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I would say that this is the best book to read to get a broad feel for Loeb 
spaces. It has all the basic material, and a lot of examples which show just 
what sort of things can be done with Loeb spaces, and which cannot. There 
is helpful advice about which analogies between standard and nonstandard 
concepts are helpful and which are misleading. Those who wish to continue 
study of nonstandard probability theory, or who prefer less general Loeb 
space theory oriented specifically to continuous sample path processes, 
should read Keisler's monograph [K], which is a development of Brownian 
stochastic integration and the associated differential equations in a Loeb 
space setting, or [AFH-KL], which surveys a wide variety of applications of 
nonstandard analysis, with emphasis on probability theory. Of course, we 
warmly recommend the different departure, [N]. A good, current general 
introduction to nonstandard analysis is [HL]. 
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General theory of Markov processes, by Michael Sharpe. Academic Press, 
San Diego, 1988, xi + 419 pp., $49.50. ISBN 0-12-639060-6 

Probability theory is concerned with random variables and their distri­
butions, and a family of random variables (Xt) indexed by a parameter is 
called a stochastic process. Among stochastic processes, one can roughly 
distinguish two main categories, whose study uses widely different meth­
ods: true stochastic processes are those for which there is indeed some 
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process going on, i.e. for which t can be interpreted as time, the order 
structure of the index set (possibly the integers, or some interval of the 
line, or more recently a quadrant of R") playing a fundamental role. For 
the remaining ones " f has no temporal meaning at all (it may denote an 
element of a group, of a topological space... ). Many processes of the latter 
category are now called random fields rather than stochastic processes. I 
don't mean the distinction is always clear, but let us accept it for the sake 
of simplicity. 

The basic ideas in "true" stochastic processes theory can already be 
found in Doob's book Stochastic processes (1953). One associates with 
every "time" / a cr-field ^ which represents our knowledge at time t (this 
is nowadays called a filtration). One then defines stopping times, which are 
random times T such that for all t (T < t) e ^, meaning that one doesn't 
need to "look into the future" to know the value of T (there is a deep 
difference between the apparently similar statements "when did you start 
smoking" and "when did you stop smoking": at the time you smoked your 
last cigarette, you couldn't be sure it was really the last). One of the basic 
principles of the theory is "to do for stopping times everything that can be 
done at constant times." A third feature is the constant use of martingale 
theory, which appears naturally when studying the best prediction at time 
/ of some fixed random variable Z, which is generally taken to be the con­
ditional expectation E[Z\<9Ç\. Doob's results on the regularity properties 
of martingales, mixed with Ray-Knight compactification methods, are one 
of the basic techniques of proof in this book. 

The simplest situation from the point of view of prediction is that where 
observing the value at time t of some stochastic process (Xt) (taking values 
in some state space E) allows to do the best possible prediction of all future 
events, without keeping any files to record the past. Otherwise stated, 
E[Z|«^] = E[Z|X,] for all future random variables Z at all times t. This 
is the idea of a Markov process. Then all predictions can be deduced from 
one single analytical object, the transition function PStt(x9A) of the process, 
which tells you the probability, knowing that Xs = x, to find Xt in a given 
set A at some future time t. In the cases of interest in this book, the 
process is time homogeneous, the transition function depending only on 
the difference t - s and the basic object being a transition semigroup (Pt). 

Markov processes are a simplification of general stochastic processes, 
but the interplay between Markov processes and general processes is very 
subtle, and has been historically fruitful. For Markov processes explicit 
computations can be done using the semigroup, and provide many exam­
ples and counterexamples. The usual Markov processes are simple ob­
jects, but "general" Markov processes can be as complicated and subtle 
as anything in the world—and in fact, even the simplest looking Markov 
processes, i.e. Markov chains on a countable state space, can be devilishly 
complicated as soon as hypotheses are relaxed a little. The "general" the­
ory of stochastic processes has greatly benefited from Markov processes, 
since several of its main ideas, like the so called predictable processes, the 
decomposition of supermartingales, and local times, have been first tried 
on Markov processes (and the first one, which now looks very basic, is 
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a by-product of results of K. L. Chung [1] on Markov chains). On the 
other hand, the theory of Markov processes itself uses a lot of "general" 
theory (in this book, stochastic integration), and also an unusual amount 
of measure theory, certainly a serious nuisance to its popularity. 

The general theory of Markov processes has been developed in paral­
lel by the Russian school (Dynkin's famous seminar in Moscow: see [1] 
where much of Dynkin's work has been collected) and by the Western 
school, whose classics are Doob's papers on the relations between Markov 
processes and potential theory [1, 2], Blumenthal's paper [1], and Hunt's 
celebrated paper in three parts [1]. The two schools differed vastly in spirit. 
For instance, the Russians often insist on general nonhomogeneous transi­
tion functions instead of semigroups, and consider the transition function 
as something which has to be defined from the process, while in the West 
the central object seems to be the semigroup itself, which on the one hand 
is "realized" probabilistically as a Markov process, and with which, on 
the other hand, are associated several analytical objects, like the resolvent 
(i.e. the Laplace transform Ux — /0°° e~ktPt dt of the semigroup which is 
a smoother object than (Pt)), the infinitesimal generator, etc. The work 
by Hunt and its followers has been concentrated twenty years ago in the 
well-known book by Blumenthal-Getoor [1]. 

At that time, the theory of Markov processes was very popular among 
probabilists: the relations between it and potential theory had been very 
exciting, and had made probability theory respectable among mathemati­
cians. However, there was a general feeling that prosperity couldn't be 
eternal, and that the general theory of Markov processes would slowly 
cool down and become a dead star. This prophecy turned out to be wrong. 
It is true that most of the activity about stochastic processes (in the sense 
defined at the beginning) has moved to neighbouring fields: for instance, 
diffusion theory and its relations with stochastic differential equations and 
geometry, large deviations, and Malliavin's striking use of infinite dimen­
sional analysis. On the other hand, a relatively small group of mathe­
maticians (among which the author himself) has kept the theory alive and 
blooming over these twenty years, and the recent developement doesn't 
give signs of a failing health. 

Most of this book describes fairly recent progress. The central one 
is the understanding of what a "good" Markov process really is. It all 
started with a short paper of C. T. Shih [1], showing that Hunt's bal­
ayage theorem (whose content is roughly that the infimum of all excessive 
(=superharmonic) functions dominating a given excessive function ƒ on 
a set A can be interpreted as the expectation of f(XT) at the time T the 
process first reaches A) has a much wider scope than it was believed, and 
can be extended essentially to all Markov processes by a method of com-
pactification. This led to the definition of the so called right processes 
(Meyer-Walsh [1], Getoor [1]) which made obsolete the old categories of 
Hunt processes, standard processes, etc. In another way, this can be con­
sidered a triumph of the compactification methods due to Ray [1], Knight 
[1], and (a long way back in time) first introduced in Markov chain theory 
as "fictitious states." 
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Another central idea which made this way during the twenty years 1968-
1988 is the role of homogeneity in the theory, thanks to an important paper 
of Azéma [1]. In the theory of stochastic processes we have a filtration ffi) 
representing the past, but there is nothing to represent the future. It turns 
out that the best way to represent the future is a family of shift operators 
(Bt) (an idea which can be traced back to Dynkin), events which lie in the 
future w.r.t. time t being defined as arbitrary events shifted by t. Once shift 
operators Bt have been introduced (with the property that Bs+t — BsBt) one 
can define homogeneous processes, and homogeneous random measures. 
A homogeneous random measure which is finite on finite intervals can 
be (like an ordinary measure on the line) characterized by its (random) 
distribution function, which is an additive functional: calling At(co) the 
mass that the measure ascribes to the interval ]0, t], the homogeneity of 
the measure is translated into the identity At+s(co) - As(co) = At(Bsco). 
Such additive functional have been known for a long time, and given a 
measure // on the state space, one can associate to it an additive functional 
which roughly tells "how much" of the measure // is seen along each sample 
path of the process. This has become the modern theory of Revuz measures 
[1], well represented in this book. 

But a feature of recent times is the importance given to homogeneous 
random measures which do not give finite mass to intervals ]0, t], for in­
stance the measure which counts the jumps of a Levy process, or which 
counts end points (left or right) of zero free intervals of brownian motion. 
The study of such measures is one of the keys to the local study of sample 
paths, and much space is devoted to it in this book. Applications are given 
to a general version of excursion theory (developed by Maisonneuve [1], 
but also in a remarkable paper by Dynkin [1] which had too little influence 
in the West) and to the theory of Levy systems. 

This book is written with extreme care, and will remain one of the 
basic references on a number of subjects. On the other hand, it doesn't 
cover all of the "general" theory, even in its classical forms. The most 
notable exception is duality between Markov processes, in all its aspects, 
probabilistic (time reversal of a Markov process) or analytic (the theory 
of Martin compactifications and Martin boundaries, which is the Ray-
Knight compactification theory, well developed in this book, but applied 
to the dual semigroup). Another subject which hasn't found room into 
the book is the very fashionable one of Kuznetsov measures (of which a 
very useful particular case was independently discovered by J. Mitro [1]). 
Since much of the author's own work concerns these subjects, we may 
regret these omissions, but then the book would have taken ten years more 
to be written. So let us fix an appointment twenty more years from now, 
to the year 2008. 
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The year 1885 was an important year for approximation theory, for 
in that year Weierstrass and Runge announced well-known approximation 
theorems bearing their names. It is the 1885 theorem of Weierstrass, as­
serting the density of polynomials in the real variable in the Banach space 
C[a, b] where [a, b] is a closed interval, that will concern us in this re­
view. Since then several important extensions of the theorem have been 
obtained by De la Vallé Poussin [17], Bernstein [5], Stone [15], and Whit­
ney [18] and others, by stressing one aspect or another of the classical 


