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NUMERICAL ORBITS OF CHAOTIC PROCESSES 
REPRESENT TRUE ORBITS 

STEPHEN M. HAMMEL, JAMES A. YORKE AND CELSO GREBOGI 

1. Introduction. It is the nature of chaotic processes of the form x n + i = 
f(xn), where f : Rd —• Rd , that different orbits starting close together will 
move apart rapidly. When following an orbit numerically, a common accuracy 
is about 14 digits. For chaotic systems such as the logistic map (or in two-
dimensions, the Hénon map), distances between two nearby orbits on average 
grow geometrically on every iterate. For example, it is not unusual that 
the distance roughly doubles on every iterate. At that rate two true orbits 
starting 10 - 1 4 apart will be more than 1 unit apart after just 50 iterates: the 
error will be of the same order of magnitude as the variables themselves. The 
implication is that roundoff error on just the first step is sufficient to destroy 
totally the ability to predict just 50 iterates later. 

While a numerical orbit will diverge rapidly from the true orbit with the 
same initial point, there often exists a different true orbit with a slightly 
different initial point which stays near the noisy orbit for a long time. We 
have developed rigorous numerical procedures to prove there exists a true 
orbit which stays near the noisy orbit of a given chaotic process for a long 
time. 

We begin by defining the shadowing property. The term pseudo-orbit is 
used to describe a numerically generated noisy orbit. 

DEFINITION. {pn}
b
n=a is a fy-pseudo-orbit for f if |pn+i - f ( p n ) | < of for 

a < n < b, where f is a Z7-dimensional map and p is a Z>-dimensional vector 
representing the dynamical variables. We are particularly interested in the 
case where a and b are finite. 

DEFINITION. A true orbit {xn} satisfies xn+i = f (xn). 
DEFINITION. The true orbit {xn} 6x-shadows {pn} on [a, 6] if |xn — p n | < 

For comparison of different dynamical systems, we use the convention that 
each coordinate has been rescaled to the interval [-1,1] or the square [-1,1] x 
[—1,1] before the quantities ôf and ôx are evaluated. 

2. Two-dimensional shadowing. In this work, we investigate shadow
ing in two-dimensional diffeomorphisms. The first system to be examined is 
the Hénon map, which is not uniformly hyperbolic. Anosov and Bowen [1, 
2] proved shadowing results for uniformly hyperbolic systems. The systems 
we study are not hyperbolic. See [3, 5, 6] for one-dimensional shadowing 
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results. Typical pseudo-orbits cannot be shadowed for all time. We shall use 
the following form of the Hénon map, with x n = (wn, vn): 

m ff \ (un+i\ (l-Au2
n + vn\ 

(i) Xn+1=f(Xn) = (^+j = ^ _jun y 
where J is the determinant of the Jacobian matrix of the map. We examine 
this map for J = —0.3, and for values of A and initial conditions (UQ,VO) 
which yield a positive Lyapunov exponent along the orbit. 

The pseudo-orbits we generate, and hence the theorems we state, are inde
pendent of the arithmetic round-off technique used by a particular computer. 
To insure this, we define a truncation operator T(x) which truncates each 
coordinate of the vector x to the B most significant bits. We study B = 48. 
The specific orbits we will analyze are of the form p n +i = T(f (pn)). In 
practice, this machine-independent pseudo-orbit is determined by having the 
computer find an approximation to f (pn) using 96-bit precision arithmetic. 
This approximation is machine-dependent, but we have an upper bound on 
the size of the error in the evaluation of f. Truncation of this vector to B-
bit precision results in a machine-independent vector provided that the error 
in the 96-bit evaluation of f (pn) does not affect the truncated 48-bit result. 
Therefore each such vector is checked before truncation to verify that the 
errors do not corrupt the value of T(f (pn)). 

Our goal is simply to generate numerical orbits and then to calculate rig
orously how close a true orbit is, and to obtain lower bounds for how long it 
stays close. 

THEOREM 1. Let f be defined by (1), with A = 1.4 and p 0 = (0,0). For 
N = 107, the 6f-pseudo-orbit { p n } ^ = 0 with p n+i = T(f (pn))> is 6x-shadowed 
by a true orbit within 8X = 10~8. 

When the Hénon pseudo-orbit is rescaled to the region [—1,1] x [—1,1], 
we can show ôf = 2~46 ~ 10~~14. The long shadowing time is striking when 
compared to the great rate at which orbits of this system diverge from each 
other. The values A and J are the most commonly investigated values. We 
have chosen the initial point (0,0) to appear to be "generic" : we have obtained 
comparable results for a variety of other initial conditions and parameter 
values. 

We have a similar result for the Ikeda map. This map is a two-dimensional 
dissipative map describing the electromagnetic field within a laser ring cavity. 
It is convenient to formulate it as a map of the complex plane to itself: g : C —• 
C. Thus, zn € C represents both the amplitude and phase of the field at a 
fixed point in the ring cavity, and 

n) = 7 + Rzn exp t h e - ——;—^ ) 
L V * ' \zn\ / J 

(2) z n + i = g(zr] 

gives the field after one round trip of the signal within the cavity. Further 
details about the map and its properties, including relevant parameter values, 
can be found in [4]. 
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THEOREM 2. Let g be defined by (2), with a = 5.5, 7 = 0.85, K = 0.4, 
R = 0.9, and po = (0,0). For N = 106, £/ie pseudo-orbit {pn}£L0

 w^ 
p n +i = T(g(pn)) , is ôx-shadowed by a true orbit within 8X = 10~8. 

In order to indicate the relative magnitudes of the quantities we expect to 
find, we present the following summary: 

CONJECTURE. For a typical dissipative map f : R2 —» R2 with a positive 
Lyapunov exponent and a small noise amplitude Óf > 0, we expect to find 
ôx < y/Sf for an orbit length N ~ 1/^/óf. 

OUTLINE OF PROOF OF THEOREMS. Our goal is to show that a true 
orbit {xn} exists near the pseudo-orbit {pn}- We construct a sequence of 
small parallelograms An (near p n ) within which this true orbit must reside. 
It will follow from a topological argument that there exists a true orbit {xn} 
such that x n G An for all n. We require that for each n > 1, f (An) maps across 
An+i as shown in Figure 1, and in particular: (i) An+i n f{An) ^ 0 , and 
(ii) each An has distinguished sides C\ and C2 such that f(An) n C^+ 1 ^ 0 , 
while f (C^) f iA n + i = 0 , i = 1,2. The construction of the parallelograms 
will depend on the stable and unstable unit vectors, denoted cn and ên , of a 
numerical orbit. These unit vectors are computed using the fact that on the 
average, the map is contracting along stable directions {cn}, and expanding 
along unstable directions {ên}. 

f(cl> 

f(c5) 
FIGURE 1. The numerical procedure verifies that f maps 
An across A n +i . 

It is then possible to define 
N 

(3) J o = f | ' " i ( ^ ) # 0 -
3=0 

There exists x 0 G Jo such that x n = fn(x0) € An, 0 < n < N. 
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Using 96-bit arithmetic, a less-noisy orbit {pn} is constructed which re
mains uniformly near {pn}« The point p n will be the center of An. Let n n 

represent the one-step error 

(4) I I n+i = p n + l - f ( P n ) , 

where by definition | I I n | < of. The refined orbit {pn} is constructed by 
setting p n = p n + ^ n , where <&n is constructed so as to remain small and to 
satisfy 

(5) #n+l - Ln®n ~ n n + i , 

where Ln is the derivative of f evaluated at p n . 
The sequence { $ n } is found as follows. Using the unit vectors {ên} and 

{cn}, we can then represent $ n and I I n as: <&n = a n ê n + /?ncn, and 
n n = r/nên + ^ nc n . We use (5) to find approximate values for the coeffi
cients an,/?n,r/n, and çn: 

(6) # n + i = Ln{anèn + PnCn) ~ ( ^ n + l ê n + l + £ n + l C n + l ) . 

In (4), f (pn) can be well approximated by using f (pn), the numerical image 
of p n using 96-bit arithmetic. Thus, {rjn} and {$n} can he calculated for each 
n directly, and {an} and {(3n} can be determined recursively using 

(7) a n + l = \Lnên\an - Vn+1, Pn+l = \LnCn\Pn ~ Çn+1-

This is made computationally stable by calculating the coefficients f3n for the 
stable direction c n by starting at the initial point n = 0, and the coefficients 
an in the unstable direction ên starting at the end point n = 7V: 

ttn+l+r/n+l A 

(8) \Lnen\ 
Pn+1 = Pn\Ln£>n\ ~ Çn+1, Po = 0. 

The refined pseudo-orbit {pn} is less noisy than the original pseudo-orbit 
{p n}. There is no a priori guarantee that this procedure will work for arbitrary 
initial conditions, although it does work in the cases reported here. 

Finally we can indicate how the numerical computations insure the proper 
behavior of the sequence of parallelograms An. The boundary of the parallelo
gram An consists of two edges Cn parallel to the unit vector cn , and two edges 
En parallel to the unit vector ên , as shown in Figure 1. Thus, the boundary of 
the parallelogram is defined by the 4 line segments: dAn = EnUE%\jCnUC%. 
They are centered on the points p n . f (x) will denote the higher-precision im
age (using a 96-bit mantissa in the arithmetic) of x under the map f, and f 
is assumed to be 6/-noisy, that is, |f (x) — f (x)| < of. In our computations we 
are able to keep the An so small that |f(x) - f ( p n ) -£>f (Pn) (x -p n ) | < 2~~92 

for x G An> 
Recall that f refers to the true image of An- For two sets A and JB, let 

dinf(A, B) = inf{d(z, y) : x € A and y G B}. To insure that the qualitative 
intersection shown in Figure 1 occurs, we shall construct {An} subject to 
the constraints: d inf(f(i2n),i£n+1) > 6/ and dmt(Cn,î~

l{Cl
nJtl)) > ôf, for 

i,j = 1,2. Similar to the calculation of coefficients {an} and {/3n} for the 
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refinement process above, the sides {En} are recursively tested under forward 
iteration, while the sides {Cn} are tested under iteration by the inverse map. 
These conditions on the construction of An insure that the true image of An 

overlaps An+\ correctly, as shown in Figure 1. 
Since there is a true orbit in {An}, it is straightforward to compute the 

distance of the furthest point of An from p n , and thence to compute the 
maximum of these distances over all p n . This yields an upper bound on Sx. 
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