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The original meaning of diophantine problems is to find all so­
lutions of equations in integers or rational numbers, and to give a 
bound for these solutions. One may expand the domain of coef­
ficients and solutions to include algebraic integers, algebraic num­
bers, polynomials, rational functions, or algebraic functions. In 
the case of polynomial solutions, one tries to bound their degrees. 
Inequalities concerning the size of solutions of diophantine prob­
lems are called diophantine inequalities. 

During the past few years, new insights have been gained in old 
problems combined with new ones, and great coherence has been 
achieved in understanding a number of diophantine inequalities. 
Some of these results, notably the first section, can be formulated 
in very simple terms, almost at the level of high school algebra. 
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I shall give a survey starting with these formulations, and ending 
with more sophisticated applications to elliptic curves. But I have 
made an attempt to have this article readable by a fairly broad 
audience by giving basic definitions, and limiting myself to the 
rational numbers whenever possible. 

1. The abc conjecture. This conjecture evolved from the insights 
of Mason [Ma], Frey [Fr], Szpiro, and others. Mason started one 
recent trend of thoughts by discovering an entirely new relation 
among polynomials, in a very original work, as follows. Let f(t) 
be a polynomial with coefficients in an algebraically closed field of 
characteristic 0. We define 

n0(f) = number of distinct zeros of ƒ . 

Thus nQ(f) counts the zeros of ƒ by giving each of them multi­
plicity one. 

Mason's theorem. Let a(t), b(t), c(t) be relatively prime polyno­
mials such that a + b = c. Then 

maxdeg{<z, b, c} ^ nQ(abc) - 1. 

In the statement of Mason's theorem, observe that it does not 
matter whether we assume a, b, c relatively prime in pairs, or 
without common prime factor for a, b, c. These two possible 
assumptions are equivalent by the equation a + b = c. Also the 
statement is symmetric in a, b, c and we could have rewritten 
the equation in the form a + b + c = 0. 

Mason's theorem is a theorem, not a conjecture, and can be 
proved as follows. Dividing by c, and letting ƒ = a/c, g = b/c, 
we have 

ƒ + < ? = ! 
where ƒ, g are rational functions. Differentiating we get 
which we rewrite as 

so that 
b = g^ f If 
a f g'I g ' 

If J? is a rational function, R{t) = \[{t - p^f' with qteZ, then 

R>/R = Y_?L-
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and the multiplicities disappear. Suppose 

a(t) = n ( ' - " / ) m ' > b{t) = Uit-PjP , c(t) = U(t-yJk. 

Then 
b_ = //ƒ = El^-Eiz^ 

8/8 2^ ?-£ ~ 2^ t-yk 

A common denominator for f j ƒ and g'/S" *s g i y e n by the prod­
uct 

tfo = I I ( ' - a i > I I ( ' - ^ ) I I ( ' - 7 * ) ' 
whose degree is n0(abc). Observe that N0//f and N0g'/g are 
both polynomials of degrees at most n0(abc) - 1. From the rela­
tion 

Û #0*7* 
and the fact that a, b are assumed relatively prime we deduce the 
inequality in Mason's theorem. 

As an application let us prove Fermat's theorem for polyno­
mials. Thus let x(t), y(t), z(t) be relatively prime polynomials 
such that one of them has degree ^ 1, and such that 

x(t)n+y(t)n = z(t)\ 

We want to prove that n ^ 2 . By Mason's theorem, we get 

degjt(0" ^ degx(f) + deg}/(0 + degz(r) - 1 

and similarly replacing x by y and z on the left-hand side. 
Adding, we find 

n(degx + degy + degz) < 3(degx-fdegy H-degz) - 3. 

This yields a contradiction if n ^ 3 . 
Influenced by Mason's theorem, and considerations of Szpiro 

and Frey which we shall describe below, Masser and Oesterle for­
mulated the abc conjecture for integers as follows. Let A: be a 
non-zero integer. Define the radical of k to be 

P\k 

i.e. the product of the distinct primes dividing k. There is a 
classical analogy between polynomials and integers. Under that 
analogy, nQ of a polynomial corresponds to log NQ of an integer. 
Thus for polynomials we had an inequality formulated additively, 



40 SERGE LANG 

whereas for integers we formulate the corresponding inequality 
multiplicatively. Note that if x, y are nonzero integers, then 

N0(xy)<N0(x)N0(y), 

and if x, y are relatively prime, then 

N0(xy) = N0(x)N0(y). 

The abc conjecture. Given e > 0 there exists a 
number C(e) having the following property. For 
any nonzero relatively prime integers a, b, c such 
that a + b = c we have 

max(|a|, \b\, \c\) ^ C{e)N0{abc)l+e. 

Unlike the polynomial case, it is necessary to have the e in 
the formulation of the conjecture, and the constant C(e) on the 
right-hand side. To simplify notation in dealing with the possible 
presence of such constants, if A, B are positive functions, we 
write 

to mean that there exists a constant C > 0 such that A ^ CB. 
Thus A < B means that A = 0(B) in the big oh notation. We 
write 

to mean A = O(B) and B = 0(A). In case the functions A, B 
depend on a parameter e, the constant C also depends on e. 

The conjecture implies that many prime factors of abc occur 
to the first power, and that if some primes occur to high powers, 
then they have to be compensated by "large" primes, or many 
primes, occurring to the first power. Readers interested in seeing 
immediately the application to the Fermât problem and similar 
problems should skip the following remarks, having to do with the 
equation 2n ± 1 = k. For n large, the abc conjecture would 
state that k is divisible by large primes to the first power or many 
primes to the first power. This phenomenon can be seen on the 
tables of [BLSTW]. The simplest examples showing the need for 
the constant C(e) in the abc conjecture were communicated to 
me by Wojtek Jastrzebowski and Dan Spielman as follows. We 
want to show that there is no constant C > 0 such that 

max(|a|, |&|, \c\) <: CNQ(abc). 
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Writing 3 = 1 + 2, we find by induction that 

2"|(32 W-1). 

We consider the relations an + bn= cn given by 
2" 

3 - 1 = c . 
n 

Then 

so there is no constant C such that cn ^ 3CN0(cn). Other ex­
amples can be constructed similarly since the role of 3 and 2 can 
be played by other integers: instead of 2 we use a prime p, and 
instead of 3 we use an integer = 1 mod p . 

In line with these examples, we now show that the abc conjec­
ture implies a classical conjecture: 

There are infinitely many primes p such that 

2p~l ï 1 mod/?2. 

We follow Silverman [Si]. First a remark. Let S be the set of 
primes such that 

2P~ ^ 1 mod p . 

We claim that if n is a positive integer, and p is a prime such 
that 2n = 1 mod p but 2n ^ 1 mod p2, then p is in S. Indeed, 
let d be the period of 2 in the multiplicative group (Z/pZ)* of 
units in Z/pZ, which has order p - 1. Then d divides p - 1 and 
also divides n. Furthermore 2n = 1 mod p but 2n ^ 1 mod p2 

implies 2 ^ 1 mod p2 . Hence 2p~l ^ 1 mod p2, as one sees by 
writing p - 1 = dm, with m prime to /?, and 2 —\-\-pk with 
/: prime to /?. Then 

2P~ = 1 +pmk ^ 1 modp , 

so /? is in 5 as claimed. 
Now suppose that 5 is finite. Write 

2" " ! = W 
where ww is the product of primes in S, and all primes dividing 
vn are not in S. Then un is bounded. If p\vn then by the claim, 
p2 divides 2n - 1, so p2 divides vn. By the abc conjecture 
applied to the equation 

( 2 " - l ) + l =2n 

file://�/-/-pk
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we conclude that 
_ / 1/2, l+e ^ (l+£)/2 

UnVn « («W ) < *>i 
whence vw is bounded, a contradiction. 

Actually, in line with Lang-Trotter conjectures, the probability 
that 2p~l = 1 + pk(modp2) with a fixed residue class k modp 
should be 0(1//?), so the number of primes p ^ x such that 
2p~l = 1 mod p 2 should be 

O(loglogx). 

Thus most primes should have the property that 2P~ ^ 1 mod p . 
We now pass to the application of the abc conjecture to var­

ious diophantine equations. In the case of polynomials, we got 
an explicit bound for the degree of Fermat's equation satisfied by 
polynomials which are not all constant. Since there is an unknown 
constant C(e) floating around in the abc conjecture, we shall get 
only an unknown bound for the classical case of Fermat's equation 
over the integers. Thus we define the asymptotic Fermât problem 
to state that there exists an integer nx such that for all n^nx the 
equation 

n , n n 

x + y = z 
has only a trivial solution in integers, that is with one of x, y, z 
equal to 0. Of course, for the asymptotic Fermât problem as well 
as the ordinary one, we may and do assume that x, y, z are rel­
atively prime. 

The abc conjecture implies the asymptotic Fermât problem. 

Indeed, suppose xn + yn = zn with x, y, z relatively prime. 
By the abc conjecture, we have 

\x I < \xyz\ 

\y I < \xyA 

Taking the product yields 

z | < \xyz\ . 

\xyz\n < \xyz\ + e , 

whence for \xyz\ > 1 we get n bounded. The extent to which the 
abc conjecture is proved with an explicit constant C(e) (or say 
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C(l) to fix ideas) yields the corresponding explicit determination 
of the bound for n in the application. 

We shall now see how the abc conjecture implies other conjec­
tures by Hall, Szpiro, and Lang- Waldschmidt, 

Hall's original conjecture is that if u,v are rela­
tively 
then 
tively prime nonzero integers such that u - v ^ 0 

, 3 2, ^ , ,1/2—e 
\U - V I > \U\ 

Note that Hall's conjecture describes how small \u3 - v2\ can be, 
and the answer is not too small, as described by the right-hand 
side. Furthermore, if \u3 - v2\ is small, then \u3\ X v2 so 
M X \u\3^2. The Hall conjecture can also be interpreted as 
giving a bound for integral relatively prime solutions of 

2 3 

v = u + b with integral b. 
Then we find 

| w | < | è | 2 + e . 

More generally, as in Lang-Waldschmidt [La3], p. 212, let us fix 
nonzero integers A, B and let u, v, k, m, n be variable, with 
u, v relatively prime and mn > m + n . Put 

Aum + Bvn = k. 

By the abc conjecture, we get 
,1+e 

\u\m < \uvN0(k)\l 

\v\n < \uvNQ(k)\ 1+e 

If, say, \Aum\ <: \Bvn\ then \u\ < \v\n/m . We substitute this 
estimate for u to get an inequality entirely in terms of v , namely 

We first bring all powers of v to the left-hand side. We have 

n mn - (m + n) 
n- 1 -

m m 
actually the original conjecture does not make the assumption that u, v are 

3 2 

relatively prime, only that u -v ^ 0 . The original conjecture also follows from 
the abc conjecture by extracting a common factor, and using the same method as 
that indicated below. We make the relatively prime assumption to avoid secondary 
technical complications, and we leave the proof in general to the reader. 



44 SERGE LANG 

We let the reader take care of the extra e, so we obtain 

(1) \v\<£N0(k)m(l+e)/{mn-{m+n)) and then also 
\u\ « Aro(fc)»(i+«)/(«».-(«+»)) 

because the situation is symmetric in u and v . Again by the abc 
conjecture, we have 

\k\<£\uvN0(k)\l+e, 

so using the estimate for \uv\ coming from the product of the 
inequalities in ( 1 ) we find 

(2) |*| « Aro(yt)"»'(1^)/('"»-(m+M))_ 

The Hall conjecture concerning u -v = k is a special case of 
(1), after we replace NQ(k) with \k\, because #0(fc) ^ |/c|. 

Again take m = 3 , « = 2 and take 4̂ = 4, B = - 2 7 . In this 
case, we write D instead of k, and we find for 

D = 4u3 - 21v2 

that 

(3) \u\ < N0(D)2+e and \v\ <& N0(D)Ue. 

These inequalities are supposed to hold at first for u, v relatively 
prime. Suppose we allow u, v to have some bounded common 
factor, say d. Write 

u - ud and v = t /d 

with i / , v relatively prime. Then 

D = 4d3u3-21d2v'2. 

Now we can apply inequalities (1) with A = 4d and B = -21 d , 
and we find the same inequalities (3), with the constant implicit in 
the sign < depending also on d, or on some fixed bound for such 
a common factor. Under these circumstances, we call inequalities 
(3) the generalized Szpiro conjecture. 

The original Szpiro conjecture was stated for what is called a 
"minimal discriminant" D. We shall discuss the notion of a min­
imal discriminant in §4, when we go further into the theory of 
elliptic curves. Szpiro's inequality was stated in the form 

\D\<£N(D)6+\ 
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where N(D) is a more subtle invariant which is commonly used 
in the literature, namely the conductor. But for our purposes, it 
is sufficient and much easier to use the radical NQ(D), since the 
conductor is harder to define, and its subtleties are irrelevant for 
what we are doing. 

Note that the generalized Szpiro conjecture actually bounds \u\, 
\v\ and not just \D\ itself in terms of the right power of NQ(D). 

The point of D is that it occurs as the discriminant of an elliptic 
curve. The recent trend of thoughts in the direction we are dis­
cussing was started by Frey [Fr], who associated with each solution 
of a + b = c the elliptic curve 

2 

y =x(x-a)(x + b)9 

which we call the Frey curve. The discriminant of the right-hand 
side is the product of the differences of the roots squared, and so 

D = {abc)1. 

We make a translation 

K b - a 
Ç = x + — 

to get rid of the x2-term, so that our equation can be rewritten 

y =t -y2ç-y3> 

where y2, y3 are homogeneous in a, b of appropriate weight. The 
discriminant does not change because the roots of the polynomial 
in Ç are translations of the roots of the polynomial in x . Then 

D = 4yl-21y]. 

The translation with (b - a)/3 introduces a small denominator. 
One may avoid this denominator by using the curve 

y = x(x - 3a)(x + 3b), 

so that y2, y3 then come out to be integers, and one can apply the 
generalized Szpiro conjecture to the discriminant, which then has 
an extra factor 

D = 3\abcf = Ay\-21y\. 

The Szpiro conjecture implies asymptotic Fermât. 

Indeed, suppose that 

a = u , b = v , and c = w 
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with relatively prime u, v, w . Then 

4y2 - 27y3 = 3 (uvw) n, 

and we get a bound on n from the Szpiro conjecture 

|D|«JV0(Z>)6+\ 

Of course any exponent would do, e.g. \D\ < N0(D)m for asymp­
totic Fermât. 

We have already seen that the abc conjecture implies general­
ized Szpiro. 

Conversely, generalized Szpiro implies abc. 

Indeed, the correspondence 

(a,b)+->(y2,yj 

is invertible, and has the "right" weight. A simple algebraic ma­
nipulation left to the reader shows that the generalized Szpiro esti­
mates on y2, y3 imply the desired estimates on \a\, \b\. (I found 
this manipulation a good assignment for my undergraduate algebra 
class.) 

From the equivalence between abc and generalized Szpiro, one 
can use the examples given at the beginning to show that the ep­
silon is needed in the Szpiro conjecture. 

Hall made his conjecture in 1971, actually without the epsilon 
so it had to be adjusted later. The final setting of the proofs in the 
simple abc context which we gave above had to await Mason and 
the abc conjecture a decade later. 

Let us return to the polynomial case and Mason's theorem. The 
proofs that the abc conjecture implies the other conjectures apply 
as well in this case, so the analog use of Hall, Szpiro and Lang-
Waldschmidt are also proved in the polynomial case. Actually, it 
had already been conjectured in [BCHS] that if ƒ , g are non-zero 
polynomials such that f - g2 ^ 0 then 

d e g ( / ( 0 3 - ^ ( 0 2 ) ^ ^ d e g / ( 0 + l . 

This (and its analogue for higher degrees) was proved by Daven­
port [Dav] in 1965, but we now see it as a consequence of Ma­
son's theorem. Both in the case of Hall's conjecture for integers 
and Davenport's theorem, the point is to determine what lower 
bound can occur in a difference between a cube and a square, in 
the simplest case. The result for polynomials is particularly clear 
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since, unlike the case of integers, there is no extraneous undeter­
mined constant C(e) floating around, and there is even +1 on 
the right-hand side. 

The polynomial case as in Davenport and the Hall conjecture 
for integers are of course not independent. Examples in the poly­
nomial case parametrize cases with integers when we substitute 
integers for the variable. Examples are given in [BCHS], one of 
them due to Birch being: 

f(t) = t6 + 4t4+l0t2 + 6 and g(t) = t9+ 6t7+ 2U5+ 35t3+ & t, 

whence 
degree(/(03 - g{tf) = \ deg ƒ + 1. 

This example shows that Davenport's inequality is best possible, 
because the degree attains the lowest possible value permissible 
under his theorem. Substituting large integral values of t = 2 
mod 4 gives examples of similarly low values for x3 - y2. A 
fairly general construction is given by Danilov [Dan]. See also 
the discussion of similar questions relevant to the size of integral 
points on elliptic curves in [La2], for instance Conjecture 5. 

For those who know the theory of function fields in one variable, 
it is clear that the <z&c-property can also be formulated in that 
case, and can also be proved in that case. In fact, historically it 
was done that way as in [Ma3]. However, we are interested in 
algebraic number fields, so we shall now go to the next level of 
exposition and discuss heights of points in number fields. 

So far we have proved the implications and equivalences relating 
three corners of the following diagram. 

Fermât «** - Generalized Szpiro 

Vojta *»» abc 

Our purpose is to fill in the Vojta corner, and show how the con­
jectures follow from the Vojta conjecture. One of the crucial points 
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here is that we cannot stay within the realm of rational numbers, 
we must look at algebraic numbers. It will be seen how diophantine 
properties of a family of curves over the rational numbers depends 
on the diophantine properties of a single curve but uniformly for 
solutions in finite extensions of the rationals of bounded degree. 

We want to estimate how big solutions of diophantine equations 
can be. What does "big" mean? Let x = c/d be a rational number 
expressed in lowest form with relatively prime integers c, d. We 
define the height of x to be 

h(x) = logmax(|c|, \d\). 

Similarly, if P = (x0, . . . , xM) is a point in projective space with 
integer coordinates x- which are relatively prime, then we define 
the height 

h(P) = logmax|x.|. 

The abc conjecture thus bounds the height of the point (a, b, c), 
with relatively prime integers a, b, c which can be seen as repre­
senting a point in projective 2-space. 

The next two sections which carry out the above program are 
independent of the final three sections which give applications of 
the abc conjecture to elliptic curves, via the Szpiro conjecture. 
The reader may therefore read these in any order. 

Remark for those who know or want to find out about modular curves. I don't 
want to discuss modular curves here, I want to confine the discussion to diophan­
tine inequalities. But for those interested, it may be useful to make the following 
comments, for which we assume that the reader will either know the required def­
initions or look them up elsewhere. 

Frey started the recent train of thoughts concerning Fermât and elliptic curves 
by pointing out that the elliptic curve associated with a solution of Fermât would 
have remarkable properties which should contradict the Taniyama-Shimura con­
jecture that all elliptic curves over the rational are "modular" [Fr]. Frey's idea was 
to show that the elliptic curve then could not exist, whence Fermât follows. There 
were serious difficulties in realizing this idea. Serre [Se] pointed out that one needed 
apparently more than the Taniyama-Shimura conjecture, for instance another con­
jecture which he had made, concerning the modularity of Galois representations 
over the rationals. Then Ribet [Ri] proved enough of the Serre conjecture in the 
modular case to show that the Taniyama-Shimura conjecture suffices for the Fer­
mât application. We do not go into this modular aspect here. On the contrary, in 
the present discussion, we are pointing in a different direction, namely the direc­
tion of diophantine analysis and diophantine inequalities. The Szpiro conjecture 
can be viewed as lying just in the middle, and is susceptible of being handled or 
proved in either direction. Thus the abc conjecture has a modular interpretation 
via the generalized Szpiro conjecture to which it is equivalent. I must also point 
out that the modular route to Fermât via Ribet-Serre-Taniyama-Shimura would 
prove Fermât unconditionally. The route via the diophantine inequalities depends 
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2. The height for algebraic points. In this section we discuss alge­
braic numbers, and we describe how to define the height for points 
with algebraic coordinates, which will be used in §3. After that we 
return to the rational numbers, but we shall use p-adic numbers 
also. 

Let F be a number field, i.e. a finite extension of the rational 
numbers Q. Then F has a family of absolute values, p-adic and 
archimedean (at infinity, as one says). We shall now describe these 
absolute values. 

For each prime p there is the p-adic absolute value on Q , de­
fined on a rational number a = prc/d with (c, d) = 1, p \ cd, 
by 

\a\p = l/P-

This /7-adic absolute value has a finite number of extensions to 
F, which are called p-adic also. Let v be one of these, extending 
^ on Q . Let Fv be the completion of F at v . Then Fv is a 
finite extension of the field of p-adic numbers Qp . The absolute 
value on Q^ extends uniquely to Fv . Each v is induced by an 
imbedding of F into the algebraic closure of Qp : 

and v is induced by the absolute value on Q* . Conversely, given 
such an imbedding a : F —• Q^ we let va be the induced absolute 
value. 

The rational numbers also have the ordinary absolute value, ex­
tending to the real numbers, and denoted by v^ . An extension 
of v^ to F is said to be at infinity, and there is a finite number 
of such extension. Let v extend r; to F. Then v is induced 

oo 

by an imbedding 

of F into the complex numbers. Thus the situations at infinity and 
at the ordinary primes are entirely similar. In each case, imbed-
dings of F into Q^ which differ by an isomorphism of Fv over 
Qv give rise to the same absolute value on F, and conversely. In 
the case of absolute values at infinity, a pair of complex conju­
gate imbeddings of F into C corresponds to an extension of the 
ordinary absolute value from Q to F . 

on the constants in the estimates for these inequalities, and will be as effective as 
these constants can be made to be effective. 
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Now consider a point P = (x0, . . . , xn) in projective space Pw , 
with coordinates in F so x- e F and not all Xj = 0. We define 
the height of P by the formula 

h(p) = j ] p 7 Q j S ^ , :QJlogmax|xy|v 

where [F : Q] denotes the degree of the extension, and where 
the sum is taken over all the above described absolute values v 
on F. The Artin-Whaples product formula (sum formula in our 
case) asserts that for a e F, a ^ 0 we have 

5X:Q„]logH, = 0, 
V 

and so the height indeed depends only on the point in projec­
tive space. An elementary property of the absolute values implies 
that the height is independent of the field F in which the coordi­
nates xQ, . . . , xn lie: this is the reason for the normalizing factor 
l/[F : Q] in front of the formula defining the height. 

Note that if F = Q and x0, . . . , xn are relatively prime inte­
gers, then 

h(P) = logmax|.x-|, 

where the absolute value here is the ordinary one on the rational 
numbers. 

We shall need another notion of algebraic number theory. The 
field F has a subring R, the ring of algebraic integers which are 
those elements of F satisfying an equation 

Tn+an_Jn-1 + --- + a0 = 0 

whose coefficients aQ, . . . , an_x lie in the ordinary integers Z . 
This ring R has a basis {wl, . . . , wN} over Z , where N = [F : Q] . 

If aj (7 = 1 , . . . , N) ranges over all imbeddings of F into C, 
then the logarithmic discriminant d(F) is defined by 

d(F)=^±Q] log| d e t a i l 2 

= log | discriminant of F over Q|. 

It is easy to prove that if F{, F2 are number fields, then 

d{FxF2)^d{Fx) + d{F2). 

Also if Fx C F2 then d(Fx) <: d(F2). 
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Given a point P in projective space, we let 

d(P) = d(F(P)). 

Furthermore, the discriminant of the field F(P) is insensitive to 
the higher power of primes dividing the coordinates of the point. 

EXAMPLE. Suppose x = ax^n where a is a positive integer. Let 
v. vr 

be the factorization with v. > 1 and with distinct primes px, 
. . . , pr. Then 

logA7
0(a) = ^ l o g / 7 / . 

Furthermore 
Q(a ) c Q ( p 1

/ , . . . , / > / ) . 

If a is a root of an = p , then the discriminant is the norm of 
nan~~l, so the discriminant is bounded by nnpn~l. Hence 

n - 1 
d(Q(oc)) <; log H + log/?. 

We apply this estimate to each prime dividing a to get 

d(Q(x))^rlogn + ^logN0(a). 

REMARK. For N0(a) -» oo we have 

r = o(logN0(a)). 

Indeed, if r is bounded this is trivial. If r is unbounded, then 
/?! "Pr > r\, so our assertion follows from Sterling's formula that 
r\ > re~r. 

So far we have dealt with notions of algebraic number theory. 
We now pass to the height in the context of algebraic geometry, in 
the case of curves. We must assume that the reader is acquainted 
with the basic notion of an algebraic curve, imbeddable in projec­
tive space. Such a curve X will always be assumed irreducible. 
It is defined by a system of homogeneous polynomial equations 
when it is so imbedded, and is said to be defined over F if the co­
efficients of these equations lie in F . A divisor on X is a formal 
linear combination of points, with integer coefficients. The degree 
of a divisor is defined to be the sum of these coefficients. The 
curve X is covered by affine pieces, and a typical affine piece may 
be defined by one equation f(x, y) = 0, for instance. A point will 
usually be taken with coordinates x, y which lie in some number 
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field, i.e. we deal mostly with algebraic points. The set of points 
with coordinates in a field E is denote by X(E). Then X(C) is 
the set of complex points, and if the curve is nonsingular, then 
X(C) is a compact Riemann surface. The genus g of X may be 
defined as the genus of this surface, but there are also algebraic 
definitions. For instance, if X is defined by one homogeneous 
irreducible equation 

^ o J , J 2 ) = 0 
in the projective plane, if X is nonsingular, and H has degree d, 
then the genus of X is (d - \)(d - 2)/2. 

The genus is also equal to the dimension of the space of regular 
differential forms. Say over the complex numbers, let ydx be 
a meromorphic differential form on X where y, x are rational 
functions on X. Let P be a complex point. Let t be a local 
uniformizing parameter at P. We write 

ydx=y{t)-jjdt, 

where y, x are expressible as power series in t. Then we define 

dx 
ordpydx = order of the power series y(t)-jj . 

We can associate a divisor to the differential form ydx by letting 

(ydx) - y ^ ordp(ydx)(P). 
p 

Then the degree of this form satisfies 

deg{ydx) = ] P ordp(ydx) = 2g - 2. 
p 

If ƒ is a rational function on X, then one can also associate a 
divisor ( ƒ ) to ƒ , namely at the point P we define ordp ƒ = order 
of the power series ƒ (t), in terms of the local parameter t. Then 
deg( ƒ) = 0 (which corresponds to the product formula). A divisor 
is said to be rationally equivalent to 0 if it is the divisor of a rational 
function. Equivalence among divisors will always refer to rational 
equivalence in what follows. In light of the relation deg(ƒ) = 0 
we see that the degree function is defined on equivalence classes. 
The class of divisors of rational differential forms is called the 
canonical class. 

Let X be a projective nonsingular curve defined over a number 
field. To each divisor D on X one can associate a function, the 
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height, 
hD:X(Q*)-+R 

from the set of algebraic points into the reals, satisfying the follow­
ing properties, and uniquely determined by them modulo bounded 
functions: 

1. D »-• hD is well defined mod 0(1) on the ra­
tional equivalence class of D and is a homomor-
phism, i.e. is additive in D. 
2. If D is a hyperplane section in a projective 
imbedding, then hD(P) is the height of a point P 
in that projective imbedding. 

The uniqueness follows because given a divisor D there exists two 
projective imbeddings of X with hyperplane sections H{ and H2 

respectively such that D is equivalent to Hx - H2 (this is a basic 
lemma of algebraic geometry). 

3. The Vojta conjecture. The conjectures expressed by Vojta [Vo] 
are basic to the subject. I give here only one of the conjectures 
having to do with curves. 

Vojta conjecture Let X be a projective nonsingular 
curve defined over a number field. Let K be the 
canonical class of X. Then given e > 0, 

hK(P)£(l+e)d(P) + Oe(l) forPeX(Qa). 

In the first place, observe that for a curve of genus ^ 2, the 
Vojta conjecture immediately implies that the set of rational points 
X(F) is finite (Mordell conjecture—Faltings theorem). Indeed, in 
that case d(P) is constant, so the height of such points is bounded, 
and it is easy to show that there is only a finite number of points 
of bounded degree and bounded height. 

We shall now see how the Vojta conjecture implies asymptotic 
Fermât and also implies the abc conjecture. Note that we shall 
use the Vojta conjecture only for points P of bounded degree over 
F as in [Vo], Appendix ABC p. 84. 

Suppose we want to prove Vojta implies asymptotic Fermât. Let 

Xn:x +y =z 

be the Fermât curve and consider X4 which has genus 3. For 
a hypersurface of degree d in Pm the canonical class is that of 
(d - (m + 1)))//, where H is a hyperplane. So for Xn in P2 the 
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canonical class is that of (n - 3)H, and for X4 the canonical class 
is 

K = H. 

Let un + vn = wn in relatively prime integers. Associate the 
point 

n / \ / H/4 n/4 n/4s „ 

P = (x, y , z) — (u :v : w ) o n I 4 . 

From the definition of the height, it is immediate that 
Yl 

h(P) = — logmax(|w|, \v\, | ^ | ) . 

By Vojta's conjecture we get 

-logmax|w|, |v|, |it;| < logA^0(wfi(;) + 0(1), 

which gives a bound for n . 
Similarly to prove the abc conjecture from Vojta, suppose 

a + b — c. Fix n . Associate the point 
P = (a ' :b ' :c ' ) o n I n . 

Since Kn- {n- 3)H we get by Vojta's conjecture 

M ^ ) = ^ l o g m a x ( M , \b\, \c\) < (l+e{)loèN0(abc) + On(l). 

This IS the log of the abc inequality. We let n —• oo with 
e = e{ + 4/n or whatever. 

We shall conclude with sections on elliptic curves, showing how 
the abc conjecture implies diophantine properties of such curves 
over number fields. 

4. Elliptic curves and minimal equations. An elliptic curve for our 
purposes will be a curve which can be represented by an equation 
in Weierstrass form 

y2 = x3 - y2x - y3, 

with coefficients y2, y3 in some field F . Let A denote the curve. 
The set of points with coordinates x, y e F together with the 
point at infinity is denoted by A(F), and is a group. As before, 
we shall take F to be mostly a subfield of the complex numbers, 
in which case A(F) is a subgroup of A(C). Over C, the curve is 
parametrized by the Weierstrass functions 

z^(p(z), \p\z)), 
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giving an analytic isomorphism C/A—• A(C) where A is a lattice. 
The lattice points go to the point at infinity under this parametri-
zation. The addition formula for the p-function defines the group 
law on A(C), and this addition formula is given by rational func­
tions on the coordinates (x,y), with coefficients in Q, which is 
why A(F) is a subgroup. 

As before we have the discriminants 

4y2
3 - 27y2

3 = D and A = 16D. 

For any number c / 0 we can change the elliptic curve by an 
isomorphism, which under the Weierstrass parametrization maps 
z H-» cz. Then the representation of this isomorphism on the 
equation has the effect: 

1 - 2 / - 3 

xy-+x = c x, y^y =c y , 

y2^y2 = c"\, y3 ^ y3 = c~6y3, 

so that the isomorphic curve satisfies the equation 
y =x -y2x -y3. 

Suppose the elliptic curve is defined over Q, that is y2, y3 G Q. 
By an appropriate such isomorphism, we can make y2, y3 e Z. 
Suppose p is a prime such that p4 divides y2 and p6 divides y3. 
Then we can change the elliptic curve by an isomorphism, letting 
y2 »-• p~4y2 and y3 »-• P~6y3- After having done so repeatedly 
until no further possible, we obtain what is a minimal model for 
the curve over Z , and then A is called a minimal discriminant. 

REMARK. The minimal discriminant is defined up to a factor of 
± 1, and is an invariant of an isomorphism class of elliptic curves 
over Q. We have slightly over simplified the situation in two ways. 
First by tying ourselves down to the Weierstrass model, we don't 
quite get the "right" notion for this minimal discriminant, because 
of the primes 2 and 3. One has to give a more general equation, 
first studied by Deuring, and carried out systematically in more 
recent times by Neron and Tate. Also to be absolutely correct, to 
take care of the primes 2 and 3, we really should consider a more 
general form of the Weierstrass model, namely: 

2 3 2 

y +a{xy + a3y = x +a2x +a4x + a6. 
One can obtain a minimal model, i.e. one with minimal discrimi­
nant, just as in the standard case of the Weierstrass equation. The 
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following statements refer to such a model, but the reader may 
think of p ^ 2, 3 and of the usual Weierstrass equation without 
harm. 

The discussion of isomorphisms above contained the essential 
aspects of the minimal discriminant. Furthermore, by dealing over 
the rationals, we avoid all the problems which come from non-
unique factorization in number fields, and the existence of a non-
trivial group of units in the ring of integers of the number field. 
A reader acquainted with elementary algebraic number theory will 
then see that in case of a nontrivial ideal class group, there is no 
unique minimal model of the curve with minimal discriminant, 
but there is a finite number of models, with relatively minimal 
discriminants. These are secondary considerations for what we 
are doing here, where we want to see clearly the effect of the abc 
conjecture on the diophantine aspects of the curve. These essential 
aspects are all present for curves over the rationals. 

We shall want to apply the Szpiro conjecture, but we must take 
into account that y2, y3 may not be relatively prime. We still want 
to see that for a minimal model, we have |A| < N0(A)S for some 
s independent of A. Indeed, by the minimality assumption, if 
pm is a common factor of y2, y3 then m ^ 5. Therefore, if 
d = (y2 > ^3) is the greatest common divisor, then 

d^N0(d)5. 

By factoring out a common factor, canceling, and small algebraic 
manipulations, it is easy to see that for a minimal equation, by the 
abc conjecture we have 

|A| « N0(A?+Ed4 

and therefore 
|A| « N0(A)S 

for some low integer s which we may call the Szpiro exponent. 
Without loss of generality, we may then assume that 

|A| ^ N0(A)S 

except for a finite number of A, and so except for a finite number 
of elliptic curves. We shall omit these exceptional curves, and 
assume in the sequel that |A| < N0{k)s. 

5. The Szpiro conjecture and torsion points. Let F be a num­
ber field, that is a finite extension of the rational numbers. The 
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Mordell-Weil theorem asserts that the group of rational points 
A(F) is finitely generated. (Mordell originally proved the theorem 
over the rationals.) It is a major problem to describe the order 
of the torsion group and the rank of A(F). We are here con­
cerned with the torsion group, which is finite by the Mordell-Weil 
theorem. A standard conjecture states: 

Given the number field F, there exists a positive 
number C such that for every elliptic curve A de­
fined over F, the order of the torsion group A(F)tor 

is bounded by C. 

Over the rational numbers, this was proved in a very strong form 
by Mazur [Maz], who showed that the order of the torsion group is 
bounded by 16. For this purpose, Mazur developed a whole theory 
on modular curves. Here we are concerned with a statement which 
is weaker in the sense that no specific bound like 16, is given, 
but stronger in that we want the statement for any number field. 
Results for number fields have been obtained by Kubert [Ku]. In 
this section, we show that the abc conjecture for number fields 
implies the uniform boundedness of torsion as stated above by an 
argument due to Frey which he wrote me in 1986. 

For simplicity, we shall work over the rational numbers. A 
reader acquainted with the basic properties of elliptic curves and 
number fields will immediately see that the arguments generalize. 

As usual we define the isomorphism invariant 

7 = 3 4 y2/A. 

REMARK. The primes which divide the denominator of j play 
a special role. These primes must also divide A, but the converse 
need not hold. We shall have to use a relatively deep fact: 

If there exists a rational point in A(Q) of prime 
order n > 5, then y2 and y3 are relatively prime 
except for small powers of 2 and 3, and also pos­
sibly n itself 

This fact is hard to prove, and we make some comments for those 
somewhat acquainted with elliptic curves, or those who may wish 
to pursue this matter further. Let p be a prime ^ 5. One may 
reduce the minimal equation of an elliptic curve mod p . Then 
the reduced equation defines a possibly reducible curve, called the 
fiber. The group law on the original elliptic curve reduces to a 
group law on the set of nonsingular points on the fiber, giving 
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rise to the theory of the Néron model. Cf. [Ne], the last section 
on elliptic curves, and the last table, as well as Artin's exposition 
(somewhat sketchy) of Néron models [Ar], especially Proposition 
1.15. Now suppose that j is /7-integral. If p is not a common 
factor of y2 and y3 then we say that the elliptic curve is semistable 
at p . If p is a common factor, then the curve reduces mod p to 
y2 = x3. Let us look at the curve over the p-adic field Qp . By 
the theory of Néron models, it can be shown that the nonsingular 
part of the fiber is an algebraic group, which contains the additive 
group as a subgroup of index at most 4, and that the kernel of 
reduction is a p-adic Lie group, which does not contain points 
of finite order. From this structure, we conclude that the curve 
is semistable at p when there exists a rational point of prime 
order n > 5, except possibly when p = n, because all points 
on the additive group in characteristic p have order p. For a 
generalization and examples, see Lenstra-Oort [L-O], especially §3 
for examples of large p-torsion /?-adically. 

Admitting the above fact, we see that except possibly for 2, 3, 
and n, the primes dividing the denominator of j are precisely 
the primes dividing A. 

To prove a theorem about torsion points over the rationals, we 
must have a model for them which will contain enough algebraic 
information, even though it may involve some analysis. The clas­
sical parametrization C/A -» -4(C) by the Weierstrass functions is 
not good enough for this purpose. However, we may take the lat­
tice to have a Z-basis {T, 1} where r is in the upper half plane: 
Im(r) > 0. Then we put 

q=q = e 
Inix 

We can then also represent A(C) as a quotient of the multiplicative 
group as follows. We have the Fourier series expansion, power 
series in q, in all standard texts, including [Lai] and [La3]: 

(2m) y2 = — 

( 2 7 n ) y 3 = ^ 3 

0 0
 M3 »n 

n q 
n-\ 

00
 M

5^w 

n q .1 + 504£fA_ 
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oo 

(2rc/r
i2A=^n(1-^)24 

j = 1 + 744+ 196884tf+ ••• 

and for a variable t eC* : 

t m. oo n 

mez I1 - 9 0 
We get an analytic isomorphism 

C 7 f f Z ^ ( C ) by f ~ (*(*), y(0) . 

The power series expansions for X(t) and Y(t) have essentially 
integral coefficients, and as Tate remarked in the late fifties, they 
can be used to parametrize an elliptic curve in the p-adic domain, 
where they converge provided that 

\q\ < 1 or equivalently p divides the denominator of j . 

This elliptic curve, called the Tate curve, is isomorphic to the given 
curve over a quadratic extension. For simplicity, we shall argue as 
if this isomorphism is over Qp itself. 

As with the complex numbers, the absolute value on Q extends 
uniquely to the algebraic closure Q^ and to the completion of the 
algebraic closure, which we denote by Cp, and which plays the 
role of C. 

In the p-adic field, using the notation u — v to mean that u/v 
is a /7-adic unit, we see that 

j and A ~ q. 
Q 

Except for the primes 2 and 3, y2 and y3 are then p-adic units. 
Tate normalizes the equation and the power series further to get 
rid of denominators involving 2 and 3 completely, but we don't go 
into this here. 

Thus t H-> (X(t), Y(t)) gives a homomorphism 

C*p-+A(Cp) inducing Qm
p^A(Qp) 

from the multiplicative group of the field to the group of points of 
A in the field. The kernel is the infinite cyclic group q . Similarly, 
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if F is a finite extension of Q in C we have a parametrization 

F* /qz —• A(F). We then obtain a model for the torsion points 
of A in A(C ) . The points of order n are parametrized by the 
group generated by 

q , Cn mod q 

where # ̂  is any one of the nth roots of q, well defined modulo 
an nth root of unity; and Çn is a primitive «th root of unity. 

We shall first prove that there is only a finite number of primes 
n such that an elliptic curve over Q has a rational point of order 
n, by showing that the minimal discriminants of such curves are 
divisible by only a finite number of primes. 

Suppose that the elliptic curve A over the rationals has a point 
P e A(Q) of order precisely n with n prime. For each prime 
number p dividing the denominator of j , and thus dividing A, 

1 In 

this point is represented by q ' or Çn. If P corresponds to 
q{/n , since P e A(Qp) it follows that ql/n eQp,so pn\q = qA . 
Suppose on the other hand that P corresponds to Çn for some 
primitive nth root of unity. Let (P) be the cyclic group generated 
by P, and let 

B = A/(P) 
be the quotient elliptic curve, which is then also defined over Q. 
Then we have the minimal discriminants AA and AB , and the two 
parameters qA and qB coming from the Tate parametrization p-
adically. In the present case, we claim that qB = qn

A . Indeed, the 
system here works just as in the case of a lattice. The map raising 
to the nth power gives an isomorphism 

C;/(q,QZc;n/(qn) = C*p/(q
n). 

Thus the "period" group of C*p/(q, Çn) is generated by qn , in 
case P corresponds to Çn . (See the Remark below.) Therefore 
qB = qA. It follows that in this case, pn\qB . Hence in both cases, 

pn divides qAqB. 

In terms of the minimal discriminants, this implies that 

pn divides AAAB. 

But it is known that AA and AB are divisible by the same primes. 
By the Szpiro conjecture applied to AA and AB separately, we get 

|A^Afi| « N0(AjN0(AB)s = N0(A)2s. 



OLD AND NEW CONJECTURED DIOPHANTINE INEQUALITIES 61 

If px, . . . , pr are the primes dividing A and ^ n, 2, 3 , then we 
get 

(Pl'-Pr) <(Pi'-Pr) " , 

which gives a bound on « as effective as the constant in Szpiro's 
conjecture, unless there are no primes p{, . . . , pr. But in that 
case, A is divisible only by n (or 2 and 3). Then for n > 5, the 
curve has good reduction modulo 5, say, and reduction mod 5 
induces an isomorphism on the points of order n, which is im­
possible for n sufficiently large since the cardinality of A(¥s) is 
bounded. 

It follows that the discriminants of minimal models are divisible 
by only a finite number of primes. By what we saw at the end of 
§4, this implies that there is only a finite number of values AA for 
minimal models A . It remains to be shown that for fixed A the 
equation 

A = 4y3
2-21y2

3 

has only a finite number of solutions y2, y3 giving minimal mod­
els. This is a known theorem, but for our purposes we can deduce 
it from the Szpiro conjecture. Indeed, the powers of primes occur­
ring as common factors of y2, y3 are bounded by the minimality 
condition. Hence the g.c.d. of y2, y3 is bounded for all elliptic 
curves with minimal equation over Q. By the generalized Szpiro 
conjecture, it follows that \y2\ and |y3| are also bounded, thus 
proving the desired implication. 

REMARK. Concerning the assertion made that qB = qn
A when 

B = A/(P) and P corresponds to the nth roots of unity, the 
reader should think first in terms of the complex case. Suppose 
the lattice of the elliptic curve is [r, 1] (i.e. the group generated 
by T, 1 over Z) , so A(C) « C/[r, 1]. Let P correspond to l/n . 
Then 

A(C)/(P)nC/[T9 1 / / I ] « C / [ / I T , 1], 

where the second isomorphism is induced by multiplication 
n : C —• C. Exponentiating, we see in the complex case that the 
" q " corresponding to A/(P) is e2ninx. Now the reader must ac­
cept that essentially the same theory of parametrization holds in 
the p-adic domain, so the argument works the same way, as given 
in the above proof. 
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The same method should prove a more general conjecture as 
follows. 

Let F be a number field. There exists a positive 
number C having the following property. If A is 
an elliptic curve over F, without complex multipli­
cation, and if there exists a cyclic subgroup of order 
n, invariant under the Galois group over F, then 
n<C. 

The cyclic subgroup is generated by one point P of order n, 
and the hypothesis means that the extension F(P) is Galois, with 
group G such that for a G G we have 

with some element x(a) € (Z/nZ)*. Thus x gives a representa­
tion of G as a subgroup of (Z/wZ)*. If n is a prime number, 
then in particular, the order of G is prime to n . 

To follow the same pattern of proof, one needs to start with 
semistability. Assume for the moment that the curve is semistable, 
and let F = Q for simplicity as before. As before, we then get 
that a prime dividing AA also divides the denominator of j . 

In the first step of the proof, supposing that P corresponds 
to ql'n under the Tate parametrization, we note that either the 
polynomial Xn - q is irreducible over Qp or it has a root in Qp , 
by an elementary criterion of field theory. Therefore, if q is not 
an nth power in Q then 

Qp(<il/n) = Qp(P) 

has degree n over Qp . Since the Galois group has order prime to 
n, this cannot happen and therefore q is an nth power in Qp . 
Thus we are in the same situation as before, and exactly the same 
arguments using the Szpiro conjecture show that n is bounded. 

However, under the weaker hypothesis of the Galois invariant 
cyclic subgroup instead of a rational point of sufficiently high or­
der, it is not clear how to reduce the general case to the semistable 
case, so at this time, the above arguments apply only to the family 
of semistable curves. 

6. The height on elliptic curves. Let A be an elliptic curve over 
the rationals again, and let A^ be its minimal discriminant. We 
let y2 = x3 - y2x - y3 be a minimal equation, with integer coeffi­
cients. A fundamental problem is to estimate the absolute values 
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ofx,y as function of y2 and y3 for integral solutions in Z , 
and to estimate the height h(x(P)) for rational solutions. Since 
A(Q) is finitely generated, A(Q) modulo its torsion group is a free 
abelian group, finitely generated. It is a problem to give an upper 
bound for the heights of free generators for this group. For conjec­
tures see [La2]. The height h(x(P)) has a great deal of structure. 
On the group A(Q) modulo torsion, according to a fundamental 
theorem of Néron-Tate, there exists a positive definite quadratic 
form 

hA:A(Q)/A(Q)tor^R 

such that 

hA{P) = \h{x{P)) + 0{\). 

In the next section we shall formulate a fundamental conjecture 
about this height. Here, we describe a number of basic properties 
which allow us to compute it, and which will be used to deal with 
that conjecture. 

In the preceding section, we used certain explicit formulas 
parametrizing the functions (y2, y3, A, j , x, y). We now need 
similar formulas to express the height. It turns out that the height 
can be given as a sum 

V 

where Xv is a function (the Néron function) given by an analytic 
expression on A(QV) for each absolute value v. We shall now 
describe these functions. As a matter of notation, for any absolute 
value v , we define 

v(a) = -log\a\v. 

For instance, if v is p-adic, then v(pm) = m log/?, so v(a) is 
the order m of a at p , times a normalizing factor log/7 which is 
used to get global formulas putting all the absolute values together. 
As a approaches 0 we want the p-adic order to approach oo, and 
similarly for an absolute value at infinity. 

The height hA is a quadratic form, but the local functions kv 

cannot be quadratic: there has to be some extraneous term ap­
pearing in the quadratic relations locally, and only after taking the 
sum over all v does this term disappear. For elliptic curves, a 
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neat characterization for the Néron functions was given by Tate 
as follows. 

Let F be a p-adic field, or the complex numbers. 
Let A be an elliptic curve defined over F. There 
exists a unique function Àv: A(F) - {0} —• R sat­
isfying the following conditions: 

(i) Àv is continuous and bounded outside every 
neighborhood ofO. 

(ii) Let z be a local uniformizingparameter at 
0. Then there exists a bounded continuous 
function a on an open neighborhood of 0 
such that for all P in that neighborhood, 
p zfi 0, we have 

Xv(P) = v{z(P)) + a(P). 

(iii) For all P, Q e A(F) such that P,Q, 
P±Q^0 we have 

kv(P + Q)+kv(P-Q) 

= 2kv{P) + 2kv(Q) + v(x(P) - x(Q)) - £t/(A). 

Without the last two terms, the third relation would be the relation 
defining a quadratic function. The final constant involving v(A) 
is a conveniently normalized term. When applying the relation of 
(iii) globally, the sum over all v of the last two terms will vanish by 
the product formula, when x(P), x(Q), are rational numbers, say; 
so summing over all v yields a quadratic function on the group 
of rational points. It is not difficult to show that this function is 
the quadratic height. 

We shall now give explicit formulas due to Tate for the Néron 
functions Àv in order to be able to estimate the height from below 
later. In each case, it is not difficult to verify that the formulas we 
give satisfy the desired quadratic relation. The other conditions (i) 
and (ii) simply express that the Néron function has a logarithmic 
singularity at the origin, and these conditions are also immediately 
verified in each case. We shall omit the verification. 

v = voo. 
In dealing with torsion points on elliptic curves, we have already 

remarked that we have a complex analytic isomorphism 

C/[T91]->A(C) 

where x lies in the upper half plane, and [T, 1] is the lattice 
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generated by r , 1 over Z . We can change T by any element of 
SL2(Z), and in particular, we can take T to be in the standard 
fundamental domain for SL2(Z). If we let 

2nix 

Q = Qx = e 

then 
(*) Imr ^ \\f}> and so \qx\ ^ e~n . 

We let u — uxx + u2 e C (ux, u2 e R), and we let 
2niu 

be a variable in C*. We let 
oo 

g0(t) = g0(q, t) = (I - t)*[[(l - qnt){\ - q"lt). 
n=\ 

Then we have a functional equation for g0 , namely 

g0(qt) = -r"1 g0(t) = g0(t~
l). 

Let B2 be the second Bernoulli polynomial, 

B2(r) = T2 -T+\. 

We define the Néron function 

Av(u, T) = \B2{ux)v{q) + v(^0(flrM)) = \B2{ux)v{q) + v(g0(t)). 

Immediately from the functional equation, we see that Àv(u, r) is 
even in u, that is 

kv(-u, r)=Av(u, T). 

The term involving B2 serves the purpose of making the function 
as we have defined it periodic, with periods 1, r . This can be ver­
ified directly and simply from the functional equation for g0 . The 
function kv is real analytic, except for a logarithmic singularity at 
the lattice points, as one sees directly from its definition. 

Proposition 6.1. For v = v^ there exists a con­
stant C^ > 0 having the following property. Let 
I m r > A/3/2 and let \ux\ ^ 1/6. Then 

Proof. By the periodicity and the fact that Xv(u, T) is even in u, 
we can normalize a representative for a point by the condition 

(**) 0 ^ u{ ^ \ whence |<?1/2| ^ \qu\ ^ 1 and \ql,2/qu\£l. 
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In that case, we conclude that the Néron function has the value 

Av(w,T) = - ^ B 2 ( M 1 ) l o g | « | - l o g | l - ? J - 0 ( l ) , 

and it is easy to compute an explicit value for 0(1), independent 
of u and r . Namely, for n ^ 1, we have estimates 

• n , ^ —nn\/3/2 

and 
i n, , , n-1/2 1/2, , ^ , w-1/2, ^ - (« -1 /2 )TTV / 3 /2 
\Q lQu\ = \Q Q /4U\ = \Q \^e 

These inequalities show that the term -0(1) is independent of u 
and T. In addition, the choice of \ux\ ^ 1/6 was made so that 
B2(«j) ^ 0, and hence the term -B2{ux)\o%\q\ is actually ^ 0 
since \q\ < 1. Finally \qu\ < 1, so 

log|l -qu\ ^ l o g 2 . 

The uniform lower bound of Proposition 6.1 for Xv(u, T) follows 
at once from these estimates. 

We have an analytic isomorphism 

C/[r, \]^A{C)byu~Pu. 

We also write u = u(P). The function kv(u, T) being periodic in 
u, we use it to define the ^-component of the height, namely for 
a rational point P corresponding to u we let 

kv{P)=kv{u(P),T). 

Proposition 6.1 can be restated in part by saying that if P is suffi­
ciently close to the origin, then kv (P) has a uniform lower bound 
as in Proposition 6.1. 

We shall apply this to multiples of an arbitrary point P which 
lie close to the origin, thus giving us a lower bound for the com­
ponent of the height at infinity. 

Proposition 6.2. Let C^ be the constant of Propo­
sition 6.1. Let A be an elliptic curve over Q, and 
let P e A(Q). Given an integer M ^ 1, there 
exists an integer b satisfying 

\<b<±6M 

such that for v = voo we have 

Xv{mbP)^-C00 forl<:m<:M. 
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Proof. We get a homomorphism A(Q) —• R/Z by mapping 

Q^ux{Q) modZ . 

Let n be a suitably large integer. Partition R/Z into « small 
intervals of length \/n . The multiples of the point P given by 

0 , P , 2P, . . . , >?P 

map to n + 1 elements of R/Z. Hence there exist integers 
0 ^ n{ < n2 ^ n such that fljjP and «2JP lie in the same small 
interval. Let b = n2- n{. Then 0 < b ^ n and £P lies in the 
small interval containing the origin. Then 

\^{bP)\^\ 

and therefore 

\ux(mbP)\< — for 1 <m<M. 

Thus if we let n - 6M we get \ux(mbP)\ ^ 1/6, and we can 
apply Proposition 6.1 to conclude the proof. 

Next we deal with the absolute values associated with prime 
numbers, and we have to distinguish cases, depending on whether 
j is /7-integral or not. 

v = v for p prime, and j is p -integral. 
Given a prime p, one may reduce the minimal equation of an 

elliptic curve mod p . Then the reduced equation defines a possi­
bly reducible curve, called the fiber. The group law on the original 
elliptic curve reduces to a group law on the set of nonsingular 
points on the fiber. 

Proposition 6.3. Let v - vp . Then for all points 
P whose reduction mod p is nonsingular on the 
fiber, the Néron function is defined by 

XV{P) = imax{0, \og\x(P)\v} + ^ ( A ) > ^ ( A ) . 

This proposition is proved essentially by brute force, cf. for 
instance Theorem 4.4 and Theorem 6.1 of [La3, Chapter III] for 
the standard Weierstrass equation. 

The following result is crucial to know how far a point is from 
having singular reduction on the fiber. 
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Proposition 6.4. Assume that we are dealing with a 
minimal model, and that j is p-integral Then 

(i) For every point P e A(F) the point 12P has 
nonsingular reduction on the fiber. 

(ii) Furthermore, Xv(l2mP) ^ l/12t>(A) for all 
positive integers m. 

Proof. The proof of the first statement is by computation, using 
the Néron-Kodaira classification of all possible cases of degener­
acy which can occur. See Néron's last chapter on elliptic curves 
([Ne], the final table), and for more recent insights, Tate's algo­
rithm [Ta2]. It is a very tedious matter. To replace such compu­
tations by theoretical arguments takes very heavy machinery. The 
second statement follows by applying Theorem 6.3. 

For our purposes the factor 12 is not important, all that matters 
is that there is some universal integer which can be used to multiply 
a point and land it into the nonsingular part of the fiber. 

v — vp with p prime, and j is not /^-integral. 
Finally we must give a description of the Néron function for v 

when p divides the denominator of j , i.e. j is not p-integral. 
This case is a p-adic analogue of the case over the complex num­
bers, with essentially the same formulas. We deal here with the 
Tate curve as in §4. 

Let Cp be the completion of the algebraic closure of Qp and 
let t be a variable in C*. Define 

oo 

g0(t) = (l-t)Y[(l-qnt)(l-qn/t). 

The functional equation was formal, and so we have again 

g0(Qt) = g0(t~
l) = -t~lg0(t)9 

valid for all teCp. Define 

v(q) oràpq 

Proposition 6.5. Let p divide the denominator of 
j . Let Pt be the image of t in A(Cp) under the 
Tate parametrization. Then 
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Thus we see the analogy with the complex case. From the func­
tional equation of g0 we conclude again that kv(Pt) is periodic 
with period q, and so is defined on the elliptic curve. 

Now let F be a finite extension of Qp in Cp, and suppose 

q e F*. For every t e F* we can find a representative mod qz 

which we denote by tp, and which is uniquely determined by the 
condition 

0 < u{t) < 1 or equivalently \q\v < \t\v ^ 1. 

For such a representative we see from the formula for gQ that 
v(g0(tp)) ^ 0. It is therefore convenient to define the periodic 
function 

B: R/Z -+ R by B(w) = B2(w) if 0 < u <; 1, 

and B is extended by periodicity to all of R. One can also write 

B(u) = {u}2-{u} + ± 

where {u} is the fractional part of u, and we obtain: 

Proposition 6.6. Let p divide the denominator of 
j , and v = vp. Then 

Xv(P)>\*(u{tp))v{q). 

Just as Proposition 6.4 gave us a simple criterion to get a nice 
formula for the height of points whose reduction is nonsingular on 
the fiber, we can formulate a similar criterion which we can apply 
to Proposition 6.6. Indeed, if u(tp) = 0 then we get the simple 
inequality 

lv(P)^±2v(q) = ±2v(A) 

just as in Proposition 6.3. Suppose however that P is an arbitrary 
point in ^(Q^). Let 

b = ovdp(q) = ordp(A). 

Then from the definitions, tp eqZ, and therefore tbp is a /7-adic 
unit, and so u(tbP) = 0. Combining the two cases of Proposition 
6.4 and 6.6, we find: 

Proposition 6.7. Given a positive integer n0 there 
exists an integer b > 0 having the following prop­
erty. For all elliptic curves A over Q, and non-
torsion rational point P e A(Q), if v = vp is such 
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that j is p-integral or ordp(A) < n0 then 

Xv(bP)>±v(A). 

7. The Szpiro conjecture implies the minimal height conjecture. Let 
A be an elliptic curve defined over Q, and let hA be the Néron-
Tate height. In [Lai] I conjectured that this height satisfies a min­
imum condition as follows. We let AA be the minimal discrimi­
nant. 

There exists constants CQ and CQ > 0 such that 
for all elliptic curves A over Q and a non-torsion 
point P e A(Q), we have 

hA(P)^CQloë\AA\-C'Q. 

Note that given an integer A ^ 0 there is only a finite number 
of elliptic curves A over Q whose minimal discriminant is A. 
Consequently we really did not need to mention the constant CL 
in the stated inequality, because for log|AJ sufficiently large, the 
right-hand side is ^ CQ log |AJ for some CQ > 0, and by picking 
log | AA | sufficiently large, we are omitting only a finite number of 
values of hA(P). Hence by shrinking the constant CQ suitably, 
we obtain the stated inequality without a CQ . 

On the other hand in [La2] I also conjectured an upper bound 
for the height of suitable free generators of A(Q)/A(Q)t0T, and I 
showed that the two conjectures are not independent: the lower 
bound conjecture is used to motivate the upper bound conjecture, 
and to carry out certain steps in trying to prove it. The essential 
point is as follows. Let ( , ) be the symmetric bilinear form giving 
rise to the quadratic form hA . Then from L-series considerations, 
conjecturally one gets a bound for the determinant det(P /, P.) 
of a basis for A(Q) mod torsion. It is possible to construct a 
basis {Px, . . . , Pr} which is "almost" orthogonalized. "Almost" 
is because we are over Z , not over R. For a precise definition, 
see [La2] or [La3]. We order the points by ascending height, so 

hA{p{)^---<hA{pr). 

Then we get a conjectural upper bound for the product 

hA{Px)---hA{Pr)-
In order to get an upper bound for hA(Pr) itself, we can then 
divide by the first r - 1 terms, and this is where one needs a lower 
bound for hA(Px). 
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It occurred to Marc Hindry and to me independently that the 
Szpiro conjecture should imply this minimum, and the implication 
was proved by Hindry-Silverman [H-S]. I shall describe their proof 
in this section. 

In the first place, Silverman [S] had proved my conjecture in 
the case of integral y-invariant, and so the problem was how to 
expand his arguments so that they could apply to the non-integral 
case. 

As before, we let s be the Szpiro exponent, so that we have 

|A| ^ N0(A)5 

except for a finite number of elliptic curves, which we disregard. 
We always take the elliptic curve in minimal form, so A is the 
minimal discriminant. 

For the subsequent proof, it will be convenient to decompose 
the minimal discriminant into a product. We let 

A = AtA2 

where: 

A j is the product of the prime powers which occur with an 
exponent < 2s 

A2 is the product of those prime powers which occur with an 
exponent ^ 2s. 
Then 

(*) loglAJ^loglAI. 

1 lis 
This follows immediately from the inequality NQ(A2) ^ A2 , the 
inequality 

|A| ^ N0(Af < l A / j y ^ ) ^ |A,r|A2 |1/2, 

and by substituting A2 = A/Aj on the right-hand side. 
The primes dividing A2 are the ones which caused trouble in 

extending Silverman's proof. To cancel their negative contribution 
to the height, due to a term with the Bernoulli function, Hindry-
Silverman use an averaging process, based on a simple inequality of 
analysis, which we extract here. As in the previous section, we let 
B be the periodic function obtain from the Bernoulli polynomial 
B 2 . 
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Lemma 7.1. For all u e R/Z and all positive inte­
gers M we have 

M / \ i 

m=\ x ' 

Proof. We have the Fourier expansion 

n / s 1 v - ^ 1 Ininu 

But also 

M 

. /M+l \ /M+l \ M+l , ™ \ 

Therefore 
M 

/ \ 

S(' -STT)B<'"") 
M oo 1 1V1 OO / \ * 

V^ V^ / 1 ^ \ A / Ininmu , —Ininmu^ 

1 2 

^ - — because £(2) = n /6 

as desired. 
Hindry and Silverman place the lemma in the context of an 

inequality for Fourier transforms by Blanksby-Montgomery 
[B-M]. The lemma and its proof also fall under the pattern used by 
Elkies in estimating Green's functions on Riemannian manifolds, 
cf. [La4], Chapter VI, Theorem 6.1. 

All that will be used of Lemma 7.1 is that a linear combination 
of B(mu) with suitable positive coefficients is uniformly bounded 
from below, and the sum of the coefficients tends to infinity. The 
specific form of the coefficients is not important for the applica­
tions we shall make. 

We now give the proof of the minimal height conjecture assum­
ing the Szpiro conjecture. First, by taking nQ = 2s (for instance), 
we can apply Theorem 6.7. Since for all points P e A(Q) we have 

hA(bP) = b\(P), 
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it suffices to prove the lower bound for the height of points P 
which satisfy the inequality 

for all v = v such that p\A{. From now on, we assume that 
the point P has this property. We pick M sufficiently large as 
a function of s. For instance, M = 4s suffices, as will become 
apparent from the following arguments. We let 

M M M 

c^ — l - , ^ . « whence I P c_ = — and C%£ = V* cmm , 1 " MTÏ whence 5Z cm = y and CM = E c» 
m=l m=l 

We select b as in Proposition 6.2. Then 
M 

CMb2hA(P) = J2^b2hA(P) 

M M 

= E cmhA(mbP) = E E cJ-vWP). 
m=\ v m=l 

We shall give a lower bound for the ^-contribution Yl c
mK(mbP) 

for each v . We partition the absolute values v into four sets: 

v = v with p f A ; 
v =vp with p|Aj ; 
v =vp with /?|A2 . 

We note that for every non-zero integer d we have trivially 

Y,vp(d) = \og\d\. 
P\d 

\ï v = voo then using Proposition 6.2 and the è of that proposi­
tion, we conclude that the ^-contribution is ^ -MC^ .\îv = vp 

with p \ A, then the ^-contribution is ^ 0 by Proposition 6.3. 
Therefore by Proposition 6.6 and Lemma 7.1 for p|A2, and Propo­
sition 6.7 for p\A{, we get 

CMb2hA(P) > -MC^ + ^ y loglA.I - ^ log |A 2 | 

= " M C °° + 4fc M l 0 g | A | ~À l 0 g | A | 

using (*) and the trivial fact that |A2| < |A|. We may now pick 
for instance M = 4s . Then the right-hand side is 

= ~ 4 5 C °° + 2 i l 0 g | A | ' 
which concludes the proof. 
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