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These results, developed by Donsker and Varadhan and to a lesser 
extent by Gartner, are treated very well in the book. A certain 
amount of hard analysis is required to handle the ergodicity re
quirements. These problems of suitable ergodicity conditions for 
the Markovian case as well as mixing conditions for the non-
Markovian case take up the last chapters of the book. 

The book contains an extensive list of references as well as de
tailed historical comments. 

Those interested in connections with statistical mechanics should 
read references [2] or [3]. 
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I am glad, but also a little embarrassed to present this book 
because Emery's work is very closely connected with Paul André 
Meyer's and mine, these two last ones being also much intertwined. 
A large part of the book is an exposition of previous work, but also 
much of the material is new. Anyway, the presentation is always 
original and interesting. I always prefer intrinsic formulations for 
manifolds "à la Bourbaki," giving the expression in coordinates 
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only later, as a tool for proofs or an illustration; Meyer usually 
goes in the inverse direction. Emery stays in the middle. Each of 
us tried to help the probabilists absorb stochastic infinitesimal cal
culus of the second order "without tears"; I don't know whether 
any of us succeeded or will succeed. But I guess that Emery's 
way will possibly be the best one for that, with his always clear, 
well-explained, and short statements. This part of probability in 
differential geometry has become recently more and more impor
tant, for instance in large deviations, or in Bismut's proof of the 
Atiyah-Singer index theorem. 

§1. PRELIMINARIES ON PROBABILITIES 

We shall go fast, not defining everything. (Q, &, P) is a proba
bility space, equipped with a filtration (^)t>0, an increasing right-
continuous family of sub-a-fields of y , indexed by the time t. 
&t represents the past and the present at time t. A process X is a 
map R + x f l - > £ , adapted to the filtration; Xt : co *-> Xt(co) is the 
state at the time t, it should be ^"-measurable, and X(co) : t H-> 
Xt(co) is the orbit defined by co ; a process is a random path on E. 
The process X, if E is a df-dimensional vector space, is said to be 
a semimartingale, if it can be written as a sum X = XQ + A + M, 
X0 is the value at time 0, ^ a process with (locally) finite vari
ation, M a (local) martingale; A is a signal, M a noise. A is 
called the compensator of X and denoted X, M the compen
sated and denoted Xe ; they are unique, up to a set of P-measure 
0 (P. A. Meyer) if X, A, M are continuous (a.e.), which will be 
always assumed. The word "local" will always be omitted. 

K. Ito introduced the stochastic integration with respect to a 
martingale; P. A. Meyer introduced the semimartingales to extend 
it to them; it is 

(1.1) / = i / -X , ƒ,= ƒ HsdXs 
Jo 

(co is always omitted), where H is an optional (some criterion 
of measurability), locally bounded process, £f{E\ F)-valued (F 
another vector space), and then / is F-valued; / is a new semi
martingale and is of finite variation or a martingale if X i s l . 

All these results can be found in the appendix of P. A. Meyer at the end of 
Emery's book, with also further references. 
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A martingale is so oscillatory that it has no finite variation, so 
also X in general; but it has a quadratic variation (coming from 
the martingale part only), and a 0 cubic variation. This defines the 
bracket: 

[X, X], = Xl + Hm £(X,j+iA, - XtjJ, 

the square being taken in the tensor product E®E or the symmet
ric tensor product E®E (factor space of E®E), then [X, X] too; 
the limit, as the size |A| of the subdivision A = (*0 = 0, t{, t2,... ) 
converges to 0, is a limit in probability, uniformly for t in any 
compact set of R+. 

At the end of Emery's book there is an appendix by P. A. Meyer, 
giving the bases of probabilities. 

Later on, Ito's differentiation formula is the following: 
If <£> is a C2 map E-+F, vector spaces, X and 2?-semimartingale, 
then O(X) is an F-semimartingale, with the integral formula: 

(1.2) *{Xt) - O(X0) = jf' *;<*) dXs + i jf' ®"(XS) d[X, X)s. 

The occurrence of the second derivative is due to the quadratic 
variation of X, making necessary a Taylor formula of the second 
order. One may write (1.1) and (1.2) in differential expressions: 

(1.3) dJt = HtdXt 

(1.4) d{*(X))t = *\Xt)dXt + \<S>\Xt)dXtdXt, 

from which we deduce 

(1.5) d(<P(X))td(<s>(X))t = a>'(xt)e<!>f(xt)dxtdxn 

where dXtdXt or dXt®dXt or dXtedXt = d[X, X]t is adapted 
to the definition of the bracket as quadratic variation. Emery 
doesn't use differential expressions much which I personally prefer; 
let me use them here systematically. 

Now one comes to stochastic differential equations (SDE): 
m 

(1.6) dXt^Hk(Xt)dZ^f * 0 = x, 

meaning 
(1.7) *, = * + £ / Hk{Xs)dZk

s. 
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Here the Zk are given real semimartingales, Hk given vector 
fields on E, x given the initial value, and X is the unknown, 
Is-valued semimartingale. One may abbreviate that by 
(1.8) dXt = H(Xt)dZt9 X0 = x, 

Z being a given G-valued semimartingale, G a vector space, and 
H an <S?(G\ 2s)-valued vector field on E. The field H has to be 
locally Lipschitz. Then the equation has one and only one solution 
a.e., with a death-time Ç, random variable œ »-• Ç(co) < + oo ; on 
{£ < +00}, Xt converges to infinity in E if t converges to £. 
Emery writes only that X([0, £]) is not relatively compact, but 
specifies that Xt may or may not converge to infinity for t -• £ < 
+00 (page 87); actually it converges to infinity, I proved it myself.2 

§2. PRELIMINARIES ON DIFFERENTIAL GEOMETRY 

The vector spaces are replaced by C°° manifolds. Let TX(M) 
denote the tangent vector space at the point x of the ^-dimen
sional manifold Af, T(M) the tangent vector bundle; T*(M), 
the dual of TX(M), is the cotangent space, T*(M) the cotangent 
vector bundle. A C°° field of tangent vectors, or a Lie field, is 
a C°° differential operator of order 1, without term of order 0; a 
field of cotangent vectors is a differential form of degree 1. 

A bilinear form (C°°) will be a section b of the vector bundle 
(T(M) 0 T(M))*. All these C°° fields are C°° modules, finitely 
generated (using the embedding property of Whitney, of M into 
R2d). In a chart, M = E, vector space, TX(M) = £ , T*(M) = 
E*, a bilinear form at x is a bilinear form on E x E or a linear 
form on E®E. Therefore, TX(M) and T*(M) have dimension 
d, as does M. With coordinates, £ e £ , £ = £***^*; <f e 
£*,«* = Zkb*kdxk; then «*,«)*.,* = £*****• If ^ is a 
C1 real function on E, Z>V(*) = ç?'(x) = ^2kDk<p(x)dxk ; for 
É € £ , (fr)(x) = <£>W), O = Ekb

kDk(p(x). 
It's necessary, for the infinitesimal stochastic calculus, to intro

duce also the second-order fields or covector fields. The space of 
second derivatives at x e M will be denoted by rx(M)9 r(M) 
will be the second-order tangent bundle. A second-order tangent 
field will be a differential operator of order at most 2, without term 
of degree 0. Similarly, r*(Af) will be the dual of rx(M), r*(M) 
the corresponding second-order cotangent bundle. 

2 [46] in the bibliographical index of Emery's book, Proposition 7.4, page 97. 
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If M = E,L e rx(E), then 

A : = l i , . 7 = 1 

It is often convenient to write an element of tx(E) by a vertical 
matrix, 

/ J2 pkD \ ( ^ \ 

therefore, rx(E) and also rx(M) have dimension d+d(d+l)/2. 
An element of T*(2?) will be written as a horizontal matrix: 

L* = ^b^dx +^2a* jdx1 dxJ, atj = ajti 
k ij 

or 

L* = I E bk dxk E aïj dx dxJ *> 

the second term is not an exterior form of degree 2, but a bilinear 
symmetric form on £ x £ , o r a linear form on E ®E. 

Then T* (2?) = E* ®(E®E)* or, as a horizontal matrix, (E* 0 
(E®E)*) ; it also has dimension d + d(d + l)/2, and r*(Af) does 
too. 

If (p is a C2 real function on E, D2(p{x) = p'(#) + ?>"(*), or 
{(p\x) <p"(x)) (horizontal matrix); for Le E ®(E ®E), 

Ltp(x) = (D2<p(x), L) = 2 * ^ ^ W + E aiJDfij9(x). 
k i,j 

We keep (E®E)*, and don't identify it with £* ©£* ; it has the 
advantage of cancelling a lot of factors 1/2. A symmetric bilinear 
form will be considered as a bilinear form, that is, an element 
of E* <g) E*, which happens to be symmetric. Thus dxldxJ is 
dxl <g> dxJ, and is not symmetric, but 

atj dx dx is if atj - ajt. 

On a manifold M, it is no longer true that rx(M) = TX(M) 0 
(TX(M) 0 rx(Af)), but 7;(M) c rx(M), and the factor space 
rx(M)/Tx(M) is canonically isomorphic to TX{M)®TX{M). One 
has the exact sequence 

(2.0) 0 -+ TX{M) -* TX{M) -+ TX{M) 0 TX(M) -• 0, 
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which splits if M = E, a vector space. On the duals, T*(M) is 
the factor space of T*(M) by the orthogonal TX(M)+ of ^(Af); 
one has the exact sequence 

(2.1) 0 - Tx(Mf - <(A0 -> K(M) -> 0, 

with TX(M)+ = (TX(M) © ^(Af))* ; it also splits if M = E ; the 
image of Z)2 in (E ® E)* is called the Hessian of ç?, Hessç? = 
Hess(Z)2p) = E/)jDiDjç>dxidxj . 

If O is a C2 map from Af into another manifold N, it has 
tangent maps, TX<S> : TX(M) -* T^N and T^O : ^(Af) -+ 
r®(x)N> Tx® educes Tx<b on 7^(A/), therefore there is a factor 
map TX/TX: 

xx{M)/Tx{M) -> ^ ( A O / T ^ A O ; with respect to the above 
exact sequence, it is exactly the map 

Tx<i> © Tx® : TX(M) © TX(M) - T^x)N © T^x)N. 

In other words, the following diagram is commutative: 
O-T^Af)-» xx{M) ^Tx(M)®Tx(M)-+0 

,Tx* 

x)N~*r<l>(x 

TX<D | r x « © r x » 

jW^W^W^0-
Such morphisms between second-order tangent spaces are called 

by Emery Schwartz morphisms; I am not the author of this termi
nology, of course; such morphisms are known among differential 
geometers, but it is true that I was responsible for their introduc
tion and systematic use in stochastic infinitesimal calculus. Using 
charts, if O is C2 : E -> F, and if we write elements of xx as 
vertical matrices, Tx(&) is the derivative ^ ( x ) , and TX(0) is a 
square matrix 

(2.2) T X O - ^ 0 tf(jf)0tf(jc)J. 

a Schwartz morphism 

\EeEJ \F®F, 
0"(x) is the usual second derivative, symmetric bilinear form 
E x E -• F, or linear map E © £ -> F; 0;(x) © O'(x) is the 
square tensor map E®E->F®F of O'(x) : E -> F. 

file:///EeEJ
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§3. SEMIMARTINGALES ON MANIFOLDS, 
AND THEIR DIFFERENTIAL CALCULUS 

Although Brownian motions of manifolds have been used de
cades ago by Ito and other probabilists, curiously enough the no
tion of semimartingales on manifolds had not been defined; I in
troduced them and studied them only in 1980, and many results 
on them were given by P. A. Meyer and me, and many others. See 
references [3], [4], [5], [8], [13], [15], [16], [19], [34], [35], [36], 
[43], [44], [45], [46], [52]. 

A stochastic process X : R+ x SI -» M is said to be a semi
martingale if, for every real C2 function (p , <p(X) is a real semi
martingale. Consequently, if O is a C2-map M -+ N, O(X) 
will be a semimartingale on JV. Of course, a decomposition as 
X — X0 + A + M doesn't make sense, nor does the notion of a 
martingale on a manifold. But differentials of semimartingales will 
make sense. For the above map O : M -> N, if we take charts 
M ~ N, N ~ F, ( 1.4) and (1.5) will be written, according to (2.2): 

d(*(X))t \ 

jdmX))td(0(X))J 

[ÓA) -{ o <t>\xt)®*\xt))\yxtdxt)
9 

or, if we put 

then 
W ) ) , = ^ dXt. 

In coordinates, if X = ^ XkDk, 

dXt = £ XkDk + i £ dXl dXjDiDj. 
k i,j 

This becomes intrinsic and goes from the chart on E to the 
manifold M itself: to the semimartingale X on M 9 and the 
point x e M, we may affect dXt, differential of X at Xt, a "small 
element of semimartingale" at Xt, element of xx (M) ; there is no 
differential dXt e TX{M) (except if X has finite variation). This 
notion is rather sophisticated; Emery says humorously: "should 
the differential exist, it would have the geometrical nature of a 
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second order tangent vector; if you do not (or not yet) believe in 
dXt, the statement is vacuously satisfied." 

While the decomposition X = X0 + X+Xc doesn't make sense, 
one may write 

ƒ dX = dX + d Xe 

(3'2) { dXt e xX((M), dXt e xxM9 dXc
t e TX(M), 

and the common image of dXt and dXt on Tt{M) © Tt(M) by 
the canonical projection 

n : xt(M) -+ xt(M)/Tt(M) = Tt(M) © Tt(M) 

is \dXt © dXt (although dXt doesn't exist), it behaves under O 
as 

±d(<t>(x))tdmx))t = xtiTtm\dxtdxt 

= (Tt(®)®Tt(<s>))±dxtdxr 

One may say that dXc
t is the martingale component of dXt, 

dXt its finite variation component, and that dXt dXt is the bracket 
of dXt. All of that appears clearly in charts. 

More rigorous definitions of dXt, dXt, dXc
t , \dXt dXt should 

be given, though the previous intuitive approximations are suffi
cient never to make mistakes in the applications. I gave this defini
tion, using the notion of differentials of semimartingales, sections 
on vector bundles on R+ x Q ; 

Michel Emery knows that very well, but he resigned himself to 
define them in this way; it would have been too long here for a 
limited benefit; in deeper studies, it is indispensable. 

One may perform integrations with respect to these differen
tials. If 6 is an optional locally bounded second-order form 
over X on M (not a differential form of order 2 which would 
be an exterior form, with an antisymmetric property), that is, 
Gt(co) e ^x(W){M), then formally (&(Xt), dXt), the scalar prod
uct, is a small real number, and one has a stochastic integral 11-> 
JQ(Q(XS)9 dXs) which is a real semimartingale. These integrals 
are carefully studied in Chapter VI; there exists also ƒ (6 , d^), a 
real process with finite variation, ƒ (6, dXc), a martingale, if 6 is 
a differential form of degree 1, and f(b, dXdX) a process with 

[46] in the bibliography of Emery's book. 
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finite variation if b is a bilinear form (see beginning of §2); for a 
bilinear form which is not symmetric, we must consider dXt dXt 

as an element of TX(M)®TX(M) instead of ©, or replace b by its 
associated symmetric form. If T = D2cp, (p a real C2 function 
on M,then / 0

r ( Z ) 2 ^ ) , d ^ = ^ ) ^ ( I 0 ) . 
It is to be noted that Emery goes from elementary objects to 

more sophisticated ones (differential calculus "without tears"); he 
studies f(b, dXdX) early in the book, Chapter III, but ƒ (0, dX) 
only in Chapter VI. He makes an extensive study of the integrals of 
bilinear forms; f(b, dXdX) is the è-quadratic variation of X. 
It can be computed by a discretization and a limiting procedure. 
Emery goes still further in pushing dX far in the book: He studies 
in Chapter IV the semimartingales and connections, and in Chap
ter V the Brownian motion on manifolds, all before the definition 
of dX. We explain them here in the inverse order, starting from 
Chapter VI; it doesn't deform his work at all. 

§4. CONNECTIONS ON MANIFOLDS, 
MARTINGALES WITH RESPECT TO A CONNECTION 

It is known that a linear connection with zero torsion on the fiber 
bundle T(M) is equivalent to a splitting of the exact sequence 
(2.1); it decomposes r(M) as a direct sum 

(4.1) T(M) = T(M) e H (M), 

where the projection of H(M) on T(M) 0 T(M) is bijective. We 
shall write it as 

(4.2) T(M) = T(M) 0 T(M) © T(M), 

T(M) will be called the vertical subspace of x{M), T(M)®T(M), 
the horizontal subspace. 

One has a corresponding decomposition of the dual space x*M : 

(4.3) T*(M) = T*(M)®(T(M) © T(Af))*. 

Without any connection, T(M) and T(M)+ = (T(M)eT(M))* 
are always subspaces, but here T(M) © T(M) and T*(M) too, in
stead of T(M) © T(M), T*(M), factor spaces. Emery defines the 
connection by the operator Hess, as a generalization of Hess of 
(2.1) which corresponds to the trivial connection on E: Hess is 
the projection of x*(M) on T(M)+ = (T(M) © T(M))*. 

On a chart, the connection is defined by T, T(x) being a sym
metric bilinear map: T (M) x T (M) -• T (M), or a linear map 
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TX(M) © TX(M) - TX(M) ; 

d 

T{x)= 53 Tk
ij(x)dx'dxJDk. 

The decomposition of an element (") of 

E 
e 

EQE 

as a sum of elements of TX(M) and TX{M)®TX{M) is 

(44) ^ = {u+nx)vy(-n:)vy 

(4.5) Therefore (W J is horizontal iff w + T(x)v = 0. 

The lifting 

EeE 
\EQ>E4 

is v »-+ ( ~r£*)v ) , -T(x) is the component of this lifting on E. 
The decomposition of (a P) e (E* e (E e E)*) is 

(4.6) {ap) = {a aor(x)) + (0 -aor(x) + P). 

Then 

(4.7) Hessr tp = Hessr(ç/ (p") - -cp' o r + 9" £ (E 0 JE)*. 

One can learn the main properties of connections, geodesies, 
and the Levi-Civita connection by these notations. 

The decomposition of the differential dX of a semimartingale 
in (3.1) has an analogy when there is a connection; one may write 

(4.8) dX = IX + ^dTdX, 

dXt e TX(M), ^dXt dXt G TX(M) 0 TX(M) ; 

jdXtdXt e TX{M) 0 TX{M) 

here there exists a dXt e Tx (M), and \dXt dXt lies in xx (M) 
while \dXt dXt lies in the quotient Tx (M) 0 Tx (M). We write 
dXt instead of dXt since it exists only because of the connection. 
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Let y be a smooth curve on M\ the speed yt is the image 
of 1 G R in Ty (M) through Tty, and the acceleration yt is the 
image of 1 © 1 € R 0 R c R 0 (R 0 R) in xy (M) through xt by 
(2.2): 

v" \ ( E \ 
i % t ) e I 0 on a chart. 

yt@v*' [EQEJ 
On E equipped with the trivial connection, y is a geodesic if 

it is a straight line, i.e. y" — 0 ; therefore one defines a geodesic 
of the connection as a curve whose acceleration y is horizontal, 
which is written on the chart, according to (4.5): 
(4.10) / ' + r ( y ) ( / , / ) = 0. 

It is well known! 
A function (p on E is convex if cp" > 0. It means that the com

ponent of D2(p = ( / /') on (E®E)* is q>" > 0. Therefore one 
says naturally that a function cp on M equipped with a connec
tion is convex if the component of D (cp) on (T(M) 0 T(M))* = 
T(M)+ is > 0, that is, if Hessç? > 0 (Hess of the connection!). 

Finally, using (4.7) and comparing with the case of E with its 
trivial connection, a semimartingale X on M will be said to be a 
martingale with respect to the connection if the vertical component 
dX of dX on TX{M) is a martingale, or if the component dX 
of dX is zero, and, according to (4.5), it is written, in a chart 

(4.11) dXt + T(Xt)^dXtdXt = 0 

or 

(4.12) dXk
t + i t j W j dX\ dx[ = 0 Vfc. 

This enables Emery to describe elegantly the main results of 
Emery, Zheng, Duncan, Darling, P. A. Meyer, and myself, on 
the relationships between geodesies, convex functions, and mar
tingales, in a connection; also the convergence of martingales at 
infinity (t -• +oo) ; everything is going well and smoothly. Precise 
references are given at the end of Chapter IV of Emery, with the 
publications of the author at the bibliographical index page 125 of 
the book. 

Observe that I mentioned here dX ; it arises only in Chapter VI, 
while the previous results constitute Chapter IV. Then they have 

(4.9) 
-
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to be expressed without the notation dX, which is easy. It will be 
the same for the Brownian motion in Chapter V. It corresponds 
to the intention to introduce AX, probably the best tool in all of 
that, but rather sophisticated, as late as possible, after it has been 
used indirectly many times, so that it falls as a ripe fruit. 

§5. THE BROWNIAN MOTION AND 

THE L E V I - C I V I T A CONNECTION (CHAPTER V) 

The Riemannian structure is defined by the fundamental quad
ratic form g £ (T(M) © T(M))*, g = YnjSijdx1 dxj on a 
chart. The Levi-Civita connection is defined by its Hess, 

(5.1) Hessp = \&v^g € (T(M) © T(M))*, 

3? being the Lie derivative. 
As it is usual now, a Brownian motion X on M, over a proba

bility space (Q, ^ , P, (< )̂) is a semimartingale satisfying the 
following "problem of martingales": 

(5.2) Vç> C2 real, t » <p{Xt) - (p{X0) - Jj \Acp{Xs)ds 
is a real martingale, A is the Laplacian; one says 
also that X is a \ A-diffusion. 

As usual, this integral condition can be written in a differen
tial form: A is a second-order differential operator, therefore, a 
section of the fiber bundle x(M) ; (5.2) is equivalent to: 

(5.3) dXt = ±A(Xt)dt 

A(Xt)erx(M). 

The various known expressions of A show that it is a differ-
ential operator of pure order 2, or a horizontal derivative, A e 
T(M) © T(M), with respect to the connection; that is, its compo
nent on T(M) according to (4.2) is 0. Therefore, dXt is hori
zontal too; the Brownian motion is a martingale with respect to 
the connection. Emery gives various interesting properties, but of 
course doesn't prove here the existence and uniqueness (in law) of 
it; this can be done only by solving a SDE, which is the subject of 
Chapter VI. 

§6. STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) 

Chapter VI defines dX and will be able to put an SDE on a 
manifold in an intrinsic form. An equation such as (1.8) doesn't 
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make sense, since dX doesn't exist on M, only dX exists. On a 
chart, M ~ E, (1.8) is written 

(dXt = H(Xt)dZt 
1 ' ; \\dXtdXt = H{Xt) 0H[Xt)\dZtdZt, 
where [Z, Z] takes its values in G© G, and H®H is the square 
tensor map G®G->E®E of H : G -> E. 

Therefore dZdZ necessarily occurs. 
Let us consider more generally the equation 

(6.2) dXt = H(Xt) dZt + K(Xt) i dZ, rfZ,, 

where H is a field of S?{G\ £")-vectors, and # a field of 
-2*(G © G; £)-vectors. Then 

(6.3) « , . ( * W fl(4WTO)«/Z,. 
This square matrix defines exactly a Schwartz morphism from 

Ge(G©G) into E®(E®E). Therefore, one can go to manifolds, 
and define a SDE on M as: 

(6.4) dX = f(X)dZ, 
J'y 

where dfZ = {idzdz) ; Z is a given G-valued semimartingale, 
and ƒ is a given field of Schwartz morphisms, ƒ (x) is a Schwartz 
morphism from xxG = G 0 (G © G) into TX(M). 

Michel Emery gives a still better generalization which will surely 
prove very fruitful. He replaces G also by a manifold. 

Let M,N,be C°°-manifolds, and ƒ a field of Schwartz (T(M), 
T( JV))-morphisms on M x N: for ( x j j G M x i V , ƒ (x, y) is a 
Schwartz morphism rx(M) -• T (#) . 

Then if X is a given Af-valued semimartingale, Y the un
known semimartingale on N, 
(6.5) dY = f(X,Y)dX, 

Y0 = j ; G N, is a SDE on iV in the most general form, every 
vector space has disappeared. If ƒ is continuous and locally Lip-
schitz with respect to the second variable, there is one and only 
one solution with a death time f, and the usual properties. 

§7. STRATONOVITCH AND ITO INTEGRALS 

Assume, coming back to §1, that H is not only optional, but 
more regular, i.e. a C1 function of a semimartingale. Then its 




