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HARISH-CHANDRA AND HIS WORK 

REBECCA A. HERB 

I began to study representation theory while I was a graduate stu­
dent at the University of Washington in the early seventies. At that 
time learning the theory of unitary representations of semisimple 
Lie groups primarily meant learning Harish-Chandra's work, and it 
was not an easy task. By that time Harish-Chandra had published 
over fifty papers, more than a thousand pages, on this subject. His 
most important papers tended to consist of one or two pages of 
introduction followed by fifty to a hundred pages of dense mathe­
matics. I was lucky because my thesis advisor, Garth Warner, knew 
those papers well enough that instead of saying, "Read Harish-
Chandra's papers," or "Read Discrete series. I," he said, "Read p. 
302 of Discrete series. I." The good thing about Harish-Chandra's 
papers was that if you knew what you were looking for and where 
to start, everything was written down. There were no mistakes, 
and the notation was always the same. You might have to refer 
back to three or four of his earlier papers for results, or even defi­
nitions, but he told you exactly where to look. I started on p. 302 
of Discrete series. I with Lemma 56 and worked my way backward 
and forward, picking up a lemma here and there from earlier sec­
tions of the paper and from earlier papers. By the time I really 
understood that page, I was ready to write the first part of my the­
sis. In the seventeen years since I finished my PhD thesis, I have 
kept coming back to Harish-Chandra's papers, gradually picking 
up more and more pieces as I have needed to learn them for my 
own work. I never knew Harish-Chandra well personally, although 
I was lucky enough to spend two years at the Institute for Advanced 
Study and attend his weekly lectures on work in progress, but he 
has always been my mathematical hero, so I would like to take this 
opportunity to introduce you to Harish-Chandra and his work. But 
before I say anything about Harish-Chandra himself, I would like 
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to give a brief introduction to the field of representation theory 
and harmonic analysis. 

The theory of harmonic analysis on groups originated in the 
eighteenth century with the problem, motivated by physical con­
siderations, of representing an arbitrary function by a trigonomet­
ric series. In its modern version, the theory of Fourier series can 
be formulated as follows. Let R denote the additive group of real 
numbers, 2nZ the subgroup of R consisting of all integer mul­
tiples of 2n, and let T = R/2nZ be the quotient group. Then 
functions on T can be thought of as functions on the interval 
[0, 2n] or as 27c-periodic functions on the real line. Lebesgue 
measure on [0, 2n] gives a measure on T which we normalize to 
have total mass one. Thus 

ƒ f(x) dx = j - f(x) dx. 

Instead of expanding real-valued functions on T in terms of the 
functions sin nx, cos nx, n = 0, 1, 2, ..., it is more convenient 
to expand complex-valued functions on T in terms of the complex 
exponential functions einx = cos nx + i sin nx, n e Z. 

Suppose ƒ : T -> C is an integrable function, that is ƒ € L1 (T). 
Then for each integer n we can define a Fourier coefficient 

/(«) = ƒ f{x)e~inxdx. 

We then attach to ƒ the Fourier series 
+oo 

The question is, in what sense does the Fourier series represent the 
function ƒ? 

In two situations the answer is very nice. First, if ƒ is suffi­
ciently smooth, for example if ƒ is infinitely differentiable, then 
the Fourier series of ƒ converges to ƒ uniformly and absolutely. 
Thus for all ƒ G C°°(T), x e T, 

f(x) = Y,f(n)einx. 
nez 

Second, let L2(T) denote the complex vector space of all mea-
sureable functions ƒ such that 

II/II2 = (^ I /WI 2 ^) 
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is finite. We define an inner product on L2(T) by 

(f,g) = Jf{x)gffidx. 

Then L2(T) is a Hilbert space, and if we set en(x) = einx, then 
{e

n}t™-<x> *s a n orthonormal basis for L2(T). Further, the Fourier 
coefficient f(n) = (f,en) so that the Fourier series of /GLX(T) 
is just the expansion of ƒ in terms of this orthonormal basis. 
Thus the partial sums of the Fourier series converge to ƒ in the 
L2 norm, and 

can be taken as an equality of L2 functions. 
I would now like to turn from the theory of harmonic analysis 

to that of group representations. Originally, for example in Burn-
side's classic Theory of groups of finite order published in 1897 
[Bu], a group is defined to be a group of transformations of some 
set, for example a group of permutations of a finite set, a group of 
symmetries of some geometric object, or a group of linear trans­
formations of a vector space. Of course now we think of a group as 
an abstract object which can be represented as a group of transfor­
mations. Because I want to discuss the connection between group 
representations and harmonic analysis, I will discuss only unitary 
linear representations of topological groups. 

We will assume that G is a locally compact topological group. 
That is, G is a Hausdorff, locally compact topological space with a 
group structure which is compatible with the topology in the sense 
that the group operations are continuous. Let W be a Hilbert 
space, that is a finite or infinite-dimensional complex vector space 
with inner product (, ), which is complete with respect to the 
norm ||w|| = (w, w)1/2, w e W, coming from the inner product. 
A linear operator T : W —• W is called unitary if T is onto 
and (Tv, Tw) = (v, w) for all v, w e W. Let U{W) be the 
group of unitary linear operators on W and let n : G -> U(W) 
be a group homomorphism. We assume that n is continuous in 
the sense that for every v , w £ W, the complex-valued function 
x*-+(n(x)v, w) is continuous on G. Then n or (n, W) is called 
a unitary representation of G. 
Example 1. Suppose that dim W = 1. In this case U(W) is iso­
morphic t o S , 1 = { z € C : | z | = l } , and using this identification, 
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n : G -* S can be thought of as a continuous group homomor-
phism from G to Sl. One-dimensional unitary representations 
are called unitary characters. 
Example 2. Since G is a locally compact topological group, there 
is a unique (up to constant factor) right Haar measure on G. The 
main property of Haar measure is that it is translation invariant. 
That is, for every feLl(G),geG, 

ƒ f(x) dx = f(xg) dx. 
JG JG 

Let L2(G) be the Hilbert space of square-integrable functions on 
G with respect to this measure and define 

[R(g)fKx) = f(xg), x, geG, feL2(G). 
Since we use right Haar measure to define the inner product in 
L2(G), each operator R(g), g e G, is unitary. Thus we have a 
group homomorphism 

R : G -+ U{L2{G)) 

of G into the group of unitary operators on the Hilbert space 
L (G). It is called the right regular representation of G. 

Let (n, W) be a unitary representation of G. A closed sub-
space V c W is called invariant if n(g)v e V for all g e G, v e 
V. In this case we obtain a unitary representation of G on V by 
restricting the operators n(g), g e G, to V. Further, if V is 
invariant, so is 

V± = {w e W : (v, w) = 0 for all t; G F}. 
Thus we can regard (n, W) as the direct sum of representations 
of G on F and V1'. That is W = V 0 V1" is a decomposition 
of W into simpler pieces. Now (n9W) is called irreducible if it 
has no proper invariant closed subspaces. For example, if W is 
one-dimensional, (n,W) is irreducible since W has no proper 
subspaces. If G is abelian, these are the only irreducible repre­
sentations. However nonabelian groups have higher dimensional, 
and even infinite-dimensional irreducible representations. 

The two most important problems in representation theory are 
the following. 

(1) Given a locally compact group G, find G, the set of irre­
ducible unitary representations. Of course there is a natu­
ral notion of two representations being "the same" and so 
we want a list of representations up to equivalence. 
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(2) Given an arbitrary unitary representation of G, describe 
how to decompose it into irreducible constituents. The 
most important case here is the decomposition of the reg­
ular representation of G on L2(G). This is L2 harmonic 
analysis on G. 

Example 3. Let G = T = R/2nZ. T is an abelian group so 
t is the set of unitary characters of T. For each n € Z, the 
function en(x) = einx, x e T, is a unitary character of T. It 
is an advanced calculus exercise to prove that these are the only 
continuous homomorphisms of T into Sl. Thus T = Z. For 
each n eZ, Cen c L2(T) is an invariant subspace of L2(T) and 
the L theory of Fourier series says that 

£2(T) = ©£<>„ 
2 

is the decomposition of L (T) into irreducible subspaces. Further, 
for each n G Z, the projection of L2(T) onto Cen is given by 
f~f(n)en,feL2(T). 
Example 4. Suppose G is a compact group. Then every (n, W) € 
G is finite-dimensional. The dimension ÖL of W is called the 

n 

degree of n . We define a matrix coefficient of (n, W) e G to be 
any function of the form x^(n(x)v, w) ,v ,w e W. These are 
all continuous functions by our continuity requirement on n, and 
G is compact, so every matrix coefficient is in L2(G). Let L2(G)n 

denote the subspace of L2(G) spanned by the matrix coefficients 
of n e G. It is an invariant subspace and the restriction of the 
regular representation to L2(G)n is equivalent to dn copies of 
n. Functions in L (G)n are regarded as elementary functions 
because they transform in the simplest possible way with respect 
to translations by elements of the group. The Peter-Weyl theorem 
says that 

L\G) = ®J;L2(G)K. 
neG 

2 

That is, L (G) decomposes as the orthogonal direct sum of irre­
ducible subspaces, and each neG occurs with multiplicity dn . 
The analogue of the Fourier series for a function ƒ e L (G) can 
now be defined as follows. The character of n e G is the element 
of L2(G)n defined by 

&n(x) = trace n{x), x eG. 
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Now the projection of L2(G) onto the subspace L2(G)n is given 
by ƒ*-*ƒ„ where 

fn(x) = dn(en * ƒ)(*) = ^ f en(xy-i)f(y)dy. 
JG 

Thus we have an expansion of f e L2(G) in terms of elementary 
functions, 

neô 

This equality can be interpreted in the L2 sense that the partial 
sums of the infinite series converge to ƒ in L (G) or can be taken 
literally if ƒ is smooth enough that the series converges pointwise 
to ƒ . It is called the Plancherel formula for G and the measure 
that assigns to each n e G the mass dn is called the Plancherel 
measure on G. Thus the theory of characters of irreducible uni­
tary representations of G yields a theory of harmonic analysis on 
G. 
Example 5. Let G be any locally compact abelian group. Then all 
its irreducible unitary representations are one-dimensional, that 
is are unitary characters. However, if G is noncompact, these 
characters are not L2 functions since they have constant absolute 
value one. But L2(G) can still be decomposed in terms of these 
characters as a "direct integral" rather than as a direct sum. This 
generalizes the theory of the Fourier transform for functions on the 
real line. For feLl(G)nL2{G) we can define Fourier coefficients 

f(n) = / f(x)n(x)dx, neG. 
JG 

Further, the set G of unitary characters is itself a locally compact 
abelian group so it has a Haar measure. The Plancherel theorem 
says that ƒ»-• ƒ extends to an isometry of L (G) onto L (G). 
Just as before there is a Fourier inversion formula that says that if 
f e L (G) is sufficiently nice, 

f{g) = jôf{n)n{g)dn 

where dn is the (suitably normalized) Haar measure on G. Thus 
we can think of 

L2{G) = 0 f Cn dn. 
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Of course a one-dimensional representation is its own character, 
and it is easy to check that 

f(*)*(g) = (n*f)(g) 
where the convolution is defined as in the compact case. Thus we 
can write 

ƒ = (n*f)dn 
JG 

as in the compact case. Thus the Plancherel measure on G is just 
the Haar measure and we can think of L2(G) as a direct integral 
of irreducible representations with respect to Haar measure. 

I would now like to return to Harish-Chandra. The most com­
plete reference for biographical information about Harish-Chandra, 
and my main source for the material that follows, is a memoir 
by R. P. Langlands [L]. A good introduction to Harish-Chandra's 
work on semisimple Lie groups is V.S. Varadarajan's introduction 
to Harish-Chandra's Collected Papers [H]. I would like to thank 
Professor Varadarajan for also making available to me an article 
on Harish-Chandra which will appear in the Journal of the Indian 
Mathematical Society [V]. 

Harish-Chandra was born in 1923 in northern India. His ear­
liest papers were written in India in the early 1940s in the field 
of particle physics. Then, in 1945, he went to Cambridge, Eng­
land, to work with Dirac. At this time the basic representation 
theory of abelian and compact groups was well understood. How­
ever, very little was known about nonabelian, noncompact groups. 
These groups occur as symmetry groups of quantum mechanical 
systems, and physicists, starting with E. Wigner in 1939 [W], were 
just beginning to study their infinite-dimensional unitary represen­
tations. Dirac realized that this was a wide open area, and sug­
gested that Harish-Chandra study the infinite-dimensional unitary 
representations of the Lorentz group, 50(1, 3). He did this in 
his PhD thesis, completed in 1947. He then visited the Institute 
for Advanced Study in Princeton. Langlands's memoir includes 
the following comment by Harish-Chandra. 

"Soon after coming to Princeton I became aware that my work 
on the Lorentz group was based on somewhat shaky arguments. 
I had naively manipulated unbounded operators without paying 
any attention to their domains of definition. I once complained 
to Dirac about the fact that my proofs were not rigorous and he 
replied, 'I am not interested in proofs but only in what nature 
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does.' This remark confirmed my growing conviction that I did 
not have the mysterious sixth sense which one needs in order to 
succeed in physics and I soon decided to move over to mathemat­
ics." 

Thus, although Harish-Chandra greatly admired the work of 
Dirac and other theoretical physicists, around 1950 he abandoned 
physics and began the rigorous mathematical study of the represen­
tation theory and harmonic analysis of semisimple Lie groups. He 
devoted the remainder of his life to this and related projects. He 
held a position at Columbia University from 1950-1963, and then 
from 1963 until his death in 1983 was a member of the Institute 
for Advanced Study. 

I have tried to give you some idea of what representation the­
ory and harmonic analysis are. But what is a semisimple Lie 
group? Although there is a more general definition, for simplicity 
we will consider only linear Lie groups, that is closed subgroups 
of GL(n, R) or GL(n, C), the groups of invertible n x n ma­
trices with real or complex entries. On a Lie group G therefore, 
in addition to the topological group structure, one has an ana­
lytic structure coming from the embedding of G in the Euclidean 

2 2 

space R or C . Let G be a connected, linear Lie group. G 
is called reductive if it is stable under conjugate transpose, and 
is called semisimple if it is reductive, nonabelian, and has finite 
center. For example, GL(n, C) is reductive, but not semisimple, 
since its center, the set of all scalar matrices, is isomorphic to C* . 
G = SL(n ,C) = {ge GL(n, C) : det g = 1} is semisimple since 
the condition det g = 1 is stable under conjugate transpose, and 
the center of G, the set of all scalar matrices with determinant 
one, is isomorphic to the group of complex nth roots of unity. 

The class of semisimple Lie groups contains many of the groups 
of interest to physics. In addition to Harish-Chandra's own work 
on the Lorentz group, the group SL(2, R) of real two-by-two ma­
trices with determinant one had been studied by Bargmann in 1947 
[Ba], and the groups SL(n, C) of n x n complex matrices with 
determinant one had been studied by Gelfand and Naimark in 
1950 [GN], Work in representation theory at that time either fo­
cused on specific classical groups, or was of a very general nature. 
Many mathematicians were optimistic that the tools of functional 
analysis and operator algebras were sufficient to solve the prob­
lems of representation theory for all locally compact topological 
groups. Thus Harish-Chandra's decision to study semisimple Lie 
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groups as a class was very much against the prevailing fashion. In 
retrospect however, it was an excellent choice. First, the semisim-
ple Lie groups have a detailed structure theory which had been 
worked out by Chevalley in his three volume Theory of Lie groups 
[CI, C2, C3]. Harish-Chandra was able to exploit this structure to 
obtain a beautiful and complete theory of harmonic analysis. Sec­
ond, the semisimple groups occupy a central position in the theory 
of general Lie groups similar to that played by simple groups in 
finite group theory. Work by other mathematicians, for example 
G. Mackey in the 1950s [Ml, M2] and M. Duflo in the early 1980s 
[D], has shown that many problems in the representation theory 
of general Lie groups can be understood once the semisimple case 
is known. 

Recall as above that the basic problems of harmonic analysis 
for a group G are to find G, the irreducible unitary representa­
tions, and then to find the Plancherel measure on G that gives 
the decomposition of the regular representation of G on L2(G) 
into irreducible constituents. For compact and abelian groups this 
is carried out via the theory of characters. This is possible be­
cause the irreducible unitary representations involved are finite-
dimensional. However, for a noncompact simple Lie group, the 
only finite-dimensional irreducible unitary representation is the 
trivial unitary character n(x) = 1 for all x e G. However, 
semisimple Lie groups have many infinite-dimensional irreducible 
unitary representations which provide a theory of harmonic anal­
ysis. 

Thus the first problem in generalizing the theory for compact 
and abelian groups to a semisimple Lie group G is to define the 
character of an infinite-dimensional irreducible unitary represen­
tation n e G. In this case the unitary operators n(x), x e G, 
do not have a well-defined trace since they have infinitely many 
eigenvalues all of absolute value one. However the character can 
be defined as a distribution as follows. Given a smooth, compactly 
supported function ƒ e C™(G), define 

nif) = / f(x)n(x) dx. 
JG 

Thus n(f) is an operator on the representation space W of n. 
It turns out that n{ f) is of trace class and that 

f»Q*(f)= trace n(f) 
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is a distribution on G, that is a continuous linear functional on 
CC°°(G). This distribution is called the character of n. Now we 
say that ji is the Plancherel measure on G if 

f(x) = f en(R(x)f) d/i(n), x e G, f e CC°°(G). 
JG 

Here Qn(R(x)f)9 the distribution 6^ evaluated at the function 
R(x)f, plays the same role as the convolution (Qn * f){x) of 
functions in the compact case. Since f(x) = (R(x)f)(e), it is 
equivalent to write 

ƒ(*)= feK(f)dn(n)9 feC~(G). 
JG 

Thus Harish-Chandra thought of the Plancherel theorem as an ex­
pansion of the Dirac delta distribution, ƒ -• f(e), in terms of the 
distribution characters of the irreducible unitary representations. 

Before I say more about Harish-Chandra's work I would like to 
give a brief description of the Plancherel formula for SL(2, R). It 
is the prototype semisimple Lie group, and most of the interesting 
features of the general case already occur here. 
Example 6. Let 

G = 5L(2,R) = l(a b
dY.a,b,c,deR,ad-bc=l\ 

be the group of 2 x 2 matrices with real entries and determinant 
one. We parameterize irreducible unitary representations of G 
by unitary characters of certain abelian subgroups called Cartan 
subgroups. These are maximal abelian subgroups consisting of 
elements which are semisimple, that is can be diagonalized over 
the field of complex numbers. In this case there are two conjugacy 
classes of Cartan subgroups. 

One is the group 

A=\d(a)=(a
Q fl°i):a€R,fl*o} 

of diagonal matrices in G. Since A = Rx , the multiplicative 
group of nonzero real numbers, the unitary characters of A are 
given by the set of all 

Let 

o{y : e)(d(a)) = ( | | ) % f , * e R, e e {0, 1}. 
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be the group of upper triangular matrices in G. Any a 6 A ex­
tends to a unitary character of P by 

o{p(a,b)) = o(d{a)). 

Now there is a process called unitary induction which starts with 
a unitary representation a of the subgroup P and produces a 
unitary representation n = Indp(<r) of the group G. Write 

• -< 

7r(^ : v : e) = Indp(a(z/ : c)). 

These representations are called the principal series of G. They 
are all unitary infinite-dimensional representations and are irre­
ducible except when v = 0 and e = 1, which decomposes as the 
sum of two irreducible representations. Write Q(A : v : e) for the 
distribution character of n(A : v : e). 

The other Cartan subgroup is the group 

K cosö sin<9\ . 0 C T \ 
- s ine cosd)-6eTj 

In this case f = Z, and each n e Z , n ^ 0, parameterizes an 
irreducible unitary representation n(T : n) of G. In this case 
there is no simple induction procedure for producing n(T : /i). 
These representations are called the discrete series of G. For each 
n ^ 0, the matrix coefficients of n(T : n) are square-integrable, 
so that they span an invariant subspace of L (G). Write ®(T : n) 
for the distribution character of n{T : n). 

The Plancherel theorem for G, proven by Harish-Chandra in 
1952, says that for every ƒ e CC°°(G), we have 

f(e)=J2\n\e(T:n)(f) 
nez 

+ l-j°°@(A;v: 0)( ƒ) i/ tanh fe) di/ 

+ J ƒ °° e(A : i/ : 1)(ƒ) i/ coth (^\ dv. 

That is the Plancherel measure assigns to the discrete series repre­
sentation n(T : n) the point mass \n\. The weight \n\ is called the 
formal degree of n{T : h) since it plays the same role as the degree 
of a finite-dimensional irreducible representation of a compact 
group. The Plancherel measure for the principal series n(A : v : e) 
is absolutely continuous with respect to Lebesgue measure dv and 
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is given by (z//4)tanh(7rz//2)rfi/ or (u/4)coth(nu/2)du depend­
ing upon whether e = 0 or 1. There are other irreducible uni­
tary representations called the complementary series, but they have 
Plancherel measure zero, and so do not contribute to the harmonic 
analysis of L2(G). 

Harish-Chandra's work on semisimple groups was directed spe­
cifically towards the goal of obtaining an explicit Plancherel for­
mula. Because of this there were aspects of representation theory 
which he did not study. First, he did not attempt to obtain a com­
plete list of irreducible unitary representations of semisimple Lie 
groups. This is in fact still an open problem. He only needed to 
produce those, called the tempered representations, which occur in 
the Plancherel formula. Of the exceptional representations which 
do not occur in the Plancherel formula Harish-Chandra said in 
1965, "Selberg tells me that they are important in arithmetic, and 
I believe him because he is always right." He was interested in the 
philosophical question of why they exist, but had no motivation 
to study them himself. Second, for the Plancherel formula, the 
representations themselves are less important than their charac­
ters. Thus it is more important to understand the characters of 
the representations than it is to find an explicit realization of the 
representations as operators on Hubert spaces. 

Harish-Chandra first concentrated his attention on character 
theory. Although the characters of infinite-dimensional unitary 
representations must be defined as distributions, the known exam­
ples were given by integration against locally summable functions. 
By the early 1960s Harish-Chandra had proven that this was true 
for the character of any irreducible unitary representation of a 
semisimple Lie group. That is, given n e G, there is a function 
Tn on G which is integrable over any compact subset of G and 
which satisfies 

©„(ƒ) = I f{x)TK{x) dx 
JG 

for every ƒ e C™(G). Further, there is a dense open subset G' of 
G such that Tn is analytic on Gf. This is known as the regularity 
theorem. One of the main steps in the proof is the reduction to a 
similar theorem on the Lie algebra. On the Lie algebra he could 
use classical Fourier analysis to solve the problem. This was a 
technique that Harish-Chandra used in many situtations and can 
be thought of as linearizing problems on the group. 
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As early as 1954 Harish-Chandra realized that every Cartan 
subgroup, that is maximal abelian subgroup, gives rise to a se­
ries of irreducible unitary reprentations and that compact Car­
tan subgroups should give the discrete series representations. He 
was able to construct these discrete series representations in some 
cases. However, even after years of effort, he was unable to find 
a construction which produced all discrete series representations. 
Finally, he realized that it was not necessary to construct the repre­
sentations. It was enough to construct their characters as functions 
on the group, and this he was able to do. Basically, Harish-Chandra 
showed that discrete series representations are parameterized by 
characters of compact Cartan subgroups. In particular, a group 
has discrete series if and only if it has a compact Cartan subgroup. 
The discrete series character is uniquely determined by its restric­
tion to the compact Cartan subgroup plus a growth condition. On 
the compact Cartan subgroup, the discrete series character has a 
formula completely analogous to the Weyl character formula for 
compact groups. In general, the character is given by a sum of 
exponential functions with integer coefficients, divided by a uni­
versal denominator. There are relations among the coefficients 
which determine them uniquely. This work was completed in two 
papers, Discrete series. I (1965) and Discrete series. II (1966), and 
was a real tour de force, the culmination of over a decade of in­
tense effort. It was one of the most important and difficult steps 
in Harish-Chandra's study of semisimple Lie groups. 

Once the discrete series was in place, Harish-Chandra was able 
to construct a series of representations corresponding to each con-
jugacy class of Cartan subgroups as follows. In general, Cartan 
subgroups of semisimple Lie groups have the form H — T x A 
where T is compact, and A = Rn for some n. Associated to 
H is a parabolic subgroup P = MAN. Here M centralizes A, 
contains T, and is a group of the same general type as the original 
group G. Now if (a, V) is any irreducible unitary representation 
of M and v € A is a unitary character of A, then 

a1/(man) = u(a)(7(m)9 m e M, a £ A, neN, 

defines an irreducible unitary representation of P = MAN on V. 
Define 

n(P : a w) = Ind/)((TI/) 
to be the induced representation. These representations of G 
are unitary and generically irreducible. However, there is overlap 
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between the different series. For example, if H = T is compact so 
that A= 1, then P = M = G and no induction takes place. Every 
a e G would occur in this series. However, it is only the discrete 
series of G which cannot be obtained by induction from proper 
parabolic subgroups. One of Harish-Chandra's conceptual break­
throughs was to realize that in general, if only the discrete series 
representations of M are used in the above construction, then all 
tempered representations of G are still obtained, and there is now 
no overlap between the different series. Thus the final picture is as 
follows. Recall that we started with a Cartan subgroup H = TxA. 
Now T is a compact Cartan subgroup of M, so unitary charac­
ters x € T parameterize discrete series representations n(M : x) 
of M. Thus the series of unitary representations corresponding 
to H is parameterized by pairs Qf, i>), / € f,u e Â. Write 
Q(H : x • v) for the distribution character of the corresponding 
representation, n(P : a{M : x) • v) • 

Once Harish-Chandra had these series of representations he set 
about proving the Plancherel formula. The proof is long and com­
plicated, and appears in three lengthy papers, Harmonic analysis 
on real reductive groups. I, II, III, which were published in 1975 
and 1976. One of the most important ingredients of the proof 
is a detailed asymptotic analysis of the matrix coefficients of the 
tempered representations. This analysis of the behavior at infinity 
of matrix coefficients comes from a study of the differential equa­
tions which they satisfy plus certain a priori estimates. The final 
answer, however, is very simple. The Plancherel formula has the 
following form. For ƒ e C?(G), 

/(«)= £ J2dx [®(H'-X:v)(fMH:x:v)dv. 
H=TxA xç.f JA 

Here the first sum is over a set of representatives H for conjugacy 
classes of Cartan subgroups of G. (There are only finitely many 
conjugacy classes.) For fixed H = T x A corresponding to P = 
MAN, d , x € f, is the formal degree of the discrete series 
representation n(M : x) of M, and du is Lebesgue measure on 
A = Rn. The Plancherel function /u(H : x • v) comes from the 
asymptotic analysis of the matrix coefficients of the representations 
n(H : x 'v) and has an explicit formula as a product of terms of 
the type that occur in the Plancherel formula for SL(2, R). This 
product formula is the key ingredient in the proof, and ultimately 
allowed Harish-Chandra to reduce the problem to the case of rank 
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one groups where he could prove the Plancherel formula directly 
as for the case of SL(2, R). 

Many parts of the proof proceed via induction on the dimension 
of the group G and involve reducing from G to the subgroups 
M used above in defining the various series of representations. 
When G is connected and semisimple, these subgroups M are 
not quite connected or semisimple. In order to make the induction 
work Harish-Chandra had to work with a larger class of groups, 
now known as the reductive groups of Harish-Chandra class, which 
contains the connected, linear, semisimple groups and is closed 
under passing from G to the subgroups M. Induction was in 
fact Harish-Chandra's preferred method of proof and he was a 
master of the technique. He compared induction to high finance. 
"If you don't borrow enough, you have cash flow problems. If you 
borrow too much, you can't pay the interest." 

I have only described here the bare bones of Harish-Chandra's 
theory, namely the Plancherel measure itself. In fact, in the course 
of proving the Plancherel theorem, Harish-Chandra defined a 
Schwartz space of smooth, rapidly decreasing functions on G 
which is analogous to the classical Schwartz space for the real line. 
In the classical situation one proves that a function is Schwartz 
class if and only if its Fourier transform is Schwartz class. In the 
case that G is a semisimple Lie group, one can think of the col­
lection of characters &(H : x • v)(f) as the Fourier transform of 
ƒ . Harish-Chandra proved that the Schwartz functions ƒ which 
have a technical property called .K-finiteness are characterized by 
the fact that their Fourier transforms @(H :#:!>)(ƒ) are classical 
Schwartz functions of the real variable v . 

I would like to conclude with a few comments about Harish-
Chandra and his mathematics. 

Throughout most of his career Harish-Chandra focussed on a 
very specific problem—the harmonic analysis of semisimple groups, 
first semisimple Lie groups and then semisimple matrix groups 
over other fields such as the /7-adic fields which play an important 
role in number theory. Although the problems Harish-Chandra fo­
cussed on were narrow, he used a wide range of techniques to solve 
them. He learned what he needed from the work of others, but 
primarily manufactured his own tools as the need arose. He had 
incredible power, both as an analyst and algebraist. He started with 
the structure theory from Chevalley's three volumes and honed it 
to obtain a very exact knowledge of these groups. Thus he was 
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always able to give general as opposed to case by case proofs. In 
fact, many of us in the field used to speculate as to whether Harish-
Chandra ever worked any examples apart from that of SL(2, R). 
In his biography, Langlands specifically mentions one example in 
the late fifties when, contrary to custom, Harish-Chandra verified 
a result for the group SL(3, R) by an explicit calculation. Lang-
lands concludes, "This appears to have given him the necessary 
confidence that it was true in general." 

Perhaps because the details of this work were so technical, 
Harish-Chandra liked to have a simple philosophy to guide his 
efforts. He says in the introduction to a survey paper, "Our entire 
approach to harmonic analysis on reductive groups is based on the 
philosophy of cusp forms." The term cusp form comes from the 
theory of automorphic forms and was used by Harish-Chandra as 
a name for the matrix coefficients of the discrete series represen­
tations which play a pivotal role in the harmonic analysis. The 
strong analogy between his work on real groups and the theory of 
automorphic forms from number theory led him to believe that 
whatever is true for a real reductive group is true for a p-adic re­
ductive group. He called this the Lefschetz Principle because of its 
resemblance to the Lefschetz principle in algebraic geometry. It led 
him to a proof of the Plancherel formula in the p-adic context as 
well, although in this case he was unable to explicitly parameterize 
the discrete series. This unified theory for real and p-adic groups 
reinforced his belief that harmonic analysis on a semisimple group 
was a special thing. At the end of his 1972 lecture series at the 
Williamstown conference, he told a story which he attributed to 
Chevalley. The story relates to the time before Genesis when God 
and his faithful servant, the Devil, were preparing to create the 
universe. God gave the Devil pretty much a free hand in building 
things, but told him to keep off certain objects to which He Himself 
would attend. Chevalley's story was that semisimple groups were 
among the special items. Harish-Chandra added that he hoped 
that the Lefschetz principle was also on the special list. 

Let me conclude by quoting Varadarajan's introduction to 
Harish-Chandra's Collected Papers [H]. Harish-Chandra "survives 
in his work, which is a faithful reflection of his personality—lofty, 
intense, uncompromising." 
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