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GORENSTEIN LOCAL HOMOMORPHISMS 

LUCHEZAR L. AVRAMOV AND HANS-BJ0RN FOXBY 

I N T R O D U C T I O N 

A Noetherian local ring is the algebraic version of a ring of germs 
of functions defined in neighborhoods of some point of an alge­
braic (or analytic) variety. Accordingly, local rings are naturally 
classified by the complexity of the singularity they describe, with 
the simplest class consisting of the regular rings, which correspond 
to nonsingular points. On the singular side a natural boundary is 
provided by the Cohen-Macaulay rings: beyond them pathological 
(that is, geometrically unpredictable) behavior becomes a common 
phenomenon. 

During the last three decades much of the work in commutative 
algebra has concentrated on rings whose singularities interpolate 
between these two extremes. One of the most important develop­
ments early in that period was the discovery of the intermediate 
class of Gorenstein rings by Bass and Grothendieck. These authors 
demonstrated that Gorenstein rings provide a perfect framework 
for the investigation of duality phenomena, and this is the main 
reason behind their ubiquitous appearance in commutative algebra 
and algebraic geometry. They also noted that among the Goren­
stein singularities one finds all local complete intersections, which 
describe points of transversal intersection of hypersurfaces. 

The purpose of this note is to introduce some of the results of 
[2], where a relative theory of Gorenstein singularities is systemat­
ically developed. There are several aspects to our approach. First, 
it gives a unified treatment of hitherto unrelated relative Goren­
stein notions, such as that of flat homomorphisms whose fibres are 
Gorenstein rings (Grothendieck), and surjective homomorphisms 
whose kernels are generated by regular sequences, or more gener­
ally, are Gorenstein ideals (Buchsbaum and Eisenbud). Next, it 
contains the theory of Gorenstein rings as the absolute case, that 
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is, when one only considers homomorphisms from the ring of ra­
tional integers. Furthermore, it uncovers unsuspected properties 
of a large class of homomorphisms of Noetherian rings. Finally, 
it completes a step in a general program of extending the study of 
the different types of singularities referred to above from rings to 
their homomorphisms. 

1. BASS SERIES OF LOCAL DG RINGS 

The first step in our study of local Gorenstein homomorphisms 
consists in extending the definition of Bass numbers from mod­
ules over local rings to DG ( = differential graded) modules over 
local DG rings. We only consider DG rings which are (strictly 
skew) commutative and concentrated in nonnegative degrees, but 
make no a priori restrictions on the DG modules. A DG ring i? is 
called local, if H0(R) is a Noetherian local ring, and H.(R) is a 
finitely generated i/0(i?)-module for ƒ e Z . We set fdi? = sup{/ e 
Z\Ht(R) ^ 0} . There is a canonical augmentation eR: R -» 
HQ(R) -• 4 making the residue field 4 of HQ(R) a DG i?-
module. If M is any DG i?-module, we write fil

R{M) = 
dim^ Exil

R(4, M), as in the classical situation, but the Ext's are 
constructed—in the manner of Eilenberg and Moore—by use of 
appropriate resolutions in the DG category: for more details cf. 
[4]. We say that the Bass series I%(t) is defined, if fil

R(M) is 
finite for i G Z , and fil

R(M) = 0 for i < 0. When this holds 
then IR{t) = 52ieZH>l

R(M)tl is a formal Laurent series; we set 
4 = 4(i?) and IR(t) = I*(ty 

If it is a local DG ring, R denotes the result of adjoining to 
R exterior variables which kill a minimal set of generators of the 
maximal ideal of H0(R) (the cardinality of such a set is denoted 
DGedimi?). If R is a local ring, then i? is a usual Koszul com­
plex. 

1.1. Proposition. Let R be a local DG ring, such that fdi? < 
oo. Then R is a local DG ring, fd R < fdi? + DGedimi?, IR{t) 
and I~(t) both are defined, and are linked by the equality: IR(t) = 

I~(t)tDGe6imR. G 

By Bass [5], a local ring i? is Gorenstein if and only if jul
R = 0 

for i ^ depth i? and pi^pthR — 1. Now we extend the Goren­
stein concept to the DG context: a local DG ring i? is called 
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Gorenstein if fdi? < oo and IR(t) = t for some d e Z . As for 
rings, equivalent descriptions abound. Some of them are similar 
to characterizations of the "Gorenstein spaces" of [6]. 

1.2. Theorem. Let R be a local DG ring with fd i?<oo. The fol­
lowing conditions are equivalent (i) R is Gorenstein', (ii) IR(t) = 

t~fdR; (iii) IR(t) is a Laurent polynomial', (iv) H(R) isaPoin-
caré duality graded 4-algebra. D 

It is well known that I^{t) is defined when R is a local ring 
and M is a complex of i?-modules with H(M) bounded above 
and Ht{M) finitely generated over R for i e Z , cf. [9, 7]. How­
ever, even if one is mainly interested in (complexes of) modules 
over local rings, local DG rings enter the picture as soon as one 
considers change-of-rings situations. For the rest of the note we 
consider a local homomorphism (p\ (R, m, / ) —• (S, n, / ) . The 
(scheme-theoretic) fibre of q> is then the local ring S/mS, but this 
yields no information of the homology of the i?-module S. In or­
der to take it into account, a fibre was constructed in [1] which— 
unless cp is flat—is no more a local ring, but a local DG ring 
F(cp) —• / . It is defined uniquely up to homology isomorphism 
of augmented DG rings. By the general properties of the DG Ext 
functor, the vector spaces ExtL df, F(ç)) are defined uniquely 

up to isomorphism. Furthermore, Ht{F((p)) = Torf ( / , S), hence 
fdF(tp) = fd^ S ,the flat dimension of S viewed as an i?-module. 
Much of our work is based on the following result: 

1.3. Theorem [4]. Let ç be a local homomorphism such that 
îâR S < oo, and let M be a complex of R-modules with H{M) 
bounded above. If S ® M denotes the derived tensor product of 

= R 

complexes of R-modules, ( cf. [9,7] ) then there is an isomorphism 
of graded f-vector spaces: 

Ext s ( / , 5 ® M)^ Ex\R(/, M) 0 / ExtF( } ( / , F{<p)). 

5® M 
In particular IS

 = R (t) is defined precisely when IR(t) is, and then 
s® M M 

they are linked by the equality I =* (t) = IR (t)IF, At). D 

2. LOCAL HOMOMORPHISMS 

A local homomorphism cp is said to be Gorenstein if fd^ S is 
finite, and there is an integer d, such that jxl

R = ^ for i e Z . 
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(One sees that then necessarily d = depths - depthR.) First 
we compare our notion of Gorenstein homomorphism with earlier 
ones, whenever these may be defined. 

2.1. Proposition, (a) If cp is flat, then cp is Gorenstein if and only 
if S/mS is a Gorenstein ring, (b) If cp is surjective and pd^ S < 
oo, then cp is Gorenstein if and only if Ker (p is a Gorenstein ideal 
(c) If (p is the structure homomorphism Z,p) —• S, p = c h a r / , 
then cp is Gorenstein if and only if S is a Gorenstein ring. 

Sketch of proof. (a) When cp is flat, the claim follows from the 
equality of formal Laurent series Is{t) = Iji(t)Is/mS(t), which is 
proved in [8] (this is a particular case of (1.3): set M = R and 
note that if (p is flat, there is a homology isomorphism F(cp) —• 
S/mS). (b) If Ker cp is a Gorenstein ideal, then the standard 
change of rings spectral sequence 1E

M = Extp
s(4, Extg

R(S, R)) => 
Extp

R
q(4,R) degenerates into isomorphisms Extp

s(4, S) = 
ExXp

R
8{4, R), g = grade^ S. For the converse one uses the fact 

that H(F(<p)) = Tor (4, S) has Poincaré duality, cf. 1.2, in or­
der to show that the minimal free resolution of the i?-module S 
is self-dual, (c) is clear, since Z ( , has finite global dimension. D 

Next we comment on the ubiquity of Gorenstein homomor-
phisms. 

2.2. Theorem. Let cp\ R —• S be a local homomorphism, such 
that fdR S < oo. The following conditions are then equivalent (i) 
cp is Gorenstein', (ii) the local DG ring F{(p) is Gorenstein; (iii) 
jul

R(M) = ju£ (S<g)RM) for all i, some d and some flat R-module 
with ExtR(4,M)^0; (iv) ju^pthR(M) = 4 + d e p t h 5 (5 ® M) 

R 

for all i and each complex of R-modules M, such that H(M) 
is bounded above; (v) ids(S ® M) < oo for each homologically 

= R 

bounded complex of R-modules M, with idRM < oo and Ht(M) 
finitely generated for all i ; (vi) id J S ® M) < oo for some com-

= R 

plex M of R-modules, such that ExtR(4, M) =£ 0. G 
Gorenstein local homomorphisms form a remarkably rigid class: 

2.3. Proposition, (a) (p is Gorenstein if and only if (p\ R-^S is 
Gorenstein. (b) If y/: Q —• R and cp: i? —• S are local homomor­
phisms with fdg R < oo and îdR S < oo, then (p y/ is Gorenstein 
if and only if cp and y/ are. 
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Proof, (a) follows from the standard: fd^*S = fd^S, IR(t) = 
I~(t), and Is(t) = I^(t). (b) is implied by the double inequalities 
^H-depthQ < ẑ+depthji < ^depth5? . e z w h i c h ^ immediate 

from (1.3). D 

Gorenstein homomorphisms appear in a natural way when one 
looks for conditions under which a map of rings transfers the 
Gorenstein property between them. Thus we can complete some 
results from [3]. 

2.4. Theorem. For a local homomorphism (p:R-*S the follow­
ing conditions are equivalent (i) R is a Gorenstein and (p is 
Gorenstein. (ii) S Gorenstein and fd^ S < oo ; (iii) S is Goren­
stein and id^ S < oo. 
Sketch of proof. That (ii) => (i) follows readily from (1.3). For 
(i) => (iii) one uses (1.3) to see that S is a Gorenstein ring, and 
concludes that id^ S < oo by the equivalence of the finiteness of 
the flat or injective dimension over the Gorenstein ring R. For 
(iii) => (ii) consider M = Hom^(*S, E) where E is the injective 
envelope of the J?-module 4 . One proves that ToxR(/ê, M) ^ 0, 
fd^ M < oo, and id^ M < oo : It follows from [7] that R is 
Gorenstein, hence fd^ S < oo as above. D 

3. DUALIZING COMPLEXES 

For our purpose, a (normalized) dualizing complex is a homo-
logically bounded complex of i?-modules D, with finitely gener­
ated homology, and such that I%(t) = tn for some n e Z (for 
n = dim R). The behavior of dualizing complexes under exten­
sion of scalars is an important and delicate question, which we 
now address. Part of our results needs mild technical restrictions. 
We say cp satisfies a standard condition if one of the following 
holds: (a) cp is flat; (b) cp is essentially of finite type; (c) / —• / 
is a separable field extension; (d) R is equicharacteristic. 

3.1. Theorem. Let D be a complex of R-modules such that H(D) 
is bounded above and Ht(D) is finitely generated for i e Z. The 
following are then equivalent ( if (p satisfies a standard condition ) : 
(i) D is a (normalized) dualizing complex of R and cp is Goren­
stein; (ii) 5(8) D is a (normalized) dualizing complex of S and 

= R 
f d^ S < oo. 
Proof. The equivalence of the unbracketed statements is derived 
directly from (1.3) and from the corresponding definitions. From 
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(1.3) one also gets the equality DGdepth^.5 ® D - depth S = 
DG depth^ D- depth R, where DG depth^ M denotes the order of 
Ifl(t). Noting that D is normalized if and only if DGdepth^Z)-
dim R = 0, apply the next result. D 

3.2. Theorem, (a) If cp is Gorenstein, then dimi? - depth R > 
dim S - depths, (b) If fdRS < oo and <p satisfies a standard 
condition, then dim R - depth R < dim S - depth S. D 

The last theorem implies, in particular, that if cp is Gorenstein, 
then S is Cohen-Macaulay if and (under a special condition) only 
if R is: Compare (2.4) for the Gorenstein property. Finally, we 
note for Gorenstein homomorphisms the following localization 
property, whose proof heavily depends on dualizing complexes, 
and on (3.1) and (2.3) above. 

3.3. Theorem. Assume that the formalfibres of R are Gorenstein. 
If <p is a Gorenstein homomorphism, then for each prime ideal q 
of S the induced homomorphism R nR —• 5q is Gorenstein, and 
the formal fibres of S are Gorenstein. D 
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