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where either p(x) —• oo or p(x) —• 0 as x —• oo. When such a 
factor />(JC) appears the system is said to be resonant, and other­
wise nonresonant. The knowledge that resonance can occur goes 
back to Perron ( 1930) but the first systematic analysis of resonance 
and nonresonance appears to be due to Atkinson (1954). 

Other applications of Levinson's theorem that the reviewer is 
familiar with, but not covered in this book, include spectral and 
scattering theory for ordinary and partial differential operators and 
to wave propagation in stratified fluids. The reviewer feels sure 
that there are other applications or possible applications to areas 
with which he is unfamiliar. 

This book is written in the author's usual elegant style. The 
exposition is crisp, the explanations and proofs are clear. It can 
certainly be recommended for the bookshelf of anyone interested 
in its subject matter. Indeed, it can be recommended for anyone 
who enjoys reading well-written mathematics and learning a bit 
about a small, but important, corner of mathematics. 
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The book under review is the proceedings of a seminar on con-
formal geometry held at the Max-Planck Institute in 1985-1986. 
This subfield of differential geometry is rather vast and multi-
faceted, and therefore it would be impossible for a single vol­
ume to deal with all aspects of this subject. The book contains 
several survey articles which deal with various aspects of con-
formal Riemannian structures, from the points of view of both 
topology/synthetic-geometry and local differential geometry. From 
both points of view flat conformai structures play a central role 
and all of the papers in this volume deal with at least some as­
pects of the theory of conformally flat manifolds. For this reason 
this review will concentrate on conformally flat manifolds and will 
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attempt to put in perspective some more recent advances in this 
subject. 

Perhaps the most familiar approach to a conformai structure 
on a manifold is a conformai equivalence class of Riemannian 
metrics: Two Riemannian metrics on a smooth manifold M are 
conformally equivalent if they give rise to the same measurement 
of angles in the tangent spaces. Analytically this means that the 
metric tensors gx, g2 are scalar multiples of each other: For any 
two tangent vectors X, Y e Tx M the metric tensors are related 
by: 

gl(X9Y) = f(x)g2(X,Y) 

for a smooth function ƒ : M —> R. In general this represents quite 
a violent change in the behavior of geodesies although other aspects 
of the Riemannian geometry (for example, characteristic classes) 
behave more tamely under this change. 

Conformai structures in dimension > 2 differ substantially from 
conformai structures in two dimensions, where they coincide with 
complex-analytic structures. Perhaps the most striking and ba­
sic result in this direction is Liouville's theorem that a conformai 
transformation between two connected subdomains of euclidean 
space (of dimension > 2) is the restriction of a global conformai 
diffeomorphism of the «-sphere, (i.e., a Möbius transformation 
of several variables). (Such Möbius transformations constitute the 
Lorentz orthogonal group SO(n + 1,1) acting on a sphere embed­
ded as a quadric hypersurface Sn c RP"+ .) Geometric structures 
locally modelled on this geometry are called Möbius structures. 

Of paramount importance in the global study of conformai 
structures on manifolds are those which are locally conformally 
equivalent to euclidean space, i.e., those for which for each point 
x e M there is a conformai change of metric which is isometric 
to the flat metric on euclidean space. Gauss proved that every 
surface is conformally flat in this sense; however, in higher dimen­
sion (for example, dimension 3), it is much rarer to be conformally 
flat. Such higher-dimensional flat conformai structures turn out to 
be the same thing as Möbius structures. Their global properties 
were first investigated by Kuiper [KI, K2]. Some, but certainly 
not all, Möbius structures arise on quotients of domains in Sn by 
discrete groups of conformai transformations [ST]. (Such struc­
tures are called "uniformizable.") A basic idea which launches 
this study is the process of "developing" the universal covering in 
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the sphere: By "analytic continuation" of the conformai coordi­
nate charts, one builds a conformai immersion of the universal 
covering M into Sn—it follows immediately that a closed sim­
ply connected conformally flat manifold is conformally equivalent 
(in particular homeomorphic) to the sphere. Indeed the Poincaré 
conjecture is equivalent to the conjecture in conformai geometry 
that every compact simply connected 3manifold admits a flat con-
formal structure. However, relatively simple examples of closed 
3-manifolds (for example, torus bundles over the circle not cov­
ered by the 3-torus [G]) fail to admit flat conformai structures. On 
the other hand, Möbius inversion in spheres shows that a geometric 
ball is conformally equivalent to its exterior in the sphere—it fol­
lows that connected sums of conformally flat manifolds possess flat 
conformai structures [Kl]. Since all but three of the eight geome­
tries, Thurston has conjectured uniformize 3-manifolds (compare 
[Sc]) can be made conformally flat, an enormous class of closed 
3-manifolds admits flat conformai structures (see [GLT, Kv] for 
further examples). 

In 1976, Thurston (unpublished) gave a description of Möbius 
structures on manifolds of real dimension 2 in terms of 3-dimen-
sional hyperbolic geometry. The precise statement is the following: 
Let S be a surface; then to every Möbius structure on S there 
corresponds a hyperbolic structure and measured geodesic lami­
nation on the corresponding hyperbolic surface M. Furthermore 
the resulting map 

is a diffeomorphism from the deformation space of Möbius struc­
tures to the product of Teichmüller space with the Thurston space 
of measured geodesic laminations. The geometric construction as­
sociates to the Möbius structure a "locally convex pleated map" 
from the universal covering of S to hyperbolic space equivariant 
with respect to the holonomy representation of n{(S). One pic­
tures M as a totally geodesic hyperbolic 2-manifold inside hyper­
bolic 3-space "bent" along a system of disjoint complete geodesies 
(the "bending lamination"). The first Thurston parameter (the 
hyperbolic structure) describes the intrinsic geometry of this de­
velopable surface and the second Thurston parameter (the bend­
ing measure) describes the extrinsic geometry (how the surface is 
bent). If the Möbius structure arises from a Kleinian group (S 
is the quotient of a domain Q. by a discrete group T), then the 
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pleated surface is the boundary of the convex hull of the comple­
ment of Q in H 3 . There is a purely conformai description of 
this geometry, whereby the supporting hyperplanes to the pleated 
surface correspond to maximal geometric discs D in S and the 
bending lamination is the boundary of the Poincaré convex hull 
of the closed set of "invisible" points on dD <--> H . Sullivan has 
proved the important result that if Q is simply connected, then the 
natural map from Q to the boundary of the convex hull of its com­
plement is /c-quasiconformal. Thus for "uniformizable structures" 
(those for which the developing map is injective), the point in 
Teichmüller space corresponding to the Thurston parametrization 
is a bounded distance from the point in Teichmüller space record­
ing the conformai structure. (A careful and scholarly account of 
such convex hulls and the relation to geodesic laminations has been 
given by Epstein and Marden [EM]. A family of geometric struc­
tures interpolating between these two parameters in Teichmüller 
space has recently been constructed by Labourie [L].) Recently 
Kulkarni and Pinkall have worked out the higher-dimensional the­
ory of flat conformai structures in terms of maximal geometric 
discs and bending lamina. In particular they have proved that the 
bending lamination has differentiability class C ' . 

In [SY], Schoen and Yau considered the scalar curvature of a 
conformai Riemannian metric as an invariant of a flat conformai 
structure. Using the spectral characterization of amenability due 
to Brooks [B], they classified flat conformai structures on closed 
manifolds with amenable holonomy group (such a conformally flat 
manifold is covered by a sphere, in Hopf manifold, or a flat torus, 
extending similar results [K2, G, F]). Assuming a conformally flat 
Riemannian metric with positive scalar curvature, the develop­
ing map embeds the universal covering space diffeomorphically 
onto a domain in Sn whose complement has Hausdorff dimension 
< n/2. In particular, the holonomy representation embeds the 
fundamental group of M as a "Kleinian group," a discrete group 
of conformai transformations acting properly on a subdomain of 
the sphere. Indeed by "stabilization," their work indicates a close 
connection between the geometric condition of injective develop­
ment (being a quotient of a domain) and the analytic condition 
of positive scalar curvature: If M = (Sn - A)/T is a closed flat 
conformai manifold with injective development, for any k > 0, 
r acts properly discontinuously and freely on Sn+ - A and the 
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quotient (Sn+k - A)/T is a closed conformally flat manifold of 
dimension n • + k. By taking k sufficiently large, this manifold 
will have positive scalar curvature [SY, Theorem 4.7], providing a 
kind of converse to the classification result above. 

In another direction, new examples of flat conformai structures 
on 3-manifolds have been discovered (independently) by Gromov, 
Lawson, and Thurston [GLT] and Kapovich [Kv] (see also [K3]). 
Uniformizable flat conformai structures exist on twisted 
S ^bundles over closed hyperbolic Riemann surfaces (twisted Sx -
bundles over a torus do not support flat conformai structures). 
These structures bound hyperbolic structures on the corresponding 
2-disc bundles over surfaces. However, it is very difficult to deter­
mine precisely which circle bundles admit flat conformai struc­
tures. Kapovich [Kv] has found such manifolds M for which 
the space of flat conformai structures on M has more than one 
component and Apanosov [A2] has examples where the space of 
uniformizable flat conformai structures is disconnected. 

Conformally flat manifolds can be used to construct examples 
of compact complex manifolds with free nonabelian fundamental 
group. (The fundamental group of a nonsimply-connected com­
pact Kàhler manifold is never free.) The twistor construction asso­
ciates to a conformally flat 4-manifold M an S2 -bundle E over 
M which is a complex manifold (with a holomorphic flat projec­
tive structure). (The fibers of Ex over x e M consist of the 
complex structures on the tangent space TXM.) Applying this 
construction to flat conformai structures on connected sums of 
Sl x 5 3 , one obtains interesting compact complex manifolds with 
free fundamental group. (This was observed by N. Hitchin; see 
[N].) 

Unfortunately, mounting evidence suggests that extending the 
marvelous theory of quasiconformal deformations of Kleinian 
groups (developed by Grotszch, Teichmüller, Ahlfors, Bers, etc.) 
to higher dimensions is unlikely. One construction for flat confor­
mai structures in higher dimensions is the following. Given a com­
pact hyperbolic manifold M containing a closed totally geodesic 
hypersurface Z, there is a one-parameter family of flat conformai 
structures on M obtained by splitting M along Z and inserting a 
"crescent" (diffeomorphic to I x [ - g , e]) in its place. This "bend­
ing" construction (so called since it generalizes Thurston's con­
struction mentioned above—compare the "Mickey Mouse" exam-
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pie in [T, §8.7.3]). This construction has been discovered indepen­
dently by various authors in different contexts: Maskit, Apansov 
[A], Thurston, LaFontaine, Kouroniotis [Ko], Johnson and Mill-
son [JM], and perhaps others. These particular deformations are 
unusually explicit and computable: Using them, Johnson and Mill-
son [JM] have proved that the deformation space of flat conformai 
structures (locally a real algebraic variety) is typically not a smooth 
manifold. This already indicates difficulties in trying to extend the 
Ahlfors-Bers theory to higher dimensions: The presence of non-
trivial integrability conditions (conveniently absent in the classical 
case) forces singularities in the deformation space. 

Another difference between the classical case (two-dimensional 
conformai geometry) and higher dimensions is Ahlfors' finiteness 
theorem: For a finitely generated group T of conformai transfor-
mations whose domain of discontinuity is Q c S , the 
corresponding Riemann surface Q/F has finite type. Kapovich 
and Potyagailo [KP] have shown that topological considerations in 
dimension 3 preclude even the weakest extension of this phenom­
enon to higher dimension: Finitely generated groups T acting con-
formally on S3 exist, for which the corresponding uniformizable 
conformally flat manifold Q/T does not even have finitely gener­
ated fundamental group. (In fact, T cannot even be finitely pre­
sented, further contrasting the two-dimensional (classical) case.) 

Thus two analytic cornerstones of the theory of classical Klein-
ian groups (the measurable Riemann mapping theorem and the 
Ahlfors finiteness theorem)—called by Sullivan [Sul] "almost the 
axioms for a good theory of Kleinian groups"—must undergo sub­
stantial modifications in a higher-dimensional theory. 

The first article in the book under review, by Kulkarni, deals 
with Möbius structures, providing a useful introduction to this 
subject, with some of its historical origins. In particular Liou-
ville's theorem is proved. The second paper in this volume (also 
by Kulkarni) deals with the classification of conformai transfor­
mations (and connected groups thereof) up to conjugacy. The 
main result of this paper is the following interesting criterion for 
a Zariski dense group T of conformai transformations of an odd-
dimensional sphere S2n~l to be discrete: If F contains no elliptic 
elements (an elliptic element is one which fixes a point is hyper­
bolic space, or equivalently one represented by a semisimple with 
all eigenvalues of norm 1), then T must be discrete. This is a gen-
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eral property shared by subgroups of real semisimple Lie groups 
which possess a compact Cartan subgroup (such as automorphism 
group of Hermitian symmetric spaces and period domains). In 
that case there is an open set of elliptic elements and if Y is 
Zariski dense, it is either dense or discrete (normalizing the Lie 
algebra of the identity component of its closure is an algebraic 
condition)—and the former is excluded since T is disjoint from 
the open set of elliptic elements. 

A reference to a "fairly standard lemma on linear groups" (page 
61, Lemma 6.2) is not supplied; this lemma states that a linear 
representation of a finitely generated group G, all of whose eigen­
values are of norm 1, is an iterated extension of orthogonal repre­
sentations. The argument is briefly as follows (see [CG]). Let V 
be a G-module with this property. By the Jordan-Holder theorem, 
it suffices to assume that V is irreducible and deduce that the 
entries of the matrices representing elements of G are uniformly 
bounded—then G will be contained in a compact group and con­
jugate to a subgroup of the orthogonal group. By the Burnside 
lemma, irreducibility implies there exists a finite set gx 9 ... , g[ € 
G and complex scalars cx, . . . , c{ such that each elementary ma­
trix e(j decomposes as a linear combination: 

/ 
eij = ZsCijk£k' 

Since each element of G has eigenvalues of norm 1, the absolute 
value of each trace is bounded by d im(F) . Choosing C > cijk , 
the ij th entry of the matrix corresponding to an arbitrary y e G 
is now uniformly bounded: 

\ytj\ = |trace(ye/.)| < Cdim(F). 

I think this useful trick deserves to be better known. 
More analytic aspects of conformai differential geometry are 

represented by the papers by Lafontaine, Kühnel, Rickmann, 
Rademacher, and Pinkall. Lafontaine's first paper in this book, 
entitled "Conformai geometry from the Riemannian viewpoint," 
treats the conformai geometry of a Riemannian manifold from the 
point of view of tensor analysis. This paper gives a self-contained 
account of the theory of the Weyl and Schouten conformai cur­
vature tensors and is one of the best expositions of this material 
I have seen. The general theory is applied to conformally flat hy-
persurfaces in Rn , the case n — 4 requiring special consideration 
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since conformai flatness is detected by a higher-order condition. 
Lafontaine's second paper gives a proof of the theorem of Obata 
and Lelong-Ferrand that a compact manifold with a noncompact 
group of conformai automorphisms is conformally equivalent to 
a sphere. Kühnel's paper discusses conformai mapping between 
Einstein manifolds. A prominent role is played by "concircular 
mappings" (conformai mappings preserving geodesic circles). Ap­
parently the literature is full of contradictions throughout and this 
paper achieves the admirable goal of setting the record straight on 
presenting counterexamples to the various errors in the literature. 
An appendix is devoted to the proofs of two "standard wrong the­
orems" in this subject. 

Rickmann's paper surveys quasiregular mappings (the gener­
alization of quasiconformal mappings to noninjective mappings) 
and details some of the interesting recent developments in this sub­
ject. Rademacher's paper deals with immersions of conformally 
flat manifolds and gives various obstructions to the existence of 
such immersions of some of the basic examples of conformally flat 
manifolds (for example, connected sums, products of hyperbolic 
manifolds with the circle, etc.). The methods use the Schouten and 
Weyl tensors and this paper fits in nicely with some of the other pa­
pers in this volume. PinkalPs article considers which conformally 
flat manifolds admit conformai immersions as hypersurfaces in 
Rn . A rather striking result is that for n > 4, such a manifold 
must be a "classical Schottky manifold," a connected sum of Hopf 
manifolds along totally umbilic spheres. It is also shown that such 
flat conformai structures are rather special in that not all flat con-
formal structures on these manifolds are classical Schottky. 

In general, this is an interesting book with a diverse set of tech­
niques and results. It should make interesting reading for anyone 
who wants to whet his or her appetite in this fascinating area of 
geometry. 
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There exist many books on each of the areas of real analysis and 
probability, including some which attempt to treat both subjects in 
the same treatise. Therefore, one may ask for a compelling reason 
to publish yet another work on this conjunction of well-established 
subjects. 

Real analysis at the graduate level traditionally consists of mea­
sure and integration theory with an introduction to functional anal­
ysis. The prevailing tendency has been to treat these topics at an 
abstract level, with little or no historical commentary and almost 
no explicit reference to either the motivation or the applications 
of the material. At the same time we are told that measure theory 
provides a rigorous foundation for probability theory, while func­
tional analysis has its origins in the theory of integral equations 
and is central to the modern theory of partial differential equa­
tions, among other things. For some students these connections 
might bring the subject more to life, but traditional approaches 
have opted for the path of efficient pedagogy, leaving the student 
to fill in the gaps for himself or herself. 

In the case of probability theory, the development of measure 
and integration theory is long overdue. The earliest form of the 
weak law of large numbers was proved by Jakob Bernoulli [Be] in 
1713; the first version of the central limit theorem was published 
by Abraham de Moivre [M] (at the age of 66) in 1733, exactly 200 
years prior to the measure-theoretic framework which Andre Kol-
mogorov [K] introduced in 1933. Perhaps the first person to have 


