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SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS: 
RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS 

GIUSEPPE BUTTAZZO AND GIANNI DAL MASO 

ABSTRACT. We study a problem of shape optimal design for an 
elliptic equation with Dirichlet boundary condition. We intro­
duce a relaxed formulation of the problem which always admits 
a solution, and we find necessary conditions for optimality both 
for the relaxed and the original problem. 

Let Q be a bounded open subset of Rn(n > 2), let ƒ e L (Q), 
and let g: Q, x R —> R be a Carathéodory function (i.e. g(x, s) 
measurable in x and continuous in s) such that 

\g(x,s)\< a0(x) + b0\s\2 \/(x,s)eQxR, 

for suitable aQ e Ll(Q) and b0 eR. We consider the following 
optimal design problem: 

(1) min / g(x, uA{x))dx, 

where sf(Çl) is the family of all open subsets of Q, and uA is 
the solution of the Dirichlet problem 

(2) -AuA =finA, u
A

eHl (A) > 

extended by 0 in Q\^4 . 
It is well known that, in general, the minimum problem (1) 

has no solution (see for instance Example 2). The reason is that, 
although the solutions uA of (2) corresponding to a minimizing 
sequence (Ah) of (1) always admit a limit point u in the weak 
(not necessarily in the strong) topology of 7/0

l(Q), we can not 
find, in general, an open subset A of Q such that u = uA. On 
the contrary, it can be proved (see [4]) that the limit function u 
is the solution of a relaxed Dirichlet problem of the form 

(3) -Au + juu = f in Q, ueH^(Q)n L2(Q; ju), 
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for a suitable nonnegative measure ju which vanishes on all sets 
of (harmonic) capacity 0, but may take the value +00 on some 
subsets of Q. Following [3], we shall denote by ^ 0 (Q) the class 
of all measures with the properties considered above. 

The precise meaning of equation (3) is the following: 

(4) / DuDtpdx+ I uç>d/i= I fq>dx 
Ja JQ JQ 

for every Vp G HQ(Q) D L2(Q.\ JU) , where the pointwise value of 
an Hl function is defined as usual up to sets of capacity 0. 

If S is a Borel subset of Q, the measure oos defined by 

( 0 if B n S has capacity 0 
(5) oos(B) = \ 

I +00 otherwise, 
belongs to «^(Q) . Note that if S is closed in Q, then problem 
(3) reduces to problem (2) with A = Q\S and ju = oo^. The 
relaxed formulation of the optimization problem ( 1 ) is then: 

(6) min ƒ g(x, u (x))dx, 

where u is the unique solution of the relaxed Dirichlet problem 
(3) in the sense given by (4). 

The following theorem follows easily from the compactness and 
density results for relaxed Dirichlet problems proved in [1] (The­
orem 2.38) and [4] (Theorem 4.16). 

Theorem 1. Problem (6) admits a solution, and 

(7) min ƒ g(x, u,ix))dx = inf / g(x, uAx))dx. 

We now give an example where problem ( 1 ) has no solution. 

Example 2. Assume that f(x) > 0 a.e. in £1, let w be the solu­
tion of 

(8) -Aw = f inQ, weH*(Q), 

and let g(x, s) = \s - cw(x)\2 , with 0 < c < 1. Then the relaxed 
problem (6) attains its minimum value 0 at the measure ju defined 
by 

li(B) - ]—^ f ï-dx 
c JB™ 

which corresponds to u — cw . On the other hand, it is clear from 
(2) and (8) that there are no domains A for which g(x, uA(x)) = 
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0 a.e. in Q. By (7) this implies that the original problem (1) has 
no solution. 

Our goal is to find optimality conditions for the solutions of 
problem (6). We recall that the fine topology on Q is the weakest 
topology on SI for which all superharmonic functions are contin­
uous. For a systematic study of properties of the fine topology we 
refer to Doob [5], Part 1, Chapter XI. Let ju be a minimum point 
of (6) and let w = M . By A = A(fi) we denote the set of all 
x e Si having a fine neighborhood V such that fi(V) < +oo, and 
by JUA the restriction of n to A ; it is clear that A is finely open 
in Si. By d*A and cl*'A we denote the fine boundary and the 
fine closure of A in SI. 

Proposition 3. There exist a Radon measure v e Jt0(Sl) carried by 
d*A, and a continuous linear map T: L2(Si) —• L2(d*A, v) such 
that, if h e L2(SÏ) and w e HQ (Si) n L2(Sl ; ju) is a solution of 

-Aw + juw - h in Q 

in the sense given by (4), then 

I DwDcpdx + I T(h)(pdv+ / wq)djuA= / hcpdx 
J A Jd*A J A Jcl*A 

for every cp e HQ (SI). 

If A is an open set with a smooth boundary and juA(B) = 
JBnAûdx with û e L°°(Sl), an integration by parts leads to the 
form 

/ON / D N f d W J rtu\ 9w/dn 

JBHOA dn dW/dn 
where a denotes the surface measure on the (Euclidean) boundary 
dA of A , n is the outer unit normal to A , and W is the solution 
of the Dirichlet problem 

-AW = lin A, W EHQ(A). 

In addition to the previous hypotheses, we assume now that 
g(x, s) is continuously differentiate with respect to s and that 

\gs(x,s)\ < ax{x) + bx\s\ V{x,s)eSlxR 

for suitable ax e Ll(Sl) and b{ e R. 
In order to give our optimality conditions, we introduce the 

adjoint equation 

(10) -Av+/iv = gs9 ve HhSi)riL2{Sl; ju), 
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where gs denotes the function gs(x, u(x)). We denote by v the 
solution of (10) in the sense given by (4), with ƒ replaced by gs, 
and we set 

(11) a = T(f), P = T{gs). 

Our main result is the following theorem. 

Theorem 4. Let ju = oo5 + JUA be a solution of problem (6), let 
u = u be the corresponding solution of (3), and let v be the 
solution of the adjoint equation (10). If A- A(/u), then u = v = 0 
on Q\A (up to a set of capacity 0), and 

(a) uv < 0 a.e. on A, 
(b) ap > 0 v-a.e. on d*A, 
(c) f(x)gs(x, 0) > 0 a.e. on Q\cl*A, 
(d) uv = 0 juA-a.e. on A, 

where a and /? are given by (11). 
Suppose now that there exists an optimal domain A for the 

original problem (1), and that A has a smooth boundary. By (7) 
the measure ju - oo5 defined by (5) with S = Q\A is a minimum 
point of the relaxed problem (6). Taking (9) into account, the 
optimality conditions of Theorem 4 become: 

(a') uv < 0 a.e. on A , 

, | ^ > o a-a.e. o n f i n ^ , 
dndn ~ 

(c') ƒ(*)*,(*, 0 ) > 0 a.e. on Q \ ^ , 
while condition (d) is trivial because /uA = 0. From (a') and (b') 
we obtain 
/ i // x dudV ^ r^ ^ A 
(b ) TT-TT- = 0 <r-a.e. o n f î n ô A 

The last condition is already known in shape optimization (see 
for instance [2, 9, 10, 13, 15]), while conditions (a') and (c;) 
seem to be new. Similar relaxed formulations for different classes 
of optimal design problems (with Neumann or other boundary 
conditions) have been considered by Murat and Tartar in [8, 11, 
12, 14], and by Kohn, Strang, and Vogelius in [6, 7]. 
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