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THE JUMP IS DEFINABLE IN THE STRUCTURE 
OF THE DEGREES OF UNSOLVABILITY 

S. BARRY COOPER 

Recursion theory deals with computability on the natural num­
bers. A function ƒ from N to N is computable (or recursive) 
if it can be calculated by some program on a Turing machine, 
or equivalently on any other general purpose computer. A major 
topic of interest, introduced in Post [23], is the notion of relative 
difficulty of computation. A function ƒ is computable relative to 
a function g if after equipping the machine with a black box sub­
routine that provides the values of g, there is a program (which 
now may call g via the subroutine) which computes ƒ . In this 
case we write ƒ <T g. Two functions are Turing equivalent if 
each is computable relative to the other; the equivalence classes 
are called Turing degrees. These degrees form a partial ordering 
3 under the induced reducibility relation < . The structural anal­
ysis of the partial ordering 3 has been a major area of research 
in recursion theory since the pioneering paper of Kleene and Post 
[14]. 

Kleene and Post proved a number of results on the structure 
of 3 including the embeddability of arbitrary countable partial 
orders into 3 , and obtained partial results on extendability of 
a given embedding to a larger domain. This line of investigation 
was pursued by many people over the next twenty-five years, cul­
minating in essentially complete solutions of these problems, and 
a characterization of the possible ideals of the structure 3 (see 
Lachlan and Lebeuf [16] and Lerman [17], [18]). 

Kleene and Post also considered the enriched structure 31 

equipped with the "jump operator", denoted ' , which is a canon­
ical operation on degrees which takes each degree d to a strictly 
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larger degree d'. The importance of the jump d' of a degree 
d derives from its definition as the largest degree containing sets 
which are effectively enumerable using an oracle chosen from d 
(where we locate the degree of a set via the identification of sets 
with their characteristic functions). More generally, Post's theo­
rem [23] (that X eA^+l^> X <T A{n)) relates the quantifier forms 
of many naturally occurring sets of numbers to the ascending se­
quence 0 < 0' < 0" < < 0(n+1) = (0(n))' < (0 being the 
degree of the recursive sets). Because of this connection, this jump-
derived sequence plays an essential role in calculating bounds on 
complexity as in bounds for embedding problems in Kleene-Post 
[14] onwards. 

The past twelve years or so have produced major progress on 
more global questions about both 3 and 3' concerning automor­
phisms and definability in these structures. Jockusch and Simpson 
[12] provided the first major definability results (defining many 
natural classes of degrees in 3') so initiating a string of successes 
in this area (amongst others [7, 9, 19, 20, 29-31]). Most of these 
definability results have built on earlier work of a number of peo­
ple on embeddings as initial segments of the degrees and codings 
into the degrees (for example [13, 16, 17, 24]), although the sim­
pler coding technique of Slaman and Woodin [33] suffices to prove 
all previously known global results concerning automorphisms and 
definability for 3 (see section V.7 of [21]). A new element was 
provided by Jockusch and Shore [10, 11] who used their own no­
tion of pseudo jump in a very productive way to obtain a number 
of results, including the definability in 3 of the set of arithmetical 
degrees (those degrees below 0(w) some n > 0). Unremitting re­
finement of such techniques (particularly coding techniques) have 
culminated [26] in the first-order definability of 0(3) in 3(< 0') 
and [28] in the definability of all jump classes Highw , Lown of 
degrees < 0' in 3(< 0') for each n > 3 . 

The most fundamental definability problem was raised by 
Kleene and Post themselves when they speculated about the pos­
sibility that the jump operator is intrinsically determined by the 
structure 3 . Our main result answers this question: The jump 
operator is definable in terms of the partial ordering 3 ; and, in 
fact, so is the notion of "recursively enumerable in". This result 
immediately allows one to improve many previous theorems on 
automorphisms, homogeneity, and more general definability ques-
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tions, some of which we list below. 
Our solution to this problem lies largely outside of the line of 

development which started with the Jockusch and Simpson paper 
(coding plays no part) but does use elements of the Jockusch and 
Shore n-REA operator machinery, and in general outline follows 
the plan for the definability of the degrees of the arithmetic sets in 
[11]. The main ingredient in this global result is a theorem of lo­
cal degree theory which is in direct descent from the Lachlan [15] 
monster construction (as refined and re-presented by Harrington, 
Slaman, Soare and others). It also benefits from the steady devel­
opment over the years (recently see for example [2, 4, 27, 32]) of 
the techniques of A2-degree theory, and the recent renewed inter­
est in the d-r.e. degrees (see [1,5 and 6]). [18, 21 and 34] provide 
further information on these topics. 

Definition. A set D is d-recursively enumerable (d-r.e.) if and 
only if D = A- B , some r.e. A, B . d is d-r.e. if and only if it 
contains a d-r.e. set D. 

Definition, d is unsplittable over a avoiding b if and only if 
a, b < d, b ^ a, and for every d0, dj < d, if a < d0, d{ then 
either b < d0 or d{, or d / d0 U d{. We say d is relatively un­
splittable if and only if d is unsplittable over a avoiding b some 
a , b . 

Theorem 1. There exists a relatively unsplittable of-r.e. degree. 

Corollary 1. There is a cone of relatively unsplittable degrees with 
base degree 0". 
Proof. Relativising the proof of the theorem to a given set B, we 
can obtain a 2-REA operator J such that J(B) = B © 
(Wr

B - Wr
B) for appropriate cn, c\ , and deg(/(5)) is unsplit-

table over a degree a > deg(l?). We can then apply Theorem 
2.3 of [11] as in Corollary 2.4 of the same paper to obtain the 
result. • 

Corollary 2. 0' is definable in the degrees as the largest degree 
satisfying 

-i(3a, b)(x u a is unsplittable over a avoiding b). 
Proof. For each r.e. x and each a, xUa is r.e. in a, so if xUa > b 
and b ^ a the relativised Sacks splitting theorem (see p. 124 of 
[34]) gives us a splitting of xUa over a avoiding b . On the other 
hand, applying Posner/Robinson cupping [22], essentially in the 
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form presented by Jockusch and Shore in Theorem 3.2 of [11], 
for each D >T O " © ! with X £T 0 ' we can find an A such 
that X ® A =T D =T J (A), where J is the 2-REA operator of 
Corollary 1. The corollary follows immediately. • 

We now get, answering the question first posed by Kleene and 
Post: 

Corollary 3. The Turing jump is definable in the structure of the 
degrees of unsolvability. 

Proof. Relativising Corollary 2, a' is definable in 3(> a) . • 

Since we can now define all the degrees (r ' , n e co, and the 
set of degrees below 0', we immediately get the following, com­
plementing Shore [28]: 

Corollary 4. All the jump classes Highrt and Lowrt, n > 0, are 
definable in 3 . • 

Of course all other classes definable in terms of the jump (with­
out parameters) are now definable in 3 , including those of the 
generalized high and low hierarchies. The set of arithmetical de­
grees (defined in 3 by Jockusch and Shore in [11]) is now triv­
ially definable as the least jump ideal (using Spector's exact pair 
theorem). The problem of completely characterizing the definable 
jump classes of the form {x|x' = c} , c an arithmetical degree 
> 0' , remains open (however see footnote 3 below). 

Corollary 3 also provides alternative proofs of results concern­
ing 3 where a significantly different proof of the analagous result 
for 3' exists. For example Feiner's solution [8] of the strong 
homogeneity problem (or the Yates proof [35] presented in Ler-
man [18]) now gives a solution to the homogeneity problem (as 
originally stated in Rogers [25]). 

We can also improve results concerning 3 where stronger ver­
sions for 3' are already available. For example: 

Corollary 5. If f is an automorphism of 3 then ƒ (a) = a for all 
a > 0 (3). 

Proof. Richter [24] showed that each jump preserving automor­
phism of the degrees fixes all a > 0 (3 ). • 

Although the join theorem is not known for arbitrary REA operators, we can 
apply the special cupping derivable for operators of the particular form got from 
H-r.e. operators. We are grateful to C. G. Jockusch and R. A. Shore for providing 
us with helpful technical comments concerning this. 
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Corollary 6.3 If 2 = &{> b) then b(3) = 0(3). 

Proof. Use Theorem 4.4 of [26]. • 

To prove the theorem, we construct a d-r.e. set D and sets 
A, B <T D satisfying the requirements: 

Qk-D = Vk{<t>D
k,K)^B = Tk{<t>l,A)VB = Kk{<S>D

k,A), 

where (0^ , *Ffc, O^, Ofe) is some standard listing of the quadru­
ples of p.r. functionals and Tk, Ak are p.r. functional to be 
constructed. We also have an overall constraint that A = Q , 
B = Q.D, Q,, £2 to be defined during the construction. 

The basic module for a pair P, g of requirements (dropping 
the subscripts) is reminiscent of Lachlan's nonsplitting theorem. 
Roughly speaking, as in the monster, we monitor l(D, ^ ( O ^ , <&D)) 
and try first to implement the T-strategy, using Harrington's "capri­
cious destruction" to try to produce a situation where we can 
satisfy B(x) ^ 9A(x), say, by changing B(x) and restraining 
A\0{x). And then failing this using "honestification" to try and 
produce a O^-permission via T for x \ B without an A\6(x) 
change (using the equation D = ^ ( O ^ , $ D ) ) . And finally, switch­
ing to the A-strategy when all else fails, the A-strategy mirroring 
the T-strategy but working within the more favorable framework 
provided by the failure of the T-strategy. However, the fact that 
we are dealing with 0 , O which are not r.e. and over which 
we have only limited control, means we must take special care in 
producing the O D - or OD-permissions (using extended honestifica­
tion and the facility for making D- and ^-changes independently 
of B), and must be prepared to use the af-r.e.ness of D to save 
our T- or A-strategies when conflict between lower priority P-
requirements results in such permissions disappearing. We will 
be able to live with O D or ÔD volatility, except when it reaches 
a point at which it results in a breakdown in D = ^ ( O ^ , <&D) 
in which case Q is satisfied. The framework for reconciling the 
demands of the strategies for different pairs of requirements is 
similar to that of [3]. • 

In a similar vein to Corollaries 5 and 6, Odifreddi points out that every 
relation on degrees above (r ' is definable in 2 if and only if it is definable in 
second-order arithmetic. Consequently (as Jockusch and Shore observe) if c > 0^3) 

is arithmetic then, using the definability of the jump, {x|x' = c} is definable. 
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Theorem 2. If d < 0' is not r. e., there exist a, b < 0' such that 
a U d is unsplittable over a avoiding b . 

Corollary 7. The recursively enumerable degrees are definable in 
3f{< 0'), and hence in 3 . 
Proof. If d < 0' , d is r.e. <-• (Va, b < 0') (a U d is not unsplit­
table over a avoiding b). Since 0' is definable in 3 , the result 
follows. • 

Corollary 8. The relation " d is b- REA " is definable in 3 . 
Proof, d is b-REA «-> d e [b, b'] and (Va, c e [b, b']) (aUd is 
not unsplittable over a avoiding c). Since the jump is definable 
in the degrees, the result follows. • 

The requirements for Theorem 2 take the form: 

Pk:B^efv (3A* co-r.e.)(^* =T D), 

ö,:^=^(o^D)-5=^,(o^^^)v5=A,(ö^^^), 
where D is now given and we have an overall constraint B = 

a4-0. 
There are many elements of the earlier proof in the construc­

tion for Theorem 2, but D now leads with changes rather than 
us having control over them. We lean heavily on the A* =T D 
pseudo-outcome, using Oj£,Z), &f,D and A in producing "posi­
tive" yl-traces for elements of B which involve extractions from 
A* in signalling J5-changes. • 

We notice that with some care in how we define A in the case 
D is d-r.e. we can obtain Theorem 1 as a special case of Theorem 
2. 
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