (52)

where
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Tox l(y f O—)(U) — jai,lqg(us U)ge(y|u)f(u)dy(u)

Jgo(y[w)f (w)dy(w)
01201 1) + o110 (1)  [9kqolw. 0)2a(r1w)/ (4)dy ()
M R P YT . (a"%(“’ T e iy )dy(“)
D120/ () + 203110 4(w) 00w, D201 00
T TaOwreoam <5"”’(“’ O ey oy () )V(”)
+ ([es0100. + digorl00
T2o(yw)f Co)dy()
(19120010 00y + [o(iwo (ondyn) . ( 2o(yl) + ool /)
o) ()dy(n) 2oy (o)dy()
(1908001 0y o) + oo ondyon)\ [ go(yi)o ) + 91go(rl )
Teo(s)f (o)dy() Teo(sI)f (o)dy()
a5t 02o0Iw 0y on]
* [qg(”’ O el ndron |
000w ) L. 0)2(r1w)/ (4)dy ()
| Tt ["”(”’ O Teaimsndyon |

Relation (52) can be iterated to obtain V25, = otu— st (Y2, £ 0 VG VoS Gms 0). Tust
as in the preceding sections, we prove an exponential lack of memory of the initial conditions
for a,_.(; 0).

Proposition 10. Under Assumptions 1 and 9, there exists C >0 such that

k.l . k,1 .
Sllp JHan_mH(J’Zn, fa O', ‘L', 0) - an_m+1(y:ln’ f,a OJ’ T,5 9)||1
KnpseesXn

ge*(ym|xm) e ge*(ynlxn)dv(ym) s dv(yn)
< C(n—my*(1 =" " Mltes = thals + [lox — okl + [lor = all1]
X (1 +[loklh +llodh + okl + lloill)

+ 1 = S lzeddls + gkl + @+ ol + ol + okl + llofll)*.

Then we define a set of Lipschitz functions on E”.
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Definition 3. Lip(E") is the set of vector-valued functions h = (hy )<k i<p, With each hy
being a measurable function on E” such that, for all k, 1 in {1... p}, for all (x, y) in
K X ¢/, there exist lip"(h, x, y) and k"(h, x, y) such that, for any f, ' in ST, 0, ¢’ in X,
and T, T' in X,

\hii(x, y, f,0,7) = hi(x, y, f', 0", T')]
< lip"(h, x, Y)[|lti,; — Thilli + (lok —okli + [lor = oil])
X (1 +[loglh + okl + lloills + loil1)

+0F =zl + kb + A+ okl + okl + llodh + oz,
\hei(x, . fo 0, Dl <K', x, DTl + A+ okl + o))
and

lip"(h) = ess sup Jhp "(h, x, ) gy () < oo,

K"(h) = ess sup Jk"(h, %, )8 (Y)d(y) < o0,

The transition kernel IT satisfies a contraction condition for these functions; as a result,
we can prove that the chain is ergodic.

Proposition 11. Under Assumptions 1 and 9, there exist finite constants p € lp, 1[ and
C>0, and for all z, z' in E", h in Lip(E") and n = 1,

L1 i () — TLpha(2))| < C(K"(h) + Lip"(W)p"[lat' (v, f, 0, 75 O)|)x
+ e £ o T 0 + [+ W, £, 05 O + [Py, 1. 05 0|

+ WO, £ o Ol + 1P, £, o' 0T

Corollary 4. Under Assumptions 1 and 9, the Markov chain Z, is geometrically ergodic.
There exist finite constants p € ]p, 1[ and C>0 such that, for all h in Lip(E"), there exists a
finite constant Ag(h), such that, for all z in E" and for all n =1,

TG 1a,1(2) = Ap(m)| < € X (lip"(h) + K"(7))p"
et /oo, Ol + A+ WO, £ 03 Ol + Wiy, £ o3 O] (53)
For any initial probability measure A on (E”, A(E")) and for any function h in Lip(E"),
Ag(h) = Tim Eg;(h(Z,), (54)
and there exists a solution in E" to the Poisson equation

(I —TIp)V = h— Ag(h).
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Proofs of Proposition 11 and Corollary 4 follow the same lines as for Proposition 9 and
Corollary 3.

Proof of Proposition 6. Differentiating the expression for the gradient of the log-likelihood,
we obtain, for all &, /in {1, ..., p},

1 1=l
~O (0. D= iou(Zn)  Pyjpras. (55)
m=0

where

| o [2o0lu dy(n)  [ge(rluf (dy(u)
oux 3 S 00 = S Fadyw) T Tee(ln @y (@)

Jokgo(y|w)o ((u)dy(u) — [01g0(y|u)o k(u)dy(u)
Jgo(y|u)f(w)dy(u) Jgo(y|u) f (u)dy(u)

B Jo1go(y|u) f (u)dy(u) n Jgo(y|u)o (uw)dy(u)
Jeolw fydy(u) — [go(y|w)f(u)dy(u)

« Jokgo(ylu) f(uwydy(u)  [go(y|u)o p(u)dy(u)
Jgo(y|u)f(w)dy(u) Jgo(y|w) f(wydy(u) |

By a long but simple exercise in calculus, we can check that iy is in Lip(E”) and verify
(15), assuming that Ay, Az, AJ(AA");; and (AA’),, are finite for some 7, s, t> 1. Using
similar arguments as for Proposition 3, we obtain

1 .
SV 1,05, §) = Age(ig) =~ 1.
Then

Iy = — lim E* (% V21,(6%, g)).

n—oo

As permutation between differentiation and integration is valid in our case,
1 1
Jy = lim E* (—Vzn(e*, OHr.VIL0%, ;)) = —lim E* (—szn(e*, @)) = Iy.
n—00 n n—0oo n
O

Proof of Proposition 7. This proof is the same as for the quantity 1,(6, §) — 1,(6', ),
generalizing Lemma 1 to the gradient and the Hessian of the prediction filter. 0
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