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To obtain a helpful overview of the material in hand it is ap­
propriate to begin with a brief discussion of the Möbius group in 
«-dimensions. Detailed accounts have been given from different 
perspectives by Ahlfors [1], Beardon [2], and Wilker [5]. 

Let X = X" = {x e R"+1:||x|| = 1} be the unit «-sphere in 
Rw+1 > n > 2. An (n- l)-sphere y = yn~x on X is the section of 
X by an «-flat containing more than one point of X and each such 
(« - 1)-sphere determines an involution y:X —• X called inversion 
in y. This inversion fixes the points of y and interchanges other 
points in pairs which are separated by y and have the property 
that any two circles of X, which pass through one of the points and 
are perpendicular to y, meet again at the other point. The group 
generated by the set of all inversions of X is the «-dimensional 
Möbius group j£n . Further properties of J!n can be inferred from 
the fact that it can also be defined as the group of bijections of X 
that preserves circles, or angles, or cross ratios, where a typical 
cross ratio of the four distinct points a, b, c, d belonging to X 
is the number (\\a - b\\ \\c - d\\)/(\\a - c\\ \\b - d\\). 

Let n = n" = R"u{oo}. Stereographic projection from X to n 
transfers the Möbius group J?n to n where it is natural to think 
of it as the group generated by reflections in (« - 1 )-flats and inver­
sions in (« - l)-spheres. All the essential properties of the action 
of dfn are preserved in the transfer to II because stereographic 
projection is induced by an inversion one dimension higher. Thus 
X and n provide useful alternative models for viewing inversive 
«-space from a Euclidean perspective; to enter into the full spirit 
of their equivalence one need only remember that an inversive m-
sphere in I I , 1 < ra < « - 1, can equally well mean a Euclidean 
m-sphere or a Euclidean ra-flat augmented by the point oo . Since 
X" and JJn sit naturally in Tln+l, we can perform extensions of 
their transformations and regard the copies of jtfn associated with 
them as conjugate subgroups of Jtn+X. The extension of a Möbius 
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transformation h = yly2--yk from Xn = I," or If to IIn+1 is 
given by H = TXT2 • • • Tk where rt is the inversive «-sphere or­
thogonal to Xn and intersecting it in I \ n Xn = yf.. 

The process of extension is useful in cataloguing the conjugacy 
classes of Jfn [6]. A Möbius transformation /z:X —• X whose ex­
tension has a fixed point inside E is conjugate to one whose fixed 
point is the center of X. These conjugacy classes are the various 
(s, l)-elliptics, and by combining certain pairs of real coordinates 
xx, x2 into complex ones z = xx + ix2, we can exhibit the repre­
sentative transformation in Euclidean canonical form 

( Z l 9 z2 ' ' * ' ' Zs ' X2s+\ ' X2s+2 > '" > Xn+V 

—* \ e z \ •> e z i 9 ' " •> e Zs j \ A J X2s+\ ' X2s+2 9 '" 9 x
n+\) 

as the commuting product of s rotations and t = 0 or 1 re­
flections, 2s + / < « + 1. A Möbius transformation h:Z —• Z 
whose extension does not have a fixed point inside S must, by the 
Brouwer theorem, have a fixed point on Z. For these transforma­
tions it is convenient to pass to II with oo fixed. In II we find 
either an (s, /)-hyperbolic in Euclidean canonical form 

( z l 9 z2 9 " ' 5
 z

s 5 -*2s+l ' •*2s+2 ' ' " ' Xn ' Xn+V 
20, 2/0. 2/09 2/0 

-^e (e izl,e
 2 z 2 , ••• ,e szs, 

(—1) X2s+l , *2s+2 > * * ' > Xn> Xn+V 

as the commuting product of a dilatation, s rotations, and t = 0 
or 1 reflections, 2s + / < « ; or an (5, /)-parabolic in Euclidean 
canonical form 

( Z l 9 z2 9 ' " 9 z
s 5 -*2s+l ? X2s+2 ' " ' ' X / i - l ' X « ' ^ w + l ) 

, 2/0. 2/02 2/0v 

- • ( e lzl9e
 2z2, ••- ,e szs, 

V *) X25+l > •X25+2 ' ' ' ' ' Xn-\ > ^ H + * ' -*iH-l) 

as the commuting product of a unit translation 5 rotations and 
t = 0 or 1 reflections, 2s + / < n - 1. 

In R" a rotation through 20 is the product of reflections in two 
(« - l)-flats intersecting at a dihedral 6. Thus in Tln a general 
(1 , 0)-elliptic with parameter 6, 0 < 0 < 7r/2, is the product of 
inversions in two inversive (n — l)-spheres intersecting at an an­
gle 0 . Similarly a (0, 0)-hyperbolic with parameter ô > 0 is the 
product of inversions in two disjoint (n - l)-spheres separated by 
an inversive distance ô [3] and a (0, 0)-parabolic is the product of 
inversions in two tangent (n — l)-spheres. The canonical form of a 
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general Möbius transformation in J£n indicates that it can be ob­
tained as the product of at most n+2 inversions in (n—l)-spheres. 
Moreover, with a single exception occurring for the sense-reversing 
transformations which have t = 1, these (n - l)-spheres come in 
pairs which determine the conjugacy class parameters ( 6 's and 
perhaps ô or a tangency) but they are otherwise mutually orthog­
onal. Since inversions in orthogonal (n - l)-spheres commute, 
the first members of each pair can be grouped together, and sim­
ilarly the remaining ones, to exhibit the Möbius transformation 
as the product of two involutions. Conversely, when two involu­
tions in the Möbius group are multiplied together, the conjugacy 
class parameters of the product transformation can indicate in-
versively significant facts about the fixed point sets belonging to 
the involutions. This approach to what we might call generalized 
trigonometry is the underlying theme of the book under review 
and also its raison d'être. 

The book explores this theme in connection with an introduc­
tion to hyperbolic 3-space based on the half-space model 

3 ds 
U = {(x{ , X 2 , I 3 ) G R : X 3 > 0 } with metric dhx = — 

x3 

and the unit ball model 

B — {C*i, x2, x3) eR : \\x\\ < 1} with metric dh2 = 2. 
1 ~~ \\x\\ 

At first sight these models seem quite different but from the point 
of view of inversive geometry they are really identical. To begin 
with, the metric spaces (U, hx) and (B, h2) can be seen to be iso­
metric under the pairing induced by inversion in the sphere with 
center (0, 0, -1) and radius \ / 2 . It follows at once that this 
inversion must conjugate the isometry group of one model into 
the isometry group of the other. Further consideration shows that 
much more is true: because the metrics assigned to the models are 
intimately related to the Möbius invariant cross ratio, the isom­
etry groups are actually just stabilizer subgroups of ^ 3 . Since a 
Möbius transformation in ^ 3 which fixes U or B is uniquely de­
termined by the Möbius transformation in ^ which is its restric­
tion to U = n 2 or Bb = Z 2 , we see that the group of isometries 
of hyperbolic 3-space is isomorphic to Jt2 . 

Hyperbolic 3-space is more than just a metric space. It contains 
points, lines, and planes with geometric relations among them at 
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least as interesting as those which occur in Euclidean geometry. 
The lines of the model (M, h), which can be defined as geodesies 
for the metric h, turn out to be Euclidean line segments or cir-
cular arcs perpendicular to the boundary M and meeting it in 
a pair of points known as the ends of the line; the planes or to­
tally geodesic surfaces turn out to be subsets of Euclidean planes 
or spheres perpendicular to M and meeting it in lines or circles 
known as horizons. Thus although M does not belong to the 
model M, the lines of M correspond to pairs of points in M 
and the planes of M correspond to lines and circles in M [4]. In 
the case of the ball model this suggests the natural correspondence 

/z-line —• end points {ux, u2} —• Euclidean segment (ux, u2) 

A-plane —• horizon circle c —> Euclidean disc bounded by c. 

The projective model of hyperbolic 3-space which is implicit in the 
third column captures the incidence properties of (B, h2) accu­
rately because it is related to (B, h2) by a homeomorphism of B 
that fixes each point of B . Geometrically this homeomorphism 
can be obtained by projecting B stereographically onto the hemi­
sphere x4 < 0 of the 3-sphere xx + x2 + x3 + x4 = 1 and then 
projecting this set orthogonally back onto B . A great deal of hy­
perbolic geometry is rendered accessible by using the conformai 
models (U, hx) and (B, h2) for computation and the projective 
model to clarify incidence relations. 

For example, the set of projective lines through a point is called 
an elliptic, parabolic, or hyperbolic line bundle as the point in 
question lies inside Bb , on Bb , or outside Bb . When an ellip­
tic bundle is viewed in (B, h2), it is seen to consist of all lines 
through a point of hyperbolic 3-space and its orthogonal trajec­
tories are seen to be h2 -spheres with this point as center. These 
spheres are represented in the model by a nest of Euclidean spheres 
lying entirely inside the model and by referring to the special case 
in which the common center is the center of the model, we see that 
their intrinsic geometry is the usual spherical geometry of appro­
priate curvature. A parabolic bundle through u G B consists of 
parallel lines with common end u and its orthogonal trajectories 
are horospheres represented in the model by Euclidean spheres tan­
gent to Bb at u. By passing to the model (U, hx) with u = oo, 
we see that the intrinsic geometry of these horospheres is just Eu­
clidean plane geometry. Finally, a hyperbolic line bundle turns 
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out to be the set of ultraparallel lines perpendicular to an /z2-plane 
with horizon circle c and its other orthogonal trajectories turn 
out to be equidistant surfaces lying at various distances away from 
this plane and represented in the model by spherical caps which 
meet B in the horizon circle c ; the intrinsic geometry of these 
equidistant surfaces is hyperbolic plane geometry of appropriate 
curvature. Thus the geometry of hyperbolic 3-space includes in a 
natural way spherical, Euclidean, and hyperbolic plane geometry. 

Fenchel unfolds the full details of this background material on 
hyperbolic geometry with precision and clarity that attest to a life­
time's affection for the subject. Then he goes on to develop the 
machinery necessary to extract metrical properties of finite sets 
of points, lines, and planes in hyperbolic 3-space from their em­
bedding as point reflections, half-turns, and plane reflections in 
the isometry group of this space. In one application of this pro­
cedure he derives the trigonometrical relations of hyperbolic and 
spherical triangles by specializing appropriately the trigonometri­
cal relations for a nonplanar right-angled hexagon. The relations 
for this hexagon are obtained by considering the half-turns about 
its edges and trace relations for the matrices in SL(2, C) which 
represent them. A glimpse at the method can be given in a brief 
discussion of half-turns. 

The product of half-turns about two lines / and m is a paral­
lel displacement ((0, 0)-parabolic), a rotation through 20 about 
a line n{{\, 0)-elliptic with angle 6), a translation through 2ô 
along n ((0, 0)-hyperbolic with parameter ô ), or a twist equal to 
the commuting product of the preceding rotation and translation 
((1, 0)-hyperbolic with parameters ô and 0) as the lines / and 
m are parallel or have a common perpendicular n and intersect 
at an angle 0 , are ultraparallel and separated by a distance ô , or 
are skew and separated by the distance ô and angle 6 . Passing 
to the model (U, hx) and using the fact that its direct isometries 
correspond to Möbius transformations of U =11 = R U {oo} = 
C U {oo} which can be written in the form z —> (az + b)/(cz + d) 
we find that the canonical forms of the transformations above cor­
respond to the matrices 

± ( o l) , : f cCo *-") '*( 0 £ ) •*('<) e"*-") 
in SL(2, C) and their traces report the conjugacy class parameters 
in an invariant way. 
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To handle the inevitable ambiguity of sign in SL(2, C), the 
author orients his lines so that if / has ends u and u taken in 
that order it corresponds to the half-turn matrix 

1 = -7 {u + u -2uud -u-u ) . 
u - u 

Then trace relations for products of these matrices based on the 
formula 

t ra t rb = trab + t ra" b 
give the desired trigonometrical relations without ambiguity of 
sign. Full details, including conventions to handle special posi­
tion and degeneracy and additional machinery to handle opposite 
isometries, must await the reader's own study of this intriguing 
book. For a first perusal that quickly reaches the most accessible 
parts of the main results, I recommend §§1.3, V.3, VI.2, and VI.5 
and 6. 
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$119.00. ISBN 3-540-17758-2 

The term "classical groups" was coined by Hermann Weyl and 
used in the title of his famous book [5]. It refers to the general lin­
ear group GLn (the group of automorphisms of an «-dimensional 


