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ZERO-ORDER PERTURBATIONS OF THE SUBELLIPTIC 
LAPLACIAN ON THE HEISENBERG GROUP AND THEIR 

UNIQUENESS PROPERTIES 

NICOLA GAROFALO AND ERMANNO LANCONELLI 

INTRODUCTION 

The Heisenberg group H" is the step-two nilpotent Lie group 
whose underlying manifold is R2"+1 equipped with the group law 

(x, y, t) o (x , y , t') = (x + x , y + y , t + t' + 2(x' -y-x- y)), 

where x • y denotes the usual inner product in R". A basis for 
the Lie algebra of left-invariant vector fields on H" is given by 

j = I, . . . , n, and —. 

It is readily recognized that [Xj9 Yk] = -4Sjk(d/dt) so that, 
in virtue of a fundamental result of Hörmander [H], the Kohn-
Laplacian 

(2) AH„ = J2{X] + Y]) 
7=1 

is a second-order hypoelliptic (but not elliptic) operator on H" . In 
fact, see (7) below, AH* is real analytic-hypoelliptic, and therefore 
a solution to AH«w = 0 cannot vanish with all its derivatives at 
one point of a connected open set, unless u = 0 in that set. 

We are interested in obtaining a quantitative version of the 
above uniqueness property for solutions to the equation 

(3) -AunU+Vu = 0, 
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where on the zero-order term V we make suitable assumptions. 
More explicitly, we seek an estimate of the order of vanishing 
at one point of a solution u to (3). Such estimate should, in a 
precise quantitative way, only depend on the local size of V and 
on suitable L2 norms of u and X.u, Y.u, j = 1, ... ,n, in 
some fixed neighborhood of the point in question. 

Unfortunately, even when V is C°°, there can be no such 
estimate for an arbitrary solution u to (3). This is a consequence 
of a recent negative result of Bahouri [Ba] which is concerned with 
subelliptic (but not elliptic) operators in R^ of the type 3? = 

The vector fields X. are requested to satisfy Hörmander's con­
dition on the Lie algebra [H]. Moreover, the linear space generated 
by them must have dimension N - 1 at every point. 
Bahouri proved that if an additional geometric condition is sat­
isfied by the volume form associated to Xx, . . . , XN_ {, then the 
operator S* fails to have the unique continuation property in the 
following sense. There exist a connected open set Q c R ^ and 
a V e C°°(Q) such that the equation -S?u + Vu = 0 admits 
a nontrivial solution in Q vanishing in an open subset of Q. 
The geometric condition referred to above is trivially satisfied in 
dimension three or four. As a consequence, when N = 3 or 4, 
every operator of the type described above fails to have the unique 
continuation property. An interesting example is provided by the 
operator in R3 

which satisfies the conditions in [Ba]. Bahouri's construction yields 
a potential V G C°° (Q), Q a neighborhood of the origin, such 
that 

(5) supp V C {x > 0}, F is flat at {x = 0}, 

for which there exists a solution to -Jîfu+Vu = 0 in Q. supported 
in {x > 0} . If we consider the change of variables (x, y, t) -+ 
{x , y , t') given by x — x , y = y, t' = t-2xy, we see that the 
plane {x = 0} is mapped into the plane {x — 0} , and the Kohn-
Laplacian AR, = {{d/dx) + 2y(d/dt))2 + {(d/dy) -2x{d/dt))2 is 
transformed into the operator 2 in (4). Therefore, there exists 
a neighborhood of the origin Q in R3 and a F G C°°(Q) and 
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satisfying (5) for which -AHi + V fails to have the unique contin­
uation property in Q. When V is real analytic, then a qualitative 
result of Bony [B] based on Holmgren's theorem implies the unique 
continuation property for (3). 

In view of the above discussion, is there any positive result when 
V is not real analytic? We will answer this question affirmatively 
by providing a sufficient condition for solutions to (3) to have a 
finite order of vanishing, even when the potential V is allowed 
quite strong singularities. In order to state our results, we need to 
introduce some notation. 

Henceforth, a generic point (x, y, t) G R2/î+1 will be denoted 
by (z, t) whenever convenient. An important group of auto­
morphisms of H" is given by the so-called Heisenberg dilations 
Sx{z, t) = (Àz, À t), À > 0. A function u on H" is said to 
be Heisenberg-homogeneous of degree k E Z if for every A > 0, 
uoôx = X u. There exists a distinguished Heisenberg-homogeneous 
function of degree one, the distance function (see [S] and [F]) 

(6) d(z,t) = (\zf + t2)l/\ 

The homogeneous dimension of Hn (see, e.g., [FS]) is Q = 
In + 2 . It is a remarkable fact that the fundamental solution 
T(z, t) of -AH« with singularity at the origin is 

<7) r < z ' " = ? ü ^ -
where CQ > 0 is a number depending on Q. This was proved 
by Folland in [F]. Because of (7) the level sets of T(z, t) are the 
spheres in the metric generated by (6). Precisely, we let for r > 0 

Çlr = {(z,t)eHn\d(z,t)<r}, 

dQr = {(z,t)eUn\d(z,t) = r}, 

and call these sets, respectively, the Heisenberg ball and sphere 
centered at the origin with radius r. 

Let Az = T,nj=\((d2/dxj) + (92/dy2j)) be the Laplacian in the 
variable z = (x, y) and let T be the vector field 

Then an easy verification yields for u € C2(Hn) 

,2d
2u , d 

(9) \l„u = Azu + 4\z\—I + 4j-(Tu). 
ut Ol 
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Our problem being a local one, we work from now on in a fixed 
Heisenberg ball Q,p centered at the origin. On the zero-order 
term V in (3) we make the following assumption: There exist 
C > 0 and an increasing function ƒ : (0, R0) —• R+ such that 

e** f{r) 

h (10) / ^ - ^ d r <+oo , 
Jo r 

and for which 

(11) \V(z9t)\<cnf}Z9^w{z9t) fora.e. (z,t)eQR , 
d(z9ty ° 

where 

(12) ^ ( Z , 0 = = J l , ( z , 0 ^ ( 0 , 0 ) . 
rf(z, 0 

The role of the function y/ in ( 11 ) will be clarified by Theorems 
4 and 5 below. At this moment we simply remark that 0 < i// < 1, 
^ (0 , f) = 0, y/(z, 0) = 1 and that i// is Heisenberg-homogeneous 
of degree zero. Concerning the function ƒ in (11), we note that 
(10) implies limr_^0f(r) = 0. Typical representatives are f(r) — 
r\ 0 < e , and f(r) = (log(l/r))~a , a > 1. According to (11) the 
zero-order term V in (3) can be quite singular; therefore, a notion 
of solution to (3) needs to be specified. Since regularity questions 
are not the main concern for us, we will a priori assume that a 
solution w to (3) in iî^ is a continuous function in QR such 

that u, XjU, YjU, j = 1, . . . , n, and AHnU are in L (QR ) , 
and such that u satisfies (3) in the weak sense. We will need the 
following: 

Definition 1. Given a function u such that , we 

say that u vanishes to infinite order at the origin if as r —• 0+ 

L 2 k 

u y/ dzdt = 0(r ) , for every k e N. 

Our main result is the following: 

Theorem 1. Let V satisfy (11) for some C and ƒ . Let u be 
a solution to (3) in QR . Suppose there exist C{ > 0 and an 

increasing function g : (0, R0) —• R+ satisfying (10) and such 
that 
(13) 

\tTu(z, t)\ < Cxg(d(z, t))\z\2\u(z, 01, for*.e. (z9t)eQR. 
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Then there exist two numbers r0 = r0(Q, C, C{, ƒ , g) > 0 and 
T = r « 2 , C, Cx, ƒ , g, u) > 0 such that, if for every r e (0, r0/2) 
w^O m £2r, we have 

(14) / uy/dzdt<Tl uy/dzdt. 
Ja2r Jnr 

Remarks, (a) The constant T must depend on u as easy examples 
show, (b) The dependence of both r0 and T on the parameters 
involved can be made very explicit. In particular, the proof of 
Theorem 1 yields 

xmax( l , N(rQ))\ , 

where M > 0 is a number depending only on Q, C, C{, ƒ and 
g , and 

^^o (y=l J M / ]Vl]dH2n 

In the surface integral in the denominator of the above quotient 
d//2w stands for 2 «-dimensional Hausdorff measure in R2"+1 . (c) 
(13) is trivially satisfied when Tu = 0. Functions verifying this 
property can be characterized as those which are invariant with 
respect to the action of the torus T on H" given by (pe{z, t) -

(eld z, t), 6 e [0, 2n], where we have identified z = (x, y) G R2" 
with z = {z{, ... , zn) eCn with z. = Xj + iyj, j = 1, . . . , n. 
We thank David Catlin for pointing out this fact to us. In par­
ticular, functions of the type u(z, t) = w*(|z|2, t) or of the type 
u(z, t) = M*(|ZJ|, . . . , \zn\, t) satisfy Tu = 0. 

Theorem 1 yields the sought quantitative information on the 
order of vanishing at the origin of a solution to (3) satisfying (13). 
From it we obtain rather straightforwardly: 

Theorem 2. Under the assumptions of Theorem 1, if u vanishes 
to infinite order at the origin (see Definition 1), then there must be 
u = 0 in Qr , where rn > 0 is as in the conclusion of Theorem 1. 

' 0 U 

We emphasize that, given the assumption ( 11 ) on V, the con­
clusion of Theorem 1 is simply false if we do not restrict the fam­
ily of solutions to (3). This can be easily recognized by choosing 

r = 2
öexp 2 log 2 1 +exp 
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2 

f(r) = r in (11), so that the latter becomes \V(z, t)\ < Cy/(z, t), 
for a.e. (z, t) e QR . 

This requirement is certainly satisfied by the above-mentioned 
Bahouri's potential in R3, since the latter is flat at {x = 0} ; see 
(5). 

SKETCH OF THE PROOF OF THEOREM 1 

Our approach is based on that for elliptic equations found by 
F. H. Lin and one of us in [GL1] and [GL2]. Our analysis, in fact, 
shows some remarkable similarities with the euclidean case. Yet, 
the present subelliptic context offers new and interesting difficul­
ties, some of them of a rather subtle geometrical nature. The main 
ingredients in the proof of Theorem 1 are: 

(I) Representation formulas for smooth functions on H" as 
integrals on Heisenberg spheres and balls. 

(II) A strong form of uncertainty principle for H" . 
(III) First variation estimates for the energy integral associated 

to (3). 
(IV) A frequency function on H" and the study of its growth 

properties via parts (I), (II), and (III). 

In what follows we briefly outline the implementation of part 
(IV) in the proof of Theorem 1. At the end of this note we will 
quote the main results relative to parts (II) and (III), Theorems 
4 and 5, respectively. Concerning part (I) we simply mention 
that our result is an extension to our context of classical formulas 
involving functions and their Laplacians on R . I t generalizes 
Gaveau's mean value formula for solutions of AHnU = 0 ; see [G]. 

By means of Fédérer's coarea formula [Fe, Theorem 3.2.12], we 
see that in order to prove (14) it is sufficient to show 

(15) L/w\dH^Lulm\dH>« 
for every r e (0, (r0/2)). To this end we introduce the following 
height-function in d£lr of a solution u to (3) 

(16) H(r) = J u2^dHln, 0 < r < i?0. 

We also define the following quantities: 
(17) 

D{r)= f \VHnU\2dzdt, I{r) = f [|VH„w|2 + Vu2]dzdt, 
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which we call, respectively, the Dirichlet integral and the total en-
ergy of u in Q r . In (17) we have let |VH*w|2 = Y?jssl[(XjU)2 + 

(YjU)2]. We will adopt this notation from now on. 

Lemma 1. Let u be a solution to (3) in £ïR . Then 

(18) H\r)=<Lr±H{r) + 2I(r). 

The proof of this lemma relies on the representation formulas 
mentioned in (I) above. 

Lemma 2. There exist rQ > 0, depending only on C, ƒ in (11), 
such that either u = 0 in Qr or H(r) ^ 0 for every r e (0, rn). 

The proof of this lemma uses the above-referred uncertainty 
principle in part (II) (see Theorem 4). Lemma 2 allows to divide 
out by H(r) in (18) obtaining 

H^_Q^.2M_ re(0 r) 

At this point we introduce the following 

Definition 2. The quantity N(r) = rI(r)/H(r) is called the fre­
quency in Çlr of the solution u to (3). 

The motivation for Definition 2 relies in the following: 

Proposition 1. Let u be such that AHnU = 0 in Q,R and u is 
Heisenberg-homogeneous of degree feeN. Then N(r) = k. 

We mention that the frequency of a harmonic function in R^ 
was first introduced by Almgren [A], who also established its in-
creasingness. Using Definition 2, we rewrite (19) as follows: 

<*» Tr 
Following [GL1] and [GL2] we now introduce the set 

K = {re(0, r0)\N(r) > max(l, N(r0))}. 

Because of Lemma 2 we see that A, is an open set of the line. 
ro 

We stress that from the definition of A, we have at every r e Ar 

—— < I(r). 



508 N. GAROFALO AND E. LANCONELLI 

The crucial ingredient in the proof of Theorem 1 is the follow­
ing: 

Theorem 3. For a.e. r G A„ we have 

' N(r) \ r r J 

where M > 0 is a constant which solely depends on Q, C, C{, 
and f and g. 

The proof of Theorem 3 is quite delicate and is based on parts 
(II) and (III) above, along with, of course, use of assumptions (11) 
and (13). With (21) in hand it is not difficult, upon integrating 
(20) over an interval (r, 2r), to deduce (15) with a constant T 
as in (b) of the remarks above. This would finish the proof of 
Theorem 1. 

To conclude we would like to say something about (II) and (III). 

(II). A relevant role in [GL2] was played by the following strong 
form of Heisenberg's uncertainty principle 

/ —=• dx 
J\x\<r \x\ 

< (^)W)U,=/-+L'-|24 
valid for any function u G C^>o(Riv\{0}). This implies by 
Schwarz's inequality 

which via PlanchereFs theorem for the Fourier transform yields the 
harmonic analysis formulation of Heisenberg's uncertainty princi­
ple in R^ ; see [He, Chapter 2]. (With (N-2)/2 replaced by N/2 
equality is attained iff u(x) = ^4exp(-o;|x| ) , for some A G R, 
a > 0 . ) 

In our context we prove: 

Theorem 4. For every u e C^°(Hw\{(0, 0)}) and every r > 0, we 
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have 

f 2 

ƒ —y/dzdt 

+ / \VHnü\2dzdt>. 

Corollary 1 (Uncertainty principle for H"). For every u such that 
yjl,2u, XjU, YjU e L2(Hn), j = I, ... , n, we have 

I d u y/dzdt\ I |VHntt| dzdt) 

>:Q 

2 >2 

—- j ( / u y/dzdt 

One can prove that with (Q-2)/2 replaced by Q/2 equality is 
attained in Corollary 1 iff u(z, t) = A cxp(-ad)z, t) ) , for some 
AeR, a>0. 

(III). First variation estimates have an important role in calculus 
of variations and geometric measure theory. The general strat­
egy to obtain them is to perform a so-called radial deformation 
and then use the minimizing property of the energy integral. In 
euclidean flat space the effectiveness of this procedure is deeply 
related to the fact that the (conformai) vector field X = r(r/dr) is 
orthogonal to the level sets of the fundamental solution of 
Laplace's operator. This is best illustrated by the first variation 
formula for the Euclidean Dirichlet integral of a function 

f \Vu\2 da = ^-^- [ \Vu\2dx 
JdBr

 r JBr 

+ 2 / [ T T ^ I da— (x-Vu)Audx, JdBr\dnJ rJB; 

where we have set Br = {x e RN\\x\ < r} and (du/dn) = 
Vu*(x/\x\). It is noticeable in this formula the absence of terms 
containing tangential derivatives of u. 

On the Heisenberg group the situation is quite different. Yet, 
there exists a distinguished vector field which plays to some extent 
the same fundamental role played by the vector field r(d/dr) in 
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R . Namely, 

<*> * = Ë(*4+3-4-)+2,£. 
A (somewhat magic) redeeming feature of this vector field X is 

that its projection along the direction orthogonal to a level set of 
T in (7), i.e., the Heisenberg sphere, is constant along the sphere 
itself. We exploit this fact to obtain the following remarkable 
sub-elliptic first variation formula. 

Theorem 5. Let u be a function such that u, X.u, Y.u, j = 

1 , ... , n, and AHnU e L2(Hn). Then we have for a.e. r > 0 

(23) D'{r)-^lm + 2jm^-)2^„z, 

- - ƒ (Xu)(AunU)dzdt. 
r Jar 

In (23) D(r) is defined by (17), X by (2), T by (8), and in the 
third integral in the r.h.s. we have let q> = <p(z, t) = t/(d(z, t) ) . 
(Notice that (p is Heisenberg-homogeneous of degree zero.) One 
should compare (23) with the above formula for the euclidean 
Dirichlet integral, and notice the presence in (23) of the boundary 
integral containing the term Tu. Since it can be easily shown that 
the vector field T in (8) is tangential to the Heisenberg sphere, 
the third term in the r.h.s. of (23) represents a novelty w.r.t. the 
euclidean case, and a bad one, indeed. Theorem 5 is the main tool 
in the proof of Theorem 3. We obtain it as a consequence of a 
general integral identity of Rellich type for H" . We believe this 
identity will prove useful for other problems on the Heisenberg 
group, as well. 

A conclusive remark. Condition (13) is only sufficient for the esti­
mate (14) to hold. By (20) and Proposition 1 every Heisenberg-
homogeneous solution of AHnU = 0 satisfies (14). Yet, not every 
such function satisfies (13) (e.g., u(x9 y, t) = x\z\ + 2ty). An 
interesting open question, which we have not been able to settle 
yet, is to characterize the class of solutions to (3) which satisfy 
(14). 



SUBELLIPTIC LAPLACIAN ON HEISENBERG GROUP 511 

REFERENCES 

[A] F. T. Almgren, Jr., Dirichlet's problem for multiple valued functions and 
the regularity of mass minimizing integral currents, Minimal Submani-
folds and Geodesies (M. Obata, éd.), North-Holland, Amsterdam, 1979, 
pp. 1-6. 

[Ba] H. Bahouri, Non prolongement unique des solutions d'operateurs "Somme 
de Carrés", Ann. Inst. Fourier (Grenoble) 36 (4) (1986), 137-155. 

[B] J. M. Bony, Principe du maximum, inéqalité de Harnack et unicité du 
problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. 
Fourier (Grenoble) 19 (1) (1969), 277-304. 

[Fe] H. Fédérer, Geometrie measure theory, Grundlehren Math. Wiss., vol. 153, 
Springer-Verlag, Berlin, 1969. 

[F] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. 
Math. Soc. 79 (2) (1973), 373-376. 

[FS] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Math. 
Notes, Princeton Univ. Press, Princeton, N. J., 1982. 

[GLl] N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, 
Ap weights and unique continuation, Indiana Univ. Math. J. 35 (2) (1986), 
245-268. 

[GL2] , Unique continuation for elliptic operators: A geometric-variational 
approach, Comm. Pure Appl. Math. XL (1987), 347-366. 

[G] B. Gaveau, Principe de moindre actions, propagation de la chaleur et es­
timées sous elliptiques sur certains groups nilpotents, Acta Math. 139 ( 1977), 
95-153. 

[He] W. Heisenberg, The physical principles of the quantum theory, Dover, 1949. 
[S] E. M. Stein, Some problems in harmonic analysis suggested by symmet­

ric spaces and semi-simple groups, Actes, Congrès intern, math., Nice, 1 
(1970), 173-189. 

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, 
INDIANA 47907 

DIPARTIMENTO Di MATEMATICA, UNIVERSITÂ DI BOLOGNA, PIAZZA DI PORTA 
S. DONATO 5, 40127 BOLOGNA, ITALY 




