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community has yet to give a fair reading and assessment to the work of Errett 
Bishop in constructive mathematics. In this review I have tried to portray a 
mathematician who was often capable of envisioning what others could not. 
Perhaps some day our science will approach his constructive mathematics as 
the same kind of thinking and will work at understanding what Errett is trying 
to tell us. 
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The mathematical formalization of symmetry into the all-important ab­
stract concept of a group had its origins in Galois' study of the solutions of 
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polynomial equations. Similarly, continuous groups trace their lineage back 
to Sophus Lie's attempts to extend Galois theory to the solutions of differ­
ential equations.1 Lie began with the wonderful observation that all of the 
known special methods for integrating ordinary differential equations (many 
of which we still teach in a first course on the subject) were but manifesta­
tions of the single underlying concept of the invariance of the equation under 
a one-parameter group of transformations. This seminal idea has proved to be 
extraordinarily fertile, branching far from its origins; Lie groups now appear 
in every branch of mathematics and its applications, from number theory to 
particle physics, from topology to elasticity. However, in contrast to later re-
workings of the subject, Lie's approach was quite practical—his groups were 
always realized concretely as explicit transformation groups acting on some 
(usually Euclidean) space. Any reader of his collected works cannot but be 
impressed by the vast number of explicit examples, results, and computa­
tions. Extensions to partial differential equations, differential geometry, con­
tact transformations, etc. were but a few of the prodigious outpourings of 
Lie's fertile imagination. A crucial ingredient in Lie's approach is his com­
putational algorithm for determining the symmetry group of a differential 
equation, which can readily be applied in practice to equations of physical 
and mathematical interest. 

Perhaps the high water mark of the classical phase of the romance be­
tween Lie groups and differential equations was the celebrated theorem of 
Emmy Noether, [8], proving the one-to-one corrrespondence between symme­
try groups of variational problems and conservation laws of their associated 
Euler-Lagrange equations. Her one paper in mathematical physics, before 
moving on (up?) to the more rarified atmosphere of pure algebra, is a touch­
stone, and has become, arguably, the most quoted theorem in all the math­
ematical physics literature. With this one masterful display of her applied 
mathematical talents, she succeeded in seducing Lie's more practically-minded 
theory, for it soon forsook its coarser origins in applications to differential 
equations and mathematical physics, and, lured by the promises of the French 
(E. Cartan, Chevalley, Bourbaki) attained mathematical respectibility, glob­
alization and abstraction, and, above all, fashionability. The problem was, of 
course, that the groups Lie had introduced, those that arise naturally from a 
study of differential equations, are (i) local transformation groups acting con­
cretely on an open subset of some Euclidean space (the space of independent 
and dependent variables for the differential equations in question) and (worse 
yet) (ii) often fail to be particularly aesthetically pleasing Lie groups, e.g., 
semisimple, solvable, etc. The French theorists succeeded in divorcing the 
Lie group from its transformation space, globalizing the resulting abstraction, 
and thereby endowing it with full mathematical respectability. (An inter­
esting sidelight: the corresponding infinite dimensional Lie "psedudogroups" 
were never wholly convinced that this turn of events was really beneficial, and, 
to this day, cause untold headaches for the unrepentant Bourbakist, who still 
can't find the right universal abstract object to represent them!) Its humble, 
practical origins in the mire of differential equations effectively forgotten, Lie 

1In point of fact, despite his unquestioned originality, Lie was not successful in this 
particular quest, which had to wait until the more refined theory of Picard and Vessiot. 
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group theory entered the canon of the pure mathematician. Except for the 
important, but essentially unrelated developments in representation theory, 
physicists, engineers and applied mathematicians were left waiting for almost 
half a century before they could once again lay proper claim to its marvelous 
power. 

In retrospect, from the applied viewpoint, the history of Lie group theory 
borders on the absurd. In 1918, with the results of Lie and Noether in hand, 
applied researchers had in their possession an extensive arsenal of concrete, 
practical algroithms for conducting a systematic and complete investigation 
into the symmetry properties of the important equations of mathematical 
physics and engineering, an enterprise that has now been seen to lead to pro­
found and far-reaching consequences. However, for almost 40 years, nothing 
happened*. I'm not sure that we will ever fully comprehend the true reason for 
this all-encompassing inaction, although it would make a fascinating study in 
the sociology of mathematics and physics in this century. However, some of 
the principal reasons, in my opinion, are that (a) Lie himself was curiously 
uninterested in physical applications of his work, whereas (b) Noether never 
made it clear that Lie's constructive methods could be combined with her 
theorem to efficate a completely algorithmic derivation of symmetry groups 
and conservation laws in mathematical physics. The subject just fell into a 
complete eclipse, mentioned, if at all, as an interesting, but completely devel­
oped topic in an ordinary differential equations text, e.g., [5], or, in the case 
of Noether's theorem, in watered down versions palatable to physicists of the 
time. 

The first glimmer of hope in the darkness was Garrett Birkhoff's book 
on hydrodynamics, [2], which was the first to explicitly champion the use 
of the group concept in practical applications. However, the resulting small 
stirring of research activity in the West in the early 50s quickly died away, 
and it was not until L. V. Ovsiannikov began trumpeting Lie's cause from 
Siberia in the late 50s that the Soviets woke up to the possibilities, and, a 
decade later, applied mathematicians in the West began to take notice. The 
70s witnessed a great explosion of research in the subject, further spurred 
on by interactions with soliton equations and Hamiltonian systems. The en­
tire subject of Lie groups and differential equations is now very much alive, 
and has produced numerous important applications to contemporary applied 
mathematics, physics, chemistry and engineering. 

The slightly apochryphal division of the realm of groups between the con­
tinuous (Lie) and the discrete (Klein) certainly left Klein with the raw end of 
the deal, since Lie's far greater success in developing his subject, as anyone 
who has seriously looked at "discrete math" realizes, stems from the fact that 
one can "do calculus" on Lie groups. In particular, the infinitesimal gener­
ators (Lie algebra) of the group linearly encode all the (local) information 
about the group itself. For example, the linear infinitesimal symmetry condi­
tions translate immediately into genuine symmetry conditions. To illustrate, 
suppose we are given a system of partial differential equations 

A(s , t i ( n>)=0. 

Let G be a local group of transformations acting on the space X x U of 
independent and dependent variables, consisting of transformations of the 
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form 
(z, u) = g • (z, u) = (<p{x, u), </>(x, u)), g e G. 

The transformations in G act on functions u = f(x) by point-wise transfor­
mation of their graphs. We call G a symmetry group of the system A = 0 if 
it transforms solutions to solutions. The infinitesimal generators of the group 
are vector fields on X x U, which take the general form 

i=l a=l 

The group transformations are recovered by integrating the autonomous sys­
tem of ordinary differential equations governing the flow of these vector fields. 

Since the group acts on functions, it also acts on their derivatives (jets) by 
"prolongation". While the formula for the prolonged group transformations 
is quite complicated, there is a simple explicit formula for the corresponding 
prolonged infinitesimal generators, which are vector fields pr v on the space 
of derivatives (x,u(n^). Lie proved the fundamental result that, under some 
very mild nondegeneracy conditions (almost always satisfied in practice), the 
connected transformation group G is a symmetry group of the system of 
differential equations A = 0 if and only if the infinitesimal invariance condition 

(*) pr v[A] = 0 whenever A = 0 

holds for every infinitesimal generator v of G. An important point is that one 
can use (*) to explicitly determine the most general vector field v leaving A = 
0 invariant, and thereby completely determine the most general (connected) 
symmetry group of any given system of differential equations! Indeed, (*) 
constitutes a large, overdetermined system of elementary partial differential 
equations for the coefficient functions £*, <pa of the infinitesimal generator 
v, which can almost always be explicitly solved for examples of practical 
importance. There are now several symbolic manipulation computer programs 
available which will do this for you—given a system of partial differential 
equations, it will explicitly calculate the symmetry group, cf. [11]. 

Once the symmetry group of a differential equation has been determined, 
there are many further applications available, which are of use not only for 
linear equations, but, even more importantly, for nonlinear differential equa­
tions as well. One can (a) construct new solutions from old ones using group 
elements, (b) in the case of ordinary differential equations, use the groups to 
reduce the order, or even solve them explicitly by quadrature, (c) in the case of 
partial differential equations, determine explicit "group-invariant" solutions, 
generalizing the classical similarity solutions of such fundamental importance 
in applications, (d) in the case of linear or Hamilton-Jacobi equations, use the 
groups to determine coordinate systems in which one can separate variables, 
(e) in the case of equations admitting a variational structure, either as the 
Euler-Lagrange equations for some variational principle, or as equations in 
Hamiltonian form, use the symmetry groups to explicitly determine conser­
vation laws. Other applications include solution of boundary value problems, 
bifurcation theory, linearization of differential equations, numerical integra­
tion schemes, complete integrability, scattering theory, etc., etc. In all cases, 
the constructions are explicit, and can be readily implemented in practice. 
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Turning to the particular topic of the book under review, the first re­
mark is that the study of the symmetry of Maxwell's equations has a long, 
and, until recently, separate history quite apart from the mainstream of the 
standard applications of Lie groups to differential equations. In 1909, appar­
ently unaware of the straightforward infinitesimal methods of Lie, H. Bate-
man, [1], and E. Cunningham, [3], first derived the conformai invariance of 
Maxwell's equations in vacuum. Along with the "Larmor-Rainich transforma­
tions" , which rotate the electric and magnetic fields, these constitute the full 
symmetry group of point transformations for Maxwell's equations. The con­
tributions of the authors have been in generalizing these transformations to 
include a number of nonlocal, "hidden" symmetries. The basic method used 
is to work in Fourier transform space; the original inspiration can be traced 
back to a remarkable observation of Fock, [4], relating the Schrödinger equa­
tion for the hydrogen atom in momentum space to the equation for spherical 
functions on the 4-sphere. In particular, this observation produces an 0(4) 
symmetry group of nonlocal transformations for the Schrödinger equation for 
the hydrogen atom, [7]. Fushchich and Nikitin, in a long series of papers, 
have pushed this idea in many directions, leading to many previously unde­
tected symmetries of systems connected with Maxwell's equations and the 
Dirac equation. 

The book itself is primarily a summary of the authors' papers on this sub­
ject over the last decade. It provides an exhaustive (and, at times, exhausting) 
treatment of this particular niche in a much larger subject, and, as such, is 
certainly of interest to specialists. Many of the above-mentioned applications 
of Lie groups are treated in this particular context, although separation of 
variables, a subject still in its infancy in the case of linear systems of par­
tial differential equations, [6], is not mentioned. The reader will see how 
the general methods, along with some interesting generalizations, are applied 
to one specific example (and its many variants), although the treatment is 
such that the uninitiated may get lost in an unavoidable maze of notation. 
A reader who is just beginning in the subject is well advised to spend the 
initial effort assimilating a more general introduction to the entire range of 
applications of Lie group theory to differential equations, e.g., [9, 10], before 
attempting to specialize to this one particular topic. Nevertheless, the book 
represents an important contribution to the study of the role of symmetry in 
electrodynamics and relativistic physics. 
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The central problem in knot and link theory is to distinguish link types 
via computable invariants. Figure 1 shows an example, for 75 years the two 
knots in Figure 1 were thought to represent distinct knot types, until in 1974 
it was discovered that a totally unmotivated but very simple change in the 
projection takes the left picture to the right [P]. If we cannot find such a 
change, how can we be sure that two knots are distinct? 

FIGURE l 
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