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TOPOLOGICAL TYPES AND MULTIPLICITIES 
OF ISOLATED QUASI-HOMOGENEOUS 

SURFACE SINGULARITIES 

STEPHEN S.-T. YAU 

ABSTRACT. TWO germs of 2-dimensional isolated quasi-homogeneous 
hypersurface singularities have the same topological type if and only 
if they have the same characteristic polynomial and the same funda­
mental group for their links. In particular, multiplicity is an invariant 
of topological type, an affirmative answer to Zariski's question in this 
case. 

Let (V, 0) and (W, 0) be germs of isolated hypersurface singularities in 
C n + 1 . We say that (V, 0) and (W,0) have the same topological type if there 
is a germ of a homeomorphism from ( C n + 1 , V,0) to ( C n + 1 , W, 0). In his re­
tiring Presidential address to the American Mathematical Society in 1971, 
Zariski asked whether (V, 0) and {W,0) have the same multiplicity if they 
have the same topological type. He expected that topologists would be able 
to answer his question in relatively short order. However the question ap­
pears to be much harder than what Zariski thought. Even special cases of 
Zariski's problem have proved to be extremely difficult. Only recently Greuel 
[4] and O'Shea [14] proved independently that topological type constant fam­
ilies of isolated quasi-homogeneous singularities are equimultiple. For quasi-
homogeneous surface singularities, Laufer [5] explained the constant multi­
plicity for a topological type constant family of singularities from a different 
viewpoint. However it is not known whether two quasi-homogeneous singu­
larities having the same topological type can be put into a topological type 
constant family. Let (V, 0) be a dimension two isolated hypersurface singu­
larity. Lê and Teissier [8] observed that A'Campo's work [1] can often be 
used to give positive results towards Zariski's question. Let C(V,0) be the re­
duced tangent cone. Let PC(V, 0) denote the hypersurface in CP2 over which 
C(V, 0) is a cone. Then, the work of A'Campo shows that the multiplicity 
of (V, 0) is determined by the topological type of (V, 0) in case the topolog­
ical Euler number x (PC(^0) ) is nonzero. The same arguments also show 
that, for isolated hypersurface two-dimensional singularities, the embedded 
topology and the multiplicity determine x(PC(^0)))- However, so far, by 
using A'Campo's result, one can only prove that a surface in C 3 having at 0 
a singularity of multiplicity 2 cannot have the same topological type at 0 as 
another surface of multiplicity different from 2. 
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For plane curve singularities, the Zariski question was known to be true. 
The reason that the Zariski question could be answered was that the topolog­
ical types of plane curve singularities were well understood (see [2, 3, 9, 16, 
19, 22]). 

Let (V, 0) be an isolated hypersurface singularity in Cn+1 defined by the 
holomorphic function ƒ : (C n + 1 ,0) -+ (C,0). Then the link of (V,0) is Kv = 
g2n+i p| y w h e r e S^n+i j s foe (2n + l)-sphere of radius e centered at the 
origin and e > 0 is sufficiently small. It is known that TTI(KV) depends only 
on the topological type of (V,0) [6, 10]. 

Let 0 < S < e < 1. We define 

T={teC: \t\<6}, B = {zeCn+1: |^o|2 + • • • + \zn? < e}, 

x = B n /_1(T), x(t) = Bn f1^). 
Milnor proved that ƒ : X\X(0) —• T\{0} is a locally trivial smooth fiber bun­
dle and the fiber has the homotopy type of a bouquet of n-spheres. The 
generator of 7Ti(T\{0}) (represented by a counter-clockwise oriented circle 
around the origin) induces the monodromy automorphism h: H*(X(t), C) —• 
H*(X(t),C). Let A\r{z) denote the characteristic polynomial Ay (2) = 
det{zl - ft*) of the linear transformation ft*: Hn(X(t),C) -> Hn(X(t),C); 
Ay (z) is an invariant of topological type of (V, 0) [6]. Recall that a hyper­
surface singularity (V, 0) = {(zo,..., zn) : ƒ(zo, •. • ,zn) = 0} Ç C n + 1 is quasi-
homogeneous if ƒ is in the Jacobian ideal of ƒ, i.e., ƒ G (df/dzo,..., df/dfn). 
The main purpose of this note is to announce the following results. 

THEOREM A. Let {V,0) and {W,0) be two isolated quasi-homogeneous 
surface singularities in C 3 . Then (C3,V,0) is homeomorphic to (C3,W,0) if 
and only if iri(K\r) — TTI(KW) and Ay (2) = A^(^) . 

A polynomial ft(zo, • • •, zn) is weighted homogeneous of type (wo,..., wn), 
where (wo,. . . , wn) are fixed positive rational numbers, if it can be expressed 
as a linear combination of monomials Z^ZQ1 • • • z\? for which io/wo + • • • + 
in/u)n = 1. (web • • •, wn) is called the weights of ft. As a corollary to the proof 
of Theorem A, we have the following corollary. 

THEOREM B. Let (V, 0) be an isolated quasi-homogeneous surface sin­
gularity defined by a weighted homogeneous polynomial in C 3 with weights 
{wo,wi,W2). Then the topological type of (V,0) determines and is determined 
by its weights (wo,u>i,W2)-

The following theorem solves the Zariski question completely in the case of 
quasi-homogeneous surface singularities in C3 . 

THEOREM C. Let (V,0) and (W,0) be two isolated quasi-homogeneous 
surface singularities in C 3 . If (C3,V, 0) is homeomorphic to (C3,W, 0) as a 
germ, then V and W have the same multiplicity at the origin. 

SKETCH OF THE PROOF OF THEOREM A. Suppose that a real manifold 
B of dimension m and a family {(M*, Nt) : t E ü?, Nt is a closed submanifold 
of a compact differentiate manifold Mt} are given. We say that (Mt,Nt) 
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depends C°° on t and that {(Mt,Nt): t G B} is a C°° family of compact 
manifolds with submanifolds if there is a C°° J(, closed submanifold JV, and 
a C°° map u from JK onto B such that Q = UJ/JV is also a C°° map from JV 
onto B satisfying the following conditions: 

{i)Mt = oj-1(t)DNt=û>-1{t). 
(ii) The rank of the Jacobian of OJ (respectively Q) is equal to m at every 

point of JK (respectively J^). 
We first prove the following theorem which is essential in proving the above 

theorems. The theorem is classically known when JV is an empty set. 

THEOREM 1. Let {{J£ ,Jf), (ÜJ,Ü),B) be a C°° family of compact mani­
folds with submanifolds, and to any point of B. Then 

{MuNt) = («>-1(t),Q-1(t)) 

is diffeomorphic to (Mto,Nto) = (a;_1(io),^_1^o)) for any t E B if B is 
connected. 

It follows from the above theorem that we have: 

THEOREM 2. Suppose f (zo,Z\,z2) and g{zo,zi,z2) are weighted homoge­
neous polynomials with the same weights (WQ,W\,W2). If the variety V of f 
and the variety W of g have isolated singularity at the origin, then (C3,!^, 0) 
is homeomorphic equivalent to (C3,W, 0). 

In order to see Theorem 2, we let A be the intersection of the plane 
x/wo+y/wi+z/w2 = 1 with the first quadrant of R3 . Let TV be the number of 
integral points {a0,ai,a2) which are in A. Let F = J2a(a0,ai,a2)

zo°zixz22» 
where the summation is over all the integral points in A. Then F is a complete 
family of weighted homogeneous polynomials with weights {wo,w\,w2). Let 
*y = {(2fo,^i,^2>-..,fl(oo,oi,ua)>---): F = 0} be a variety of C ^ * 3 defined by 
F = 0. Consider the natural projection TT from C i V + 3 to CN given by sending 
Uo^i^2,. . . ,0(ao,a1 ,a2)>---) t o (• • • ' a(a0,c*i,a2), • • • ) and 7f be the restric­
tion of 7T to 2^. Let B be the set of all (... , 0( a o > 0 l > 0 2 ) , . . . ) in CN such that 

TT-H--- , 0 ( a o > a i > a 2 ) , . . . ) = {(zo,ZuZ2): Hct(ao,aua2)
zO°Zllz22 = ° ) h a S 

isolated singularity at the origin. Let JK = {(ZQ, Z\, Z2,..., a(ao,c*i,a2)J •••)'• 
ko|2 + \zi\2 + \z2\2 = 1} and JV = "VÇ\JK. Denote u and Q be the restriction 
of 7T and 7f. Then one checks that the conditions in Theorem 1 are satisfied. 

It follows from Theorem 2 and an argument due to Orlik and Wagreich 
[13] (see also Arnold [0]) that any isolated singularity (V, 0) in C 3 defined by 
a weighted homogeneous polynomial has the same topological type as one of 
the following seven classes of singularities with the same weights as (V,0). 

Class I: V(a 0 , a i ,a 2 ; J ) = {*g° +*? 1 + 4 2 = 0 } . 
Class II: V(ao,ai ,a2 ; /ƒ) = {4° + ZV + *i42 = 0 } , ax > 1. 
Class III: V(a0,aua2;III) = {z%° + z\xz2 + zxz%2 = 0}, ax > 1, o2 > 1. 
Class IV: V(a 0 ,a i ,a 2 ; TV) = {z%° + z0z^ + z^2 = 0}, a0 > 1. 
Class V: V(a0,aua2;V) = {z^zx + z\xz2 + z0z%2 = 0}. 
Class VI: V(a0,aua2;VI) = {z%° + z0z^ + ZQZ? + z\xz\2 = 0}, where 

(oo — 1)(ÖI^2 -H Û2^I) = aç)a\a2. 
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Class VII: V{a0,aua2\VIII) = {z^zx + z ^ ' 1 + z0z%2 + z\lzb
2
2 = 0}, 

where (ao — l)(ai&2 + Û2&I) = 02(0001 — !)• 
It is well known that any isolated two-dimensional hypersurface quasi-

homogeneous singularities (V, 0) is actually weighted homogeneous after a 
biholomorphic change of coordinate. Hence in order to prove Theorem A, we 
may assume that both (V, 0) and (W, 0) are one of the seven classes above. 
Now we need two important results due to Neumann [12] and Orlik-Wagreich 
[13] about the abstract topology of these singularities. Neumann's results 
say that the minimal resolutions of these singularities are determined by the 
fundamental groups. Orlik-Wagreich computed the minimal resolutions of 
these singularities explicitly in terms of their weights. On the other hand 
Milnor-Orlik [11] and Varchenko [17] computed the monodromy of these sin­
gularities explicitly. Yoshinaga [18] observed that the Milnor-Orlik result has 
strong consequences on Ui once we know the characteristic polynomial of the 
singularity, where Ui/vi is a reduced fraction of the weight Wi. Varchenko's 
result allows us to write down the characteristic polynomials of the above 
seven class singularities in terms of ao, ai , and a2 explicitly. By using the ex­
plicit data of the minimal resolutions and characteristic polynomials, we prove 
that if (V, 0) and (W, 0) are one of the seven classes and they have the same 
characteristic polynomials and fundamental groups, then they have the same 
weights (see Theorem 3 below for a more precise and stronger statement). It 
follows from Theorem 2 that (V, 0) and (W, 0) have the same topological type. 
This completes the proof of Theorem A. 

PROOF OF THEOREM B. By Theorem A, the topological type of (V,0) 
determines the characteristic polynomial and the fundamental group of the 
singularity. However in the course of proving Theorem A, we have shown that 
the characteristic polynomial and the fundamental group of the singularity 
determine its weights. Conversely, the weights determine the topological type 
of the singularity by Theorem 2. 

In fact, Theorem 3 is interesting in its own right. 

THEOREM 3. Let f and g be weighted homogeneous polynomials with iso­
lated critical points at the origin. Suppose that A/(z) = Ag(z) and iri(Kf) = 

(I) If both ƒ and g are of class I, then ƒ and g have the same weights and 

(f = z^+z^l + za
2
i\ 

\g = zZ°+zï>+z?, 
where {i0,ii,^} = {0,1,2}. 

(II) If f and g are both of class II, then f and g have the same weights and 
either 

(1) f = %°+%1+z1$'=g 

or 
( < * 2 a l ( a Q - l ) 

(2) J / = *g1+z?°+Woio1 ' . 
\g = zZ°+za

1>+z1z?, 
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with ao(ai — 1) divides aiü2{ao — 1), or 

f/ = ^ (*+1)+*t+1+*i«*. 

(III) If f and g are both of class III, Men ƒ and g ftave Me same weights 
and either 

(1) / = * S ° + * i a i * 2 + 2 l 4 2 = 0 
or 

(IV) ƒƒ ƒ and g are 6ot/i o ƒ c/ass IV, then 

f = z%°+ ZQZ? + ziz? = g. 

(V) J/ƒ and g are both of class V, then ƒ and o ftave #ie same weights and 
either 

(i) 

where 

(2) 

{io.ii 

with all the 

(3) 

wn'M all the 

(4) / / 

f ƒ-^a•o^1+^î' 1 , a<2 

2 2 + 20*2 ) 
I 0 = ^ ° 2 i + 2 j 1

2 2 + 2o42 , 

.,«2} is an even permutation 
a\ (OQ02-OQ + 1) «»(«! 

= 2 i 2 0 • > • » - » + > + 2 2 2 ^ 

= 2 S ° 2 1 + ^ I 2 2 + 20222> 
exponents being integers, or 

00(0102-02 + !) Q2(on 

exponents being integers, or 
02(0001 - o t +1) 01 (of 

= Z l 2 0 "0 O 2-< 1 0 + 1 +Z2Z1"
1C 

o/{0,l ,2} or 
<*2~°2 + 1) «2( 

'* ° 1 + 1 ) + 2 0 ^ 

>al ~ a l + 1) £jj 
i2~a0 + 1 I ~ ~ c 

)q 2 -ao + l) ap 
i 2 _ a 2 + 1 l ~ ~ c 

>Q°1 
t 0 a 2 -

'1«2-

(«1«2 
• o a i -

z«i±i) 
«0 + 1) 

«2 + 1 

-«2 + 1) 
-«1+1 

IM'M a// Me exponents being integers. 
(VI) ƒƒ ƒ and g are 6oM of type VI, Men ƒ and g have the same weights 

and either 

( 1 ) j ƒ = 20° + *>*?' + *o4 2 + ^ *'* , 
g = z$>+zozîl+zozî*+zllz?, 

or 

( 2 ) f ƒ = *S°+ zozF+zozS* +z\z\\ 

\g = z^+z0z^+z0z^+zb
1
lzb

2\ 

(VII) ƒƒ ƒ ana" a are both of type VII, then f and g have the same weights 
and either 

. ƒ = 2g°2j + 202?1 + ZoZ? + ^ « j » , 

g^z^Zi + zoz^+zoz^ + z^z^, 
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or 
, « 0 « 2 ( a l - 1 ) 

(2) J ƒ = 41 *i + z0zt° + z0z2
ai(a°-1> + z\*z\*, 

\g = Z%0Z! + Z0zll + Z0Z? + z\'z\\ 

with ai(ao — 1) divides aoa2(ai — 1), or 
/ Q 2 ( ° 0 ° l - ! ) - « ! ( o p - l ) apaoÇai - 1 ) 

(3) J / = W a^a°-1} + z0z^la°ll} + z0z
a
2° + z\^42, 

\g = ztfzi + SO*"1 + zoz? + ^ 2 , 

iw£/i a// £/ie exponents being integers and a^ divides a\(ao — l)/(ao — 1,ai — 1) 
w/iere (a, 6) denotes the greatest common divisor of a and b, or 

s a2(aoai-l)-ai(ao-l) a2 (opoi - l)-oi (op - 1) 
I r ^02 i ~ ~ 0 2 ( 0 1 -1) , a2(a0-l) . „61 „62 

(4) ) J - Z0 Zl + *0*i + ̂ 0̂ 2 + zl z2 > 

V {/ = 2 0 ^1 T ZO^I + ̂ 0^2 + z\ z2 1 
with all the exponents being integers and a<i divides a\(ao — l)/(ao — 1, ai — 1), 

(5) i / = *i*o a 2 ( a i _ 1 ) + zozT + so**1 + Z\XA\ 

\ g = 4°zi + wV + zo42 + z\Xz\\ 
with all exponents being integers and a^ divides a\(a§ — l)/(ao _ 15^i — 1), or 
(6) 

a o a o C a ! - ! ) a 2 ( o Q O i - l ) - a i ( a o - l ) a 2 (opai - 1 ) - 0 1 (op - 1) 

ƒ = ZlZ2
aiUo 1} + Z0ZX

 a2(O0"1) + 20*2
 2 ( a i" + ̂ ' 4 2 

^ = 2rg°zi+2r 0 2r î 1 - | -^2 a +^î 1 ^ a 

with all the exponents being integers and a<i divides a\(ao — l)/(ao —15 «i — !)• 

There are analogous theorems in case ƒ and g are in different classes. 
PROOF OF THEOREM C. We first observe the following lemma. 

LEMMA 4. Let f{z§,z\,Z2) be a weighted homogeneous polynomial with 
weights (wo,wi,W2). Suppose that ƒ has an isolated singularity at the origin. 
Denote the multiplicity of f at the origin byrrif. Then m f > min{wo , wi,u>2 }• 

We next prove the following proposition: 

PROPOSITION 5. Suppose that ƒ is one of the seven classes. Let m = 
min{n G Z: n > min{u>o, w i , ^ } } - Then the multiplicity of m f of f is m. 

Because of Theorem B, we only need to prove Theorem 6 in order to prove 
Theorem C. 

THEOREM 6. Let f{zo, z\,z<i) be a weighted homogeneous polynomial with 
weights (wo? ^ i , ^ ) . Suppose that ƒ has an isolated singularity at the origin. 
Then rrif, the multiplicity of f at the origin, equals 

min{m G Z: m > minlu^wi ,^2}}-

PROOF. By Orlik-Wagreich [13], ƒ can be written as g+h, where g{zo,z\, z<i) 
is one of the seven classes having the same weights (wo>wi, W2) as ƒ, and g 
and h have no monomial term in common. It is clear that m f < mg. By 
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Proposition 5, we have mg = min{n G Z: n > mm{wo,wi,W2}}. Hence we 
deduce that m/ < min{n 6 Z: n > min{wo, Wi, W2}}. 

Conversely, by Lemma 4, we see that m ƒ > mm{wo,wi,W2}. Thus m f > 
min{n € Z: n > mm{w0, Wi, ̂ 2}}- Q.E.D. 

ADDED IN PROOF. The details of the proofs had been written up jointly 
with Yijing Xu and is available in preprint form. We are currently making 
progress on those singularities whose Newton diagrams consist of two compact 
facets. 
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