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1. Introduction.. In this note we give exact values of certain invariants 
of the symmetric group Sn of degree n. 

Let « be a positive integer, p a prime, a(G) the derived length and v(G) 
the nilpotent length of a solvable group G. Let SOLV(«) denote the set of 
all solvable subgroups of Sn and put 

SOLV(n,p') = {Ge SOLV(n)\p \ \G\}9 

o{n) = max{(j(G)|C? e SOLV(«)}, 
I/(/I) = max{z/(G)|G e SOLV(«)}. 

Similarly one defines o(n,p') and v(n,p'). 
Let N be the set of all nonnegative integers. For t e N we put s(t) = 

min{m e N|cr(ra) = t} and n(t) = min{m e N|*/(m) = t}. For a par­
tial ordered set L we denote by juL the set of all maximal elements in 
L. We put Z(0 = {G e /iSOLY(s(t))\a(G) = i) and Z(t,p') = {G e 
//SOLV(4y(^,/7/),p/)k(G!) = 0- Similarly one defines #(*) and N(t,p'). 

We define the structure of all elements of the sets E(f), Z(^,/7/), JV(̂ ) 
and N(t,pf). 

We assume that, as permutations groups, 5m has degree m, AGL(2,3) 
has degree 9, the cyclic group C{p) of order p has degree /?, the groups 
AGL(1,/?) and 5 AGL(l,p) (=the subgroup of index 2 in AGL(l,p)) have 
degree p. 

We say that a group W is of type {B\l,..., B*s} if W a wreath product 
of &i copies of the permutation group Bu ki copies of the permutation 
group B2 and so on (the order of the factors is arbitrary). 

2. Main results. 
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THEOREM 1. Let G, e 2(f). Ift < 4, then G, = Sl+X. Ift = 4, then Gt is 
of type {£2,54}. Suppose now that t > 4. 

(a) G5k is of type {AGL(2,3)k} ( so s(5k) = 9k). 
(b) G5k+l is of type {Si AGL(2,3)k-1}. 
(c) G5k+2 is of type {S3, AGL(2,3)*}. 
(d) G5M is of type {S4, AGL(2,3)*}-
(e) G5k+4 is of type {Sj, AGL(2,3)*" »} and s(5k + 4) = 43 • 9k~ '. 

If the function j is known, one can restore a. 

THEOREM 2. Let G, e £(f, 2'). Then 

(a) G2k is of type {{ AGL(1, l)k) and s(2k, 2') = lk. 
(b) G2k+i is of type {C(3), \ AGL(1,7)*} and s(2k + 1,2') = 3 • 7fc. 

THEOREM 3. 7/G, € X(f,3'), f/ïé-n G, 6 Syl2(S2i). 

THEOREM 4. ƒƒ/> > 3, then Z(t,p') = 1(f). 

THEOREM 5. Lef G, e N(t). Then G\ = S2. Suppose that f > 1. 

(a) G4k is of type {AGL(2,3)a, 53
2<A:"a)}, a < k. 

(b) G4fc+1 = S4 wr ƒ/ w/?m> # is 0/>/w {AGL(2,3)°, sl(k~a)~1}, a < /c. 
(c) G4fc+2 w of type {AGL(2,3)a, sl{k~a)+l}, a < k. 
(d) G4fc+3 = 54 wr G4k and n(4k + 3) = 4 • 32k. 

THEOREM 6. Let Gt 6 N{t, 2'). Then 
(a) G2k € £(2k, 2') and N{2k, 2') = l{t, 2'). 
(b) G2k+1 = C(3)wG2k e L(2fc + 1,2') (ôur #(2* + 1,2') / 

I(2fc+1,2')). 

THEOREM 7. Let G, e N(t, 3'). Then 

(a) Gat w »ƒ type {AGL(1,5)*} and n{2k, 3') = 5*. 
(b) G2k+l = C(2) wrG2*. n(2fc + 1,3') = 2 • 5k. 

THEOREM 8. Ifp > 3, then N(t,p') = N(t). 

If G = p™> •• p?s, then A(G) = mi + • • • + ms. If G is solvable, its 
composition length c(G) is equal to X{G). We put 

c(«) = max{c(G)|G € SOLV(«)}. 

Similarly one defines c(n,p'). 

THEOREM 9. Let G e SOLV(n) be transitive and c(G) = c(n). Then 

(a) n = 4k,G is of type {Sk}. 
(b) n = 2 • 4k, G = Hv/rS2 where H is from (a). 
(c) n = 3 • 4k, G = HwrSi where H is from (a). 
(d) n = 6 • 4k, G = HwrF where H is from (a), F is of type {S2, S3}. 
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THEOREM 10. Let G e SOLV(n,2') be transitive and c{G) = c(n,2'). 
Then 

(a) n = 3k
f GeSy\3(Sn). 

(b) n = 5 • 3*, G = //wrC(5) wAer* / / öjfern (a). 
(c) n = 7'3k, G = //wr±AGL(l,7) where H is from (a). 

THEOREM 11. Let G e SOLV(«,3/) be transitive and c{G) = c(/i,3'). 
Then 

(a) rc = 2', GeSyl2(S2<)-
(b) n = 5 • 2', G = / / wr AGL(1, 5) wAere / / is from (a). 

THEOREM 12. /ƒ/? > 3, then n is the same as in Theorem 9 andc(n,p') = 
c(n)for any transitive G e SOLV(n,p') with c(G) = c(n,p')\ G is the group 
from Theorem 9. 

We put 
o(n) = max{|G||G e SOLV(rc)} 

and 
o(n,p') = max{|G||G e SOLV(«,/?')}. 

THEOREM 13. Let a transitive group G e SOLV(«) has an order o(n). 
Then 

(a) n = 4k, G is of type {Sk}. 
(b) n — 2 • 4k, G = HwrSj where H is from (a). 
(c) n = 3 • 4k, G = Hv/rS3 where H is from (a). 
(d) n — 2 • 3 • 4k, G = H wr S3 wr,S2 where H is from (a). 
(e) n — 32 • 4k, G = HwrS3 w r ^ where H is from (a). 

THEOREM 14. Ifp > 3 and a transitive group G e SOLV\n,p') has the 
order o(n,pf), then \G\ = o(n). 

THEOREM 15. Let a transitive group G = SOLV(n,2') has the order 
o(n,2'). Then 

(a) /i = 3*, G = Syl3(S,,). 
(b) n = 5 • 3k, G = //wrC(5) where H is from (a). 
(c) n = 7 • 3k, G = / / wr ± AGL(1,7) where H is from (a). 

THEOREM 16. Let a transitive group G e SOLV(«, 3') has the order 
o(n,3'). Then 

(a) n = 2k, GeSyl2(Sn). 
(b) « = 5 • 2k, G = AGL(1, 5) wr// wAere / / is^o/w (a). 

THEOREM 17. Let N be a nilpotent subgroup of maximal order in Sn. If 
« =é 3 (mod 4), then N e Syl2{Sn). Ifn = 3 (mod 4), then N = Px C{3) 
where P e Syl2(5

,
n_3). 

THEOREM 18. Let N be a nilpotent subgroup of maximal odd order in Sn. 
Ifn £ 5 (mod 9), then N e Syl3(Sn). Ifn = 5 (mod 9), then N^Px C(5) 
where P e Syl30Sn_5). 
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THEOREM 19. Let N be a nilpotent subgroup of maximal p'-order in Sn, 
p > 2. Ifp = 3, then N e Syl2{Sn). If p > 3, then N be the group from 
Theorem 17. 

Other results in this direction are in my paper, Subgroups of symmetric 
and alternating groups, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. 
Shkoly, Estestvennye Nauki 1 (1981), 6-9. 
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