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SUBGROUPS OF POLYNOMIAL AUTOMORPHISMS 

EDWIN CONNELL AND JOHN ZWEIBEL 

INTRODUCTION 

Throughout this paper, k will denote a commutative ring con­
taining the rational numbers Q, and k[n] = k[x{, . . . , xn] will 
be the polynomial ring over k . If ƒ : k[n] —• k[n] is a polynomial 
map (i.e., a fc-algebra homomorphism), then ƒ is a polynomial 
automorphism provided there is an inverse ƒ " which is also a 
polynomial map. Very little is known about the group of polyno­
mial automorphisms, and indeed it is difficult to determine which 
polynomial maps are automorphisms. The purpose of this paper 
is to define a collection H of polynomial maps, to show that each 
h e H is a polynomial automorphism and that if is a group 
under composition, and to classify H up to group isomorphism. 
As a consequence, this will prove a special case of the Jacobian 
conjecture. 

If V is an «-dimensional column vector over k[n] whose /th 
term is vt, then the Jacobian J(V) is defined to be the n x n 
matrix (dvjdx.). Let X denote the vector whose /th term is 

xi. If g: k[n] —• k[n] is a polynomial map, then g(X) will denote 
the vector whose /th term is g(x.). This gives a bijection from 
polynomial maps to vectors. The Jacobian J(g) of a polynomial 
map g is defined to be the Jacobian of the vector g(X). Sup­
pose for the moment that k is a field of characteristic 0. The 
Jacobian conjecture states that if ƒ: k[n] —> k[n] is a polynomial 
map with \J(f)\ = 1, then ƒ is a polynomial automorphism. It 
is known that this conjecture can be reduced to the case where 
/ (ƒ ) = I + M, where each term of the matrix M is a homoge­
neous polynomial of degree 2 [BCW]. It follows from the theorem 
below that the Jacobian conjecture is true, provided it can be re­
duced to the case where J{f)~ = I - N, where each term of N 
is homogeneous of some fixed degree q > 1. 
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Suppose q > 1 and ƒ: k[n] —• k[n] is a polynomial map with 
/(O) = 0. Suppose the Jacobian matrix has \J(f)\ = 1 and 
J(f)~l = I — N where N ^ 0 and each term of TV is a ho­
mogeneous polynomial of degree q. Then TV is nilpotent, i.e., 
there exists r > 1 so that Nr+{ = 0, TVr ^ 0, and / (ƒ) = 
ƒ + TV + • • • + TV'. An «XA2 matrix M over /ctn] is said to be 
exact provided there exists a vector V with J(V) = M. In this 
case where / (ƒ ) = ƒ + TV H + Nr, each TV7 is exact. Let H 
be the collection of all polynomial maps h with A(0) = 0 and 
J(h) = I + CjTV + • • • + criV

r where each ct E k. The following 
theorem is taken from part (ii) of the main theorem below. 

Theorem. Each h in H is a polynomial automorphism. H is a 
subgroup of the group of all polynomial automorphisms on k[n]. 

Furthermore, it will be shown that, up to group isomorphism, 
H depends only on q and r, i.e., it does not depend on n or 
the choice ofN. In fact, for a fixed q, H is isomorphic to a 
subgroup Gr of automorphisms of a truncated polynomial ring 
in one variable. Thus this gives a representation of Gr into the 
group of polynomial automorphisms on kw . (It is unclear what 
conditions imply that two such representations are algebraically 
equivalent.) 

Question. Suppose H is as above, where A: is a field of character­
istic 0. Does there exist a nonzero linear form I = a{x{-\

 ]ra
n

x
n 

such that h(l) — I for all h E HI This is equivalent to asking 
if the rows of N are linearly dependent over k . More generally, 
does there exist a linear automorphism L: k[n] —• k[n] such that 
J(LhL~{) is upper triangular for all h E HI 

We conclude the introduction with a special case of part (iii) 
of the main theorem. Suppose g: /r ' -+ kw is a polynomial 
automorphism with J(g) = I + M and M = 0. In general, it 
will not be true that J{g2) = J{g)2 , i.e., it will not be true that 
J(g)\ = J(g). However, in the case that there is t > 1 so that 

each term of M is homogeneous of degree t, then J{g2) = J{g)2. 
The main theorem and a sketch of the proof are presented be­

low. The proper environment for this theory is not polynomial 
rings, but rather power series rings. In fact, the proof depends 
upon an exponential map which requires this environment. 
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THE MAIN THEOREM 

Let krn" be the formal power series ring over k, and let I c 
k[[n]] be the augmentation ideal generated by the variables 

{x{, . . . , xn} . Denote by GAn(k) the group of all /c-algebra au­
tomorphisms ƒ on k[[n]] satisfying ƒ = Id mod(/2). Suppose 
q > 1 and r > 1. Let G c GAx(k) be the subset defined by 
{f:f(x)=x + clx

q+l + --- + cix
iq+l + -- , with c. e k} . It is easy 

to see that G is closed under composition and inverses, and is thus 
a subgroup. Let Gr be the group of all fc-algebra automorphisms 
ƒ on kl[l]]/(x)rq+2 for which f{x) = x + cxx

q+x + • • • + crx
rq+{. 

Suppose N is an nxn matrix over k[n] with Nl exact for all 
ƒ > 1. (Actually the exactness of N and TV implies exactness 
for Nl for all / > 2. See note at the end of this paper.) Suppose 
also that each term of TV is a homogeneous polynomial of degree 
q . Let Uj be the column vector 

("•A 
U'A : 

with J(Uj) = ((jq + l)/(q + l)j)Nj and with each ut . a homo­
geneous polynomial of degree j'q + 1. (Note that if n = 1, these 
conditions are satisfied if U. = xjq+l and Â  = (^ + \)xq . Thus 
all relations developed for the U- will, in particular, apply to this 

special case.) Define a subset H c GAn(k) by H = {g:g(X) = 
X + clUl-{ hcx•UiH , with c. G /c} . Here #(X) represents 
the vector whose z'th term is ^ ( ^ ) . 

Let Hr be the set of all /c-algebra automorphisms ^ on 
kl[n]]/Irq+2 with ^(X) = I + c1[/1 + . - + c r[/ r . 

There are natural surjective maps a: G —• i / and ar:Gr -> Hr. 
If ƒ G G has /(JC) = x + q J C ^ 1 + c2jc

2f7+1 + • • • , then g = a(f) 
has g(X) = X + c{U{ + c2U2-\ . The results of this paper are 
summarized in the following theorem. 
Theorem, (i) Each of H and Hr is a group under composition. 
The natural surjective maps a: G —• H and ar:Gr-> Hr are group 
homomorphisms. If Nl is nonzero for all i > 1, then each of a 
and ar is an isomorphism. 

(ii) Suppose N is zero. Then H and Hr are isomorphic. If 
ƒ G H, then each of ƒ and f~l maps k[n] into itself and thus 
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ƒ defines an automorphism on km . Thus H may be viewed as a 
group of automorphisms on kw . Finally, if Nr is nonzero, then 
ar:Gr-^ Hr is an isomorphism. 

(iii) Suppose Nr+l is zero, 1 < s < r, \ <t <r, and s + t > r. 
Suppose ƒ , g e H with f(X) = X + cx Ux + • • - + crUr and g(X) = 
X + dx Ux -\ + drUr, with ct = 0 for 1 < i < s and dt = 0 for 
1 < i <t. Then fog(X) = gof(X) = X + bxUx + ••• + brUr 

where bt = ct + dr Also J(f)\g = / ( ƒ ) , J(g)\f = J(g)> and 
J(fog) = J(f)J(g) = J(g)J(f). 

Sketch of proof. Part (ii) follows immediately from part (i). The 
equalities stated in (iii) follow from inspection in the case where 
ƒ \ g £ Gr. Thus part (iii) follows from part (i) and (ii). We now 
sketch the proof of part (i). 

Let &(GAn(k)) be the Lie algebra of GAn{k). This is the 
fc-module of all ^-derivations D on k[[n]] with D(xi) e I2 for 
1 < i < n . Each D is represented by a column vector 

- G ) 
with D = vx(dldxx) + • • • + vn(d/dxn), where each v. e k[[n]] is 
the sum of homogeneous polynomials of degree > 2. If W is 
any column vector, D(W) is the column vector whose rth term is 
D(w.). Thus D(W) = J{W)V. If D{ and D2 are derivations, 
then [Dj, D2] is the derivation DXD2 - D2DX . 

There is a bijection Exp:Jî?(GAn(k)) —> GAn(k) given by 
Exp(D)(h) = eD{h) = h+D(h) + {±)D2(h) + - - . The inverse of this 
bijection is given by log(/) = ( ƒ - ƒ ) - ( x

2){f-lf + (\){f-lf •• • . 
For the case « = 1, the Lie algebra of G is 

&{G) = {(dxx
q+l + • • • + ^ . J C ^ 1 + • • • )-^:diek}. 

It is slightly tedious but straightforward to show that G is the 
image of 2f{G) under the Exp map. For the general case, define 

L c Jîf(GAn(k)) to be all the derivations represented by vectors 
of the form dxUx-\ hd-U.-] . There is a natural surjection 
P:5?{G)-+L which sends (dxx

q+x + - • . + rf.jc^+1 + .. -)(d/dx) to 
the derivation represented by the vector (dxUx-\ YdJJ^— ). 
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It will follow from the first four steps below that L is a Lie 
subalgebra of &(GAn{k)) and that /? is a Lie algebra homo-
morphism from J?(G) onto L. It will then be observed that 
Expo/? = a o Exp: J ? ( ( J ) —• H and thus H is the image of L 
under the Exp map. In other words, the following diagram is com­
mutative: 

&(G) - ^ - > G 

v 
Since L is a Lie subalgebra and /? is a Lie algebra homomor­
phism, it follows that H is a subgroup of GAn(k) and that a is 
a group homomorphism. 

Step 1: Uj = (l/Ud + l))J(Uj)X = (l/(q + l)j)J(U{)
jX. The 

first equality is Euler's formula and the second equality follows 
from the equations J(UX) = N and ƒ(£/.) = ((ytf+l)/(#+l);')7V7'. 

Step 2: ƒ (C/.)C/. = ((/<? + l) /(«+ 1)i)J(Ul)
i(l/(q+ \)j)J{Ux)

jX 

= {(iq + \)/(q + l)/+7V(t/1),,+-/A' = {iq + l)t/ / + i . These equations 
follow from Step 1. 

Step 3: Let Es = uXs(d/dxx) + • • • + uns(d/dxn), i.e., Es is 
the derivation represented by Us. Then [E., Ej\ is represented 
by JiUjW-JiUJUj = Uq+\)Ui+j-{iq+\)Ui+j = ( J - I ) * ^ . 
Thus [E, ,£,•] = 0' - i)qEi+j . Since any £ G L can be written as 
E = dxEx + d2E2 H , it follows that L is a Lie subalgebra. 

Step 4: /? is a Lie algebra homomorphism. First apply Step 
3 to the case n = 1 and £/. = JC''*+1 . Let Z>5 = x5*+1(d/d;c). 
Then by Step 3, [/),., Dy] = (j - i)qDi+j . Now fi(Ds) = Es and 
so fi([Di9Dj]) = P{{j - i)qDi+j) = (7 - i ) ^ . = [E(9Ej] = 
[£(/),.), £(£,•)]• Now any D e £?{G) can be written as D = 
djDj + d2Z)2 H . Thus /? is a Lie algebra homomorphism. 

Step 5: a o Exp = Expo/?:^(G) -> GAn(k). This is somewhat 
tedious to prove, but intuitively obvious, because the formula in 
Step 2 does not depend upon n . 

Step 6: H = Exp(L) because H = a(G) = a(Exp(& (G))) = 
Exp(^(a2

?(G))) = Exp(L). Thus H is a group and L is the Lie 
algebra of H, L = &(H). Furthermore, since 0:&(G) -> &(H) 
is a Lie algebra homomorphism, a:G -+ H is a group homomor-
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phism. (See [Bo, Chapter 2], [P, Section 9].) This completes the 
proof. 

Final note. In the hypothesis of the main theorem, Nl is exact for 
all i > 1. It suffices to assume only that N and TV2 are exact, as 
shown by the following theorem. 

Theorem. Suppose M is an n x n matrix over k[n] and M and 
M2 are exact. Then for each i > 1, Ml is exact. Furthermore, if 
M is invertible, then for each integer i, Ml is exact. 

This is a special case of a general theory of closed, exact, and 
coexact matrices (see [CZ]). 
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