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being the excellent books they are, I obtained copies before they were 
offered to me for review. Ah well! 
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The idea of a separation of scales is of fundamental importance in our 
attempts to understand the world. When we speak of movement up or 
down "on the average," we are appealing to a process which removes rapid 
fluctuations and uncovers underlying trends. The formal perturbation pro
cedure known as the method of multiple scales (or, in its simplest form, 
two-timing) relies on such a separation of time scales, as do the various 
averaging and homogenization theorems which make up an important part 
of the theory of differential equations and which form the subject of the 
book under review. 

The simplest form of averaging, over a single time scale, proceeds as 
follows. Starting with a sufficiently smooth vector field f(x, t) on Rn x R 
which depends ^-periodically on time, t, the averaged vector field is defined 
as 

(0) f(*) = j j f(x,t)dt. 



102 BOOK REVIEWS 

Averaging theory provides links between the solutions of an "original" 
ordinary differential equation, 

(1) x = ef(x9t)9 0 < £ « 1 , 

and its averaged counterpart 

(2) y = e f (y). 

Here, since e is a small parameter, the x variables evolve slowly in com
parison with the fast time, /. 

The most basic result is that if solutions x(t), y(t) of (1) and (2) are 
started at t = 0 within ^(e), they remain within <f(e) for a time interval 
of #(l/e): specifically, one obtains estimates such as 

(3) \x(t)-y(t)\<ce(l+ecet), 

where c is a constant depending upon ƒ and the initial separation \x(0) -
y(0)\. Estimates like (3) are easily obtained by introducing a near identity 
transformation x = y + eu(y, t, e) which takes (1) to the system 

(4) y = ef{y) + e2g{y,t,e) 

and comparing the solutions of (2) and (4) via GronwalPs inequality. 
Krylov and Bogoliubov [1] appear to have been among the first to provide a 
rigorous treatment of such "single frequency" averaging. Bogoliubov and 
Mitropolski [2] provide a good introduction to and review of the basic 
results. 

Estimates like (3) are useful, for they permit one to draw conclusions 
regarding the solutions of the nonautonomous equation (1) from those 
of the autonomous one (2). For example, if (2) has a "nondegenerate" 
(hyperbolic) fixed point y0 (i.e., if f(yo) — 0 and Df(y0) has no eigenvalues 
with zero real part, then it follows that (1) has a small (^(e)) T-periodic 
orbit near y$. Finding a zero of a vector field is relatively easy, while 
solving for a periodic orbit directly is usually very difficult. 

Various generalizations of the basic result sketched above immediately 
suggest themselves, among them are: 

1. Relaxation of time periodicity: ƒ quasi-periodic, almost periodic. 
2. Improvement of timescale for estimates such as (3) to <f(l/ek) or 

even infinite time scales. 
3. Improvement of order of estimates. 
4. Related methods: adiabatic "invariants"; normal form theory. 
5. Extension to infinite dimensional evolution equations. 
The book under review explores the first and fourth of these areas at 

length, and gives a briefer account of some results in the second. It remains 
in finite dimensions, and so avoids the fifth. As the authors note, the third 
area was dealt with rather well in another recent book on averaging by 
Sanders and Verhuist [3]). The present book is especially welcome since 
it includes readable and reasonably complete accounts of recent Russian 
work which is not as well known in the West as it deserves to be. In partic
ular, multifrequency averaging results of Arnold (cf. [4]) and Neistadt are 
described, as is the important theorem on the variation of action variables 
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in perturbations of integrable Hamiltonian systems due to Nekhoroshev 
[5]. The authors, correctly in my view, point out that this result is a "con
verse" of the celebrated Kolmogorov-Arnold-Moser (KAM) theorem on 
"regular" motions and should be much better known. This material oc
cupies the first seven chapters of the book: the last three are devoted to 
adiabatic theorems. While the final chapter concerns quantum effects, the 
main emphasis of the book is on classical and Hamiltonian mechanical 
problems. 

Adiabatic theorems again involve a separation of time scales, but here 
there is typically a slowly varying parameter À(et) in comparison with the 
relatively rapid state variables x(t) and one considers a differential equa
tion of the form 

(5) x = f(x9X(et))9 

and seeks a function A(x,X) which is "almost invariant," so that, for ex
ample, for most initial conditions x(0), 

(6) lim sup | ^ ( J C ( 0 , A ( C 0 ) - ^ W 0 ) , A ( 0 ) ) | = 0. 

A prototypical example is the linear oscillator with slowly varying fre
quency, 

(7) x + co2(et)x = 0, 

in which case the action or area enclosed by a level set of the "frozen" 
Hamiltonian function 

/ox *2 co2(et) 
(8) — + —j-^- = const 
is the adiabatic invariant. 

The flavour of the present book is very different from that of other 
recent books on averaging and dynamical systems, such as [3 or 6]. After 
a useful general introduction, the mood is established in the second chapter 
which describes a rather general result due to Anosov on multifrequency 
(quasiperiodic) systems of the form 

( 9 ) i = ef(I9p9e)9 

<p = co(I9ç>) + eg(I9ç>9e)9 

where I and cp are m > 1 and n > 1 dimensional slow and fast variables 
respectively and ƒ, œ, g and their first derivatives are uniformly bounded. 
The corresponding averaged system is defined under the assumption that 
the unperturbed (e = 0) flow is ergodic (in <p) for almost all I values, and 
estimates on the closeness of averaged and actual solutions are obtained 
for sets of initial data whose measure approaches one as e goes to zero. 
This measure theoretic viewpoint pervades the book: most of the multi-
frequency theorems require the exclusion, or special treatment, of a set of 
"resonant" solutions or actions, on which the averaged and actual solutions 
diverge more quickly than in other parts of the phase space. In a sense, 
the remaining eight chapters explore the sharper results available as one 
puts more specific restrictions on ƒ, a> and g in (9). 
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It follows that the book is analytical, rather than geometrical, in flavor, 
although geometry does enter neatly in addressing the extension of time 
scales and in the problem of resonance capture. Proofs of typical theo
rems involve technical lemmas in which sets of "bad" solutions must be 
excluded and their measure estimated, or in which the time spent by solu
tions in resonant regions must be bounded. Occasional simple examples 
are given to demonstrate the optimality of results, or to illustrate the theme 
of a chapter, but the book is most valuable for its collection of technical 
results not easily accessible elsewhere, and for the relative completeness of 
its treatment. For the sake of the latter, the authors sometimes give a result 
in a less general or powerful form than in the literature they quote. This 
seems especially wise in the case of Nekhoroshev's theorem: the enthusiast 
can always go to the original literature, and the bibliography is reasonably 
complete in this respect, although it does not refer to another recent pub
lication [7] which contains many examples of multifrequency averaging 
methods and which would be a useful (and inexpensive) complement to 
the present volume. 

There are a number of useful appendices on such topics as Fourier series, 
Diophantine approximations, Hamiltonian systems, Lie series and normal 
forms, but I was a little surprised that the latter were not more integrated 
into the body of the text. Averaging theory is, in a sense, a special case 
of the more general normal form transformation method, in which one 
successively eliminates "nonresonant" terms at increasing order in some 
small parameter and then studies the transformed, truncated (~ averaged) 
system with a view to obtaining results on the original system (cf. [8]). 
In this respect readers may wish to note that many of the transformation 
procedures of normal form and averaging theory can now be automated 
using symbolic manipulation packages such as REDUCE, MACSYMA or 
SMP (see, e.g. [9]). 

Another direction which the present book does not take, apart from a 
brief discussion in Chapter 10, is the "géométrisation" of averaging meth
ods in the context of fiber bundles (roughly speaking, in (9) the slow vari
ables, /, form the base and the fast ones, ç>, the fibers). The recent work 
of Marsden, Montgomery, Ratiu, et. al. [10], including their development 
of the notion of "Berry's phase" [11] is especially exciting in this respect. 

However, it is ungenerous and irrelevant to complain at things left out 
when so much is included. This should be a useful book for anyone inter
ested in differential equations and dynamical systems. 
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Since the introduction of pseudodifferential operators (psdo) in the 
foundational papers by J. Bokobza and A. Unterberger [BU] and by J. J. 
Kohn and L. Nirenberg [KN] more than 20 years ago, the psdo proved to 
be a powerful tool in the analysis of partial differential operators (pdo) on 
compact smooth manifolds and euclidean spaces. 

Recently much of attention has been shifted to pdo on noncompact 
manifolds (cf. [CGT, D3, M, P, R, S]). It is conspicuous however how 
little the psdo have been used in this context (cf. [E]), possibly because a 
necessary global symbolic calculus is still in its development. The Cordes 
book presents a principal calculus of such sort in a C*-algebras framework. 

One of two historical sources of psdo was the theory of boundary value 
problems for elliptic equations (another was quantization). It was con
cerned with classical potential representations of their solutions. The po
tential densities satisfy singular integral equations on the boundary, and a 
general technique (proposed by G. Giraux in 1934) was a reduction to reg
ular Fredholm integral equations. In 1936 S. G. Mikhlin found a key for 
such regularization, introducing the (principal) symbol of singular integral 
operators (sio). Actually he worked with sio on the plane, but his sym
bol construction was immediately extended by G. Giraux to any euclidean 
space. The construction was based on a rather heavy decomposition of the 
sio into multiple power series A; = (-A)l/2d/dXj of Riesz operators. In 
the 1950s A. Caldéron and A. Zygmund discovered a much more flexible 


