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In the early 1970s many mathematicians, especially number the­
orists, learned that they were secretly in love with GL(2). This 
circumstance was brought to light in large part by the publication 
in 1970 of the book Automorphic forms on GL(2) by H. Jacquet 
and R. P. Langlands [JL]. The last year has seen the publication of 
no fewer than three introductory books, with completely different 
tables of contents, on the subject of Jacquet-Langlands' formidable 
monograph: Modular forms by T. Miyaké, Hubert modular forms 
by E. Freitag, and the book under review. Of the three, Miyake's 
book, which treats only the case of GL(2, Q), is closest in con­
tent, if not in spirit, to Jacquet-Langlands; Freitag and Garrett 
cover much of the same ground but have quite different destina­
tions in mind. 
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The stated purpose of Garrett's very readable book is to review 
older, mostly German material in the light of "modern methods," 
and to provide the technical background for some more recent 
work, of special interest to number theorists, on the arithmetic of 
L-functions. Garrett's "modernism" views automorphic forms as 
functions on adéle groups, and in this his framework most con­
spicuously diverges from those of Miyake and Freitag, as well as 
from Shimura's classic Introduction to the arithmetic theory of au­
tomorphic functions [Sh], the obvious point of comparison for any 
introductory text on the subject. 

The adéles are now an object in their own right, without which 
modern number theory would be inconceivable. But in the be­
ginning they were a technical device for encoding the observation 
that, in the arithmetic of global fields (i.e., number fields or fi­
nite extensions of the field k(T), where k is a finite field), all 
absolute values, whether archimedean or p-adic, should be con­
sidered equally important. If F is a global field, then the adéle 
ring AF is the ring whose elements are infinite vectors (av), where 
v runs through the set of inequivalent absolute values | • \v on F, 
av belongs to the completion Fv of v with respect to v, and 
\av\v < 1 for all but finitely many v . Then F imbeds naturally 
as a subring of AF , so if G is an algebraic group over F, then 
the group G(AF) of AF-valued points of G is defined. In par­
ticular, the multiplicative group A* of AF is called the group of 
idéles; AF consists of (av) such that av ^ 0 for all v , and such 
that \av\v = 1 for all but finitely many v . Thus the idéle norm 
IIK)ll = n > X is well defined. 

An (adélic) automorphic form on GL(2) over a global field F 
is a complex-valued function ƒ on the adéle group GL(29 AF) 
which is locally constant in the nonarchimedean variables, C°° in 
the archimedean variables, and which satisfies the following addi­
tional conditions, introduced by Harish-Chandra in the context of 
automorphic forms on real Lie groups: 

(i) f{yg) = f(g) for all y e GL(1, F), g e GL(2, AF), 
(ii) Let G^ = GL(1, F®QR) c GL(2, AF), & the complexified 

Lie algebra of G^ , and Z(g) the center of the universal envelop­
ing algebra U(Q) of $. Let K^ be a maximal compact subgroup 
of G^. Then Z(g) (resp. K^) acts by left-differentiation (resp. 
left-translation) on the space of smooth functions on GL(2, AF), 
and the Z(ö)-module (resp. A^-module) generated by ƒ is finite-
dimensional. 
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(iii) ƒ is slowly increasing with respect to a certain natural norm 
on GL(2,AF). 

Ask a specialist to point to an automorphic form and you will 
probably be shown one of the two basic examples treated in Gar­
rett's book: 
(1) 
E(h, s, g) = ^2 h(yg)-\\a(yg)\\s (an Eisenstein series) 

y€B(F)\GL(2,F) 

or 

(2) © ( ? , £ ) = ^2 (r(g)ç)(v) (a theta series). 
vev(Q) 

This notation requires explanation. Let B = {( Q I )} be the 
upper triangular Borel subgroup of GL(2), iV = {(J j )} c 5 ; 
any g e GL(2, AF) has an Iwasawa decomposition 

g = "(g) 
a(g) 0 

0 1 
•k(g)-z(g) 

with n(g) e N(AF), a(g) e A* , k(g) eK^-ft GL(2, fv) (here 
the product runs over all nonarchimedean places v of F, and &v 

is the maximal order at v), and z(g) a diagonal matrix. The idéle 
a(g) is not uniquely determined, but its idéle norm ||a(g)|| is, and 
the formula for the Eisenstein series makes sense and converges 
absolutely if h is a smooth function on B(F) • N(AF)\GL(2, AF) 
which transforms on the left by a character of B(AF)/N(AF), and 
s is a complex number whose real part is sufficiently large. 

The theta series is written as in Weil's papers on the meta-
plectic group and Siegel's formula. Here for simplicity F = Q, 
and F is a Q-vector space of even dimension, endowed with a 
positive-definite quadratic form. To any nontrivial character y/ 
of the compact group AQ /Q, Weil associates an action r^ of 
SL(2, AQ) on the space ^(VA) of Schwartz-Bruhat functions on 
VA = V ®Q AQ. This action can be extended naturally to a sub­
group G° of finite index in GL(2, AQ). If <p e <5*(VA), then the 
formula (2) converges absolutely and defines a function 6 ( p , g) 
on G° . An application of the Poisson summation formula shows 
that Q(<p, g) is left-invariant under G° n GL(2, Q) ; it is then 
easy to extend @(cp, g) to an automorphic form on GL(2) over 
Q . In Garrett's book theta series serve as nontrivial examples 
of cusp forms; whendim(F) = 2, Garrett constructs the theta 
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functions attached to Hecke characters of totally imaginary qua­
dratic extensions of F. 

The algebra U(g), the group K^ , and the group GL(2, A£) of 
nonarchimedean adéles in GL(2, AF) act by left-differentiation 
and left-translation, respectively, on the space 2lF of automor-
phic forms on GL(2) over F. Since Jacquet-Langlands, the ba­
sic object of study has been the automorphic representation of 
GL(2, F) : a subspace n of 2lF (more generally, a subquotient 
of %F) which is invariant and irreducible with respect to the com­
bined action of U(g)9 K^, and GL(2, A£) . Most important 
are the cuspidal automorphic representations, those which cannot 
be embedded as subquotients of the representations constructed 
from Eisenstein series. The vectors in n are, of course, auto­
morphic forms, and are cusp forms when n is cuspidal; they 
are Hubert modular forms when F is a totally real number field. 
The name "Hubert modular form" is often reserved for holomor-
phic elements of n, when such exist, but following the title of 
Garrett's book, we make this into an extra condition. Thus, if 
F is totally real of degree d over Q, the identity component 
K^ of K^ is isomorphic to SO(2)d. The representations of 
K^ are thus parametrized by Z . If n contains an irreducible 
U(&) x GL(2, A^)-submodule 7rho1 whose restriction to K^ lies 
in the octant (Z>0) , then n is said to be of holomorphic type. 
Then 7rho1 contains a representation K^ of smallest parameter 
k = (k{, k2, ... , kd), with each kt > 0, and the elements of n ° 
with parameter k are called holomorphic Hubert modular forms 
of weight k. 

A standard change of variables identifies a holomorphic Hubert 
modular form as above with a more familiar object. Let fj denote 
the upper half-plane in C, and let an i = 1, ... , d, denote the 
real embeddings of F. The identity component GL(2, R)+ of 
GL(2, R) acts on \) by linear fractional transformations. If we 
denote by GL(2, F)+ the subgroup of y G GL(2, F) such that 
at{y) e GL(2, R)+ , i = 1, ... , d, GL(2, F)+ then acts on (/ 
by the formula 

y(z) = {ax{y)(zx)9 ... , ad{y){zd)) if z= (zx, ... , zd). 

Then we may identify holomorphic Hubert modular forms with 
functions ƒ = /(z, g), z e \)d , # € GL(2, A£) , holomorphic in 
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z, locally constant in g, and satisfying the functional equation 

(3) f(y(z),yg)= [llicjZj + dj)*' ) • ƒ ( ! , * ) , KCjZj + af' 

where 0j(y) = 
a b 

j j 

c d , 
j JJ 

j=l,...,d. 

Then ƒ has the following Fourier expansion: 

(4) f(z,g) = J2W
a(f>g)e2Kia'1 

aEF 

^d 
where a -z = ]T\=1

 aj(a)zj an(* the Whittaker function Wa(f, g) 
has a factorization over the finite primes 

(5) Wa(f>(8v)) = Y[KJf>Sv)-
V 

Then ƒ is a cusp form iff Wa(f, g) = 0 unless Oj{a) > 0 for 
all a. Formula (3) is the definition which best lends itself to 
arithmetic applications, whereas the group theoretic formalism is 
more convenient for nearly everything else. Much of Garrett's 
book is taken up with exhibiting the relative advantages of the two 
approaches. 

The subordination of the classical theory of Hilbert modular 
forms to group theory did not begin with Jacquet-Langlands. The 
equivalence of the theory of Hecke operators with that of spher­
ical representations of GL(2, Qp) was first observed in the late 
1950s. At the Boulder conference of 1966, Satake explained how 
the Ramanujan-Petersson conjecture on the Fourier coefficients of 
modular forms could be formulated naturally in terms of the clas­
sification of unitary representations of GL(2, Q ) [Sa]. By the 
time Jacquet-Langlands appeared, the influential book [GGP] of 
Gelfand, Graev, and Piatetski-Shapiro, as well as the papers of 
Weil mentioned above, had already argued persuasively in favor 
of the adélic approach. 

The principal innovation of Jacquet-Langlands was the system­
atic use of representation theory to attach L-functions to auto-
morphic representations, and to derive their analytic properties. 
An automorphic representation n of GL(2, F) is isomorphic to 
a (restricted) tensor product (g)v nv , where v runs through the 
places of F and nv is an irreducible representation of GL(2, Fv) 
(v nonarchimedean) or the enveloping algebra of the Lie algebra 
of GL(2,FV) (v archimedean). Each nv is admissible, which 
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means in the nonarchimedean case that every vector in nv is 
contained in a finite-dimensional GL(2, ^)-module and the 
GL(2, ^)-spectrum in nv has finite multiplicities; for archime 
dean v the admissible representations are those studied by Harish-
Chandra. Imitating the pattern established in Tate's thesis for the 
group GL(\), Jacquet-Langlands attaches to each infinite-dimen­
sional admissible nv the following data: a family of zeta integrals 
Z(s9g9 Wv), s £ C, g e GL(29FV)9 Wv an element of the 
Whittaker model of nv—for example, one of the functions 
Wv a(f9 •), as in (5); a local Euler factor L(s 9 nv) which is the 

inverse of a polynomial of degree < 2 in Nv~s (v finite) or a 
product of an exponential and at most two shifted T-functions (v 
archimedean), and such that 

*{g,s,Wv) = L(s9nv)-
lZ(s9g,Wv) 

is entire for all g, Wv\ and an entire function e (s, ny9 y/v) 9 

which depends on an auxiliary unitary character y/v: Fv -> Cx . 
These functions are related by the local functional equation: 

(6) &(wg9 l-s,Wv) = e(s,nv, vv)-Q(g9s9 Wv)9 

0 1 
w = - 1 0 €GL(29FV). 

If the y/v 's are chosen to be local components of an adélic charac­
ter y/: AF/F —• Cx , then the product e(s9 n) = n^ e(s > n

v » Vv) 
does not depend on y/. Then, defining L(s9 n) = \[vL{s9 nv), 
the global functional equation 

(7) L(s, n) = e(s, n)L(l - s, n)9 

where it is the (admissible) contragredient of n, is a fairly straight­
forward consequence of the local functional equations and the 
global invariance properties of automorphic forms. 

The last two decades have seen the discovery of several dozen 
new integral representations for Euler products, with at least one 
L-function attached to automorphic representations of all but a 
few exceptional groups. The Jacquet-Langlands approach to the 
analytic properties of L-functions through a combination of local 
and global harmonic analysis has served as a model for all sub­
sequent work. Euler products are a principal theme of Garrett's 
book. They first appear in a convincing account—with all ques­
tions of convergence omitted—of the adélic approach to the Euler 
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product for the Mellin transform of a Hecke eigenform, essentially 
following Jacquet-Langlands in their use of Whittaker functions. 

A more substantial section is devoted to Rankin's method for 
proving the analytic continuation of the L-function attached 
to two Hubert modular forms. Nowadays, the terms "Rankin's 
method" and "Rankin-Selberg convolution" are used to describe 
any procedure to obtain an Euler product by integrating an au­
tomorphic form on one group against an Eisenstein series on a 
smaller (or larger) group. The functional equation of the Euler 
product is then a direct consequence of the functional equation 
of the Eisenstein series. Rankin's original product expresses an 
L-function attached to two elliptic modular forms ƒ and ƒ' as 
an integral against an Eisenstein series: 

A(s)-L(s, ƒ, ƒ ) = [ f(g)7(g)E(h,s,g)dg 
JG(Q)Z(A)\G(A) 

where G = GL(2,Q), Z the subgroup of diagonal matrices, 
E(h, s, g) is an appropriately chosen Eisenstein series as in (1), 
and A(s) is a product of elementary factors. Rankin worked with 
holomorphic functions, of course; the adélic generalization was 
carried out by Jacquet [J], and Garrett's account is based on the 
simpler parts of Jacquet's theory. 

Number theorists' excitement about GL(2) was not, however, 
primarily a response to the new way to construct L-functions. In 
fact, an explicit purpose of Jacquet-Langlands was to present evi­
dence that automorphic representations were the natural 
setting for a nonabelian generalization of class field theory. 
Langlands' reciprocity conjectures predict a one-to-one correspon­
dence between cuspidal automorphic representations of GL(2, F) 
and irreducible compatible systems of two-dimensional A-adic rep­
resentations of Gal(F/F) (more generally, of the Weil group of 
F). Some examples of the latter: 

(i) The Galois action on the points of finite order of an elliptic 
curve A over F defines a compatible system of two-dimensional 
/-adic representations p{\ Gal(F/F) -» GL(Tt(A) <g> Q), where 
Tt{A) is the Tate module of A. More generally, if X is any 
algebraic variety over F, then Gal(F/F) operates on the /-adic 
cohomology groups Hl(Xj, Q ;), which define compatible systems 
of /-adic representations. 

(ii) Suppose F' is a finite Galois extension of F, and let 
p: Gd\(F'/F) —• GL(2, E) be a homomorphism, where E is a 
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number field. Then p defines continuous homomorphisms px : 
Gal(F/F) -+ GL(2, Ex), where Ex is the completion of E at 
the nonarchimedean valuation A, and the px form a compatible 
system. 

The characteristic polynomials of the images under /?A ofFrobe-
nius elements determine local Euler factors Lv(s9 {pk}) for almost 
all v , and with a bit more work for all v . In case (ii) above—more 
generally, when the px are A-adic realizations of complex rep­
resentations of the Weil group—the Euler product L(s, {px}) = 
UvLv(s, {px}) is an Artin-Hecke L-f unction, and as such is known 
to have a meromorphic continuation and satisfy a functional equa­
tion of the form 

(8) L(s9{px}) = e(s9{px})L(l-s9{px}) 

analogous to (7). Langlands, completing earlier work of Dwork, 
demonstrated the existence of local functions ev(s9 {px}, Vv), 
with i//v an additive character as above, which agree with the lo­
cal factors of Tate when n = 1 and have a number of other nice 
properties, and which satisfy 

(9) e(s9{px}) = Ilvev(s9{px}9y/v) 

when the i//v come from a global i// as above. A basic conjecture 
in number theory is that the Euler product L(s, {px}) always has 
an analytic continuation, and that local constants ev(s9 {px}> y/v) 
with certain functorial properties can be defined for any {px} in 
such a way that the functional equation (8) is satisfied. If {pk} 
is an irreducible 2-dimensional system associated to the cuspidal 
automorphic representation n = n{p^ by Langlands' reciprocity 
conjecture, then it is expected that 

Lv(s9{pk}) = L{s9nv)9 

(10) ev(s 9 {pk} 9 y/v) = e(s 9 nv 9 y/v) for all?;. 

All through the '60s number theorists had been coming to real­
ize that L-functions of the form L(s, {pt v}), where pl v is the 
Galois representation on Z-adic cohomology of a smooth projec­
tive variety V, were the key to the diophantine geometry of V. 
The zeroes of L(s, {pl v}), according to Birch and Swinnerton-
Dyer, should control the existence of points of infinite order on 
V when V is an abelian variety; the poles, according to Tate, 
should control the existence of algebraic cycles modulo homologi-
cal equivalence. More recent conjectures of Beilinson, Bloch, and 
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Bloch-Kato predict that still more of the geometry of V can be 
read off from its L-functions. The Langlands conjectures promise 
that all such L-functions are attached to automorphic forms. 

Little progress has been made in proving the existence of n{pk} 
for general 2-dimensional systems {/?A} over number fields (over 
function fields the existence of n{px) was proved by Deligne). 
The case of finite Galois representations was shown by Jacquet-
Langlands to be essentially equivalent to the Artin conjecture for 
such representations. In the case of the /-adic representations of 
Gal(Q/Q) on the Tate modules of elliptic curves, the automor­
phic forms in question are supposed to be elliptic modular forms 
of weight 2, and the Langlands conjecture in this case reduces to 
a conjecture considered earlier by Taniyama, Shimura, and Weil, 
and which was recently shown by Frey and Ribet to have the Fer­
mât conjecture as an unexpected consequence. 

For general number fields F, the Langlands correspondence in 
the reverse direction—attaching 2-dimensional systems {px{n)} 
to cuspidal automorphic representations of GL(2, F)—is equally 
mysterious (for function fields this is again known, in this case 
thanks to Drinfeld). But when F is a totally real field and n con­
tains a holomorphic Hubert modular form, the problem of con­
structing {px(n)} was recently completely solved, following more 
than 30 years of work by many other authors, by R. Taylor [T]; 
an altogether different solution was subsequently found by Blasius 
and Rogawski [BR], 

Langlands' conjecture that every 2-dimensional compatible A-
adic system is a {pk{n)} has naturally encouraged the intensive 
study of A-adic representations attached to Hubert modular forms. 
The interplay between group theory and geometry has been ex­
ploited to startling effect to solve classical and not-so-classical prob­
lems in arithmetic over Q—for example, the work of Ribet, Mazur, 
and Wiles on class fields of cyclotomic fields, and partial solutions 
by Gross-Zagier and Kolyvagin of the Birch-Swinnerton-Dyer and 
Tate-Shafarevich conjectures. 

Applications to arithmetic have been successful largely for a 
reason known since work of Eichler and Shimura in the '50s, 
and emphasized in Shimura's book: the relations between auto­
morphic forms, L-functions, and Galois representations can all 
be interpreted—this is a peculiarity of GL(2)—in terms of the 
Fourier expansions (4). On the one hand, L(s, n) is completely 
expressible in terms of the Fourier coefficients of a well chosen 
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form fn € 7t, called a new form. On the other hand, the formula 
(3) exhibits Hubert modular forms of weight k as sections of cer­
tain line bundles over the Hubert modular varieties GL(2, F)+\f) x 
G L ( 2 , A £ ) . These varieties parametrize universal families of 
abelian varieties with additional structure—over Z!—and the 
Fourier coefficients of holomorphic modular forms have exact in­
terpretations in terms of this modular geometry. In this way, the 
Fourier coefficients translate statements about the geometry of the 
Hilbert modular variety into statements about L(s, n), and from 
there to conclusions about the {pk{n)} . 

Underlying all arithmetic applications is the classical theorem 
that the space of modular forms for GL(2, Q) of a given weight 
and level is spanned by forms with cyclotomic Fourier coefficients. 
Shimura generalized this theorem to Hilbert modular forms in 
1975 (related results were proved earlier by Klingen and others). 
Garrett calls this generalization the Arithmetic Structure Theorem, 
and his new proof of this result serves as the focal point of his 
book, tying together his discussions of L-functions, Eisenstein se­
ries, and theta series. 

Hidden in Garrett's proof of the Arithmetic Structure Theorem 
is yet another Euler product, the symmetric square L-function, 
which can be represented as an integral of a Siegel modular Eisen­
stein series L(2) on Sp(2, AF) against forms on an embedded 
SL(2, AF) x SL(2, AF). This identity, which Garrett was appar­
ently the first to notice [G], reduces the proof of the Arithmetic 
Structure Theorem to a calculation, following Siegel, of the Fourier 
coefficients of L ( 2 ) , and thence, via Klingen's theorem on the spe­
cial values of Dirichlet L-functions of totally real fields, to the 
classical formulas for the special values of Dirichlet L-functions 
of Q. 

Garrett's introduction presents a diagram of the tortuous se­
quence of implications leading to the Arithmetic Structure Theo­
rem, and one realizes with some astonishment that his derivation 
of this result uses little more than elementary complex analysis, 
measure theory, and elementary algebraic number theory. One 
also realizes that these simple ingredients have been combined 
to present exemplary applications of most of the standard tech­
niques of the analytic theory of automorphic forms. Better still, 
starting from scratch, Garrett has succeeded in developing his sub­
ject matter to the point of presenting results which, if not exactly 
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the cutting edge of the field, certainly come close. Such results 
include not only the Arithmetic Structure Theorem but also sim­
plified versions of a series of theorems of Shimura, dating from 
the '70s, which relate special values of L-functions to periods of 
integrals. Apart from their intrinsic interest, Shimura's theorems 
are the starting point for the kind of arithmetic applications dis­
cussed above, and Garrett's exposition makes Shimura's difficult 
theorems seem completely natural. 

At times, I was frustrated by Garrett's tendency to drop a sub­
ject at a point where a little additional effort would have greatly 
clarified matters. For example, his comprehensive section on "clas­
sical" Hubert modular forms proves the analytic continuation and 
functional equation of Dirichlet series attached to cusp forms, but 
not the Euler product decomposition; later, an adélic version of the 
same integral representation obtains the Euler product, but not the 
analytic continuation. Hardly a word is offered to explain the re­
lation between the two approaches. Again, Garrett's treatment of 
p-adic representation theory is largely limited to a construction of 
the spherical Hecke algebra and occasional remarks suggesting that 
the general theory—in particular, the theory of new forms—is too 
difficult to handle. The reader may well miss the point that the 
adélic approach simplifies and unifies the theory of L-functions. 
But one can't object too strenuously to Garrett's omissions, since 
they are mostly easy to retrieve in the expository literature—for 
example, in Gelbart's book [Ge] which, although it contains few 
proofs, is still the most efficient introduction to the material in 
Jacquet-Langlands. Much of what Garrett covers, on the other 
hand, was previously available only in the original journal articles. 

The enterprise initiated by Langlands' conjectures and by the 
publication of Jacquet-Langlands has been wildly successful, and 
progress has come much more rapidly than anyone anticipated 20 
years ago. Many conjectures which seemed hopelessly difficult in 
the mid '70s have now been reduced to a series of problems in har­
monic analysis—primarily connected with Arthur's generalization 
of the Selberg trace formula and its conjectural "stable" variant— 
whose resolution is expected within a few years. In part for this 
reason, and in part because the technical baggage of the subject 
rapidly grows cumbersome as one moves away from GL(2), the 
number theorists who flocked to the conferences in Antwerp in 
1972 and Corvallis in 1977 have largely abandoned automorphic 
forms to the specialists. Nevertheless, anyone interested in the 
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arithmetic of number fields will eventually have to learn something 
about Hilbert modular forms. As an introduction to the analytic 
and arithmetic aspects of the subject, Garrett's book may be the 
best place to start. 
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Coxeter graphs and towers of algebras could not appear at a more 
auspicious moment. One of the authors, Vaughan F. R. Jones, 
has just been awarded the Fields medal, and (if we may presume 
to infer the reasons for the choice of Jones by the Fields Medal 
Committee), the decision had much to do with the subject of this 
monograph. 


