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ABSTRACT. We classify the complete 3-dimensional totally real sub-
manifolds with sectional curvature K > jg in the nearly Kaehler 6-
sphere S 6 ( l ) , and, as a corollary, we solve a problem for compact 3-
dimensional totally real submanifolds of 56(1) related to U. Simon's 
conjecture for compact minimal surfaces in spheres. 

1. The nearly Kaehler 6-sphere. It is well known that a 6-dimensional 
sphere S6 does not admit any Kaehler structure, and whether S6 does or 
does not admit a complex structure, as far as we know, is still an open 
question. However, using the Cayley algebra £?, a natural almost complex 
structure J can be defined on S6 considered as a hypersurface in R7 , which 
itself is viewed as the set 8+ of the purely imaginary Cayley numbers (see, 
for instance, E. Calabi [1]). Together with the standard metric g on S6 , J 
determines a nearly Kaehler structure in the sense of A. Gray [9], i.e. one has 
VX G %*(S6): {VXJ){X) = 0, where V is the Levi Civita connection of g. 
For reasons of normalization only, in the following we will always work with 
this nearly Kaehler structure on the sphere S6(l) , of radius 1 and constant 
sectional curvature 1. The compact simple Lie group G2 is the group of auto
morphisms of ^ and acts transitively on <S6(1). Moreover, G<2 preserves both 
J and g. 

2. Special submanifolds of (56(1),0, J ) . With respect to J, two nat
ural particular types of submanifolds M of S6(l) can be investigated: those 
which are almost complex (i.e. for which the tangent space of M at each point 
is invariant under the action of J) and those which are totally real (i.e. for 
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which the tangent space of M at each point is mapped into the normal space 
by J). There only exist 2-dimensional almost complex submanifolds in £6(1), 
and these are always minimal [10]. Curvature properties for such surfaces 
were first obtained by K. Sekigawa [15]. Totally real submanifolds of S6(l) 
have either dimension 2 or 3. N. Ejiri [7] showed that every 3-dimensional 
totally real submanifold of S6(l) is orientable and minimal, and he first ob
tained curvature properties for such submanifolds. The 3-dimensional totally 
real submanifolds of S6(l) were also considered by J. B. Lawson Jr. and 
R. Harvey [11] in their study of calibrated geometries and by K. Mashimo 
[13] in his classification of such compact submanifolds which are orbits of 
closed subgroups of G<i. In our study of submanifolds of the nearly Kaehler 
6-sphere, we concentrated on the following problems. 

PROBLEM A. Which real numbers can be realised as the constant sec
tional curvatures of almost complex or minimal totally real submanifolds M 
ofS6( l )? 

PROBLEM B. Let K\ and K% be two consecutive numbers as in Problem 
A. Then, do there exist compact submanifolds M of Se(l) whose sectional 
curvatures K satisfy K\ < K < K2, other than those for which K = K\ or 
K = K21 

3. On minimal submanifolds of arbitrary spheres. For minimal sur
faces in a unit sphere Sn(l) of arbitrary dimension n, one has a complete 
answer to Problem A (given by O. Boruvka, E. Calabi and N. Wallach for 
the case of positive Gauss curvature, the solutions being K = 2/ra(ra + 1), 
m G No, and by R. Bryant, proving the nonexistence of minimal surfaces of 
constant negative Gauss curvature in any sphere). Concerning Problem B, 
U. Simon conjectured the following. 

CONJECTURE OF U. SIMON [12]. Let M be a compact surface whose 
Gauss curvature K satisfies 2/m(m + 1) < K < 2/ra(ra — 1), for some m G 
N\{0,1}, which is minimally immersed in 5 n ( l ) . Then K = 2/m(m -t-1) or 
K = 2/ra(ra — 1) (and hence M is a Boruvka sphere). 

For m = 2 and ra = 3, this conjecture is known to be true, as was shown 
by H. B. Lawson Jr., U. Simon, M. Kothe, K.-D. Semmler, K. Benko and 
M. Kozlowski. Recently, quite a number of people have been working on this 
problem; in particular, T. Ogata, S. Montiel, T. Itoh, G. Jensen, M. Rigoli, 
J. Bolton, L. Woodward and U. Simon, A. Schwenk, B. Opozda together with 
the present authors. As far as we know however, in general this conjecture is 
still open for m > 3. In view of U. Simon's conjecture, we would like to call 
problems of type A and B, as stated above for almost complex and totally 
real submanifolds of #6(1), ^problems of U. Simon". 

4. Solutions of problems A and B. 

THEOREM 1 [15]. If an almost complex surface M in S6(l) has constant 
Gauss curvature K, then either K = 1 (and M is totally geodesic) or K = ^ 
or K = 0. 

THEOREM 2 [4, 2] . Let M be a compact almost complex surface in S6(l) 
with Gauss curvature K. 
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(i) Let\<K (< 1); then either K = \ or K = 1. 
(ii) IfO<K< \, then either K = 0 or K = \. 

THEOREM 3 [6]. If a minimal totally real surface M in 56(1) has constant 
Gauss curvature K, then either K = 1 (and M is totally geodesic) or K = 0. 

THEOREM 4 [6]. For a compact minimal totally real surface M in S6(l) 
with nonnegative Gauss curvature K (or equivalently 0 < K < 1), either 
K = 0orK = l. 

In 1981, making use of a special choice of local orthonormal frames, N. Ejiri 
solved Problem A in the remaining case as follows. 

THEOREM 5 [7]. If a 3-dimensional totally real submanifold M of Se(l) 
has constant sectional curvature K, then either K = 1 (and M is totally 
geodesic) or K — JQ. 

Totally real 3-dimensional totally geodesic submanifolds in S6(l) are not 
hard to construct. On the other hand, N. Ejiri [8] proved that S3(JQ) can be 
immersed totally real and isometrically in S6(l) . K. Mashimo [13] found an 
orbit of a closed subgroup of G^ with constant curvature ^ . Later we will ex
plicitly describe these immersions, obtaining for instance as extra information 
that they are in fact 56-fold coverings of S3(j$). Compared to the solutions 
given in Theorems 2 and 4, the solution of Problem B seems more involved in 
the present case. In our approach, the solution represented by Theorem 6 is 
an immediate consequence of the Main Theorem. 

THEOREM 6. A compact S-dimensional totally real submanifold of Se(l) 
whose sectional curvature K satisfies JQ < K < 1 has constant sectional 
curvature K = -^ or K = 1. 

MAIN THEOREM. Let x: M 3 —• S6(l) be a totally real isometric immer
sion of a complete 3-dimensional Riemannian manifold M 3 into the nearly 
Kaehler 6-sphere S6(l). If the sectional curvatures K of M 3 satisfy K > j ^ , 
then either M3 is simply connected and x is G'2-congruent to X\\ M\ —• 
S6(l) (in which case K attains all values in the closed interval [^,f^]) or 
to X2'. M2 —• S6(l) (in which case K = 1), or else x, the composition of the 
universal covering map of M 3 with x, is G'2-congruent to x$: Ms —• S6(l) (in 
which case K = j ^ ) . 

SKETCH OF PROOF (details will appear elsewhere [3]). As in our partial 
solution of Problem B [5], a crucial role is played by some integral formulas 
of A. Ros, of which we'll state one next. We do believe that these formulas 
provide a powerful tool to study problems in global Riemannian geometry. 

LEMMA OF A. ROS [14]. Let M be a compact Riemannian manifold, UM 
its unit tangent bundle and UMP the fibre of UM over a point p of M. Let dp, 
du and duv denote the canonical measures on M, UM and UMP, respectively. 
For any continuous function ƒ : UM —* H, one has 

/ fdu= I < I ƒdup > dp. 
JUM JM [JUMP J 
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Now, let T be any k-covariant tensor field on M. Then one has the integral 
formula fUM(VT)(u, u,..., u) du = 0, where V is the Levi Civita connection 
on M. 

We apply this lemma for some particular tensors T constructed in terms 
of the second fundamental form h of the immersion x. Then, under the 
assumption K > ^ , amongst others, we obtain that 

R(v,Ajvv\ AJvv,v) = — {\\AJvv\\2 - (AJvv,v)2} 

for all p € M 3 and all v € UM%, where R is the Riemann-Christoffel curvature 
tensor of M 3 and A is the Weingarten map with respect to a normal section 
£. From this, working with special frames, using the Gauss equation and 
with the help of computer manipulation of formulas, we can prove that at 
each point p the second fundamental form hp has either one of three possible 
forms, leading respectively to the possibilities K(p) = 1, K(p) = ^ and 
K(p) G [ĵ r, j | ] , where K(p) is the sectional curvature function of M 3 at p. 
In the following, we will give comments concerning only x\ (x2 is the totally 
geodesic case, and for £3 we will confine ourselves to give precise formulas 
for the immersion). The existence of x\ is guaranteed by the following result 
taken from a preprint by N. Ejiri. 

THEOREM OF N. EJIRI [8]. Let M be a 3-dimensional simply connected 
Riemannian manifold with metric ( , ). Suppose there exist a (1,2)-symmetric 
tensor field T on M such that 

(i) TrT = 0, (T{X,Y),Z) = (T(X,Z),Y), 
(ii) (R(X, Y)W, Z) = (X, Z) <y, W) - (X, W) (Y, Z) + (T(X, Z\ T{Y, W)) -

(T(X,W),T(Y,Z)), 
(iii) (VXT)(Y, Z) - (VyT)(X, Z) + T{Z,XAY) = 0, where A is the vector 

product determined by some orientation on M. 
Then, up to a transformation of G%, there exists a unique isometric im

mersion x of M into S6 as a totally real submanifold with second fundamen
tal form J(x*T) and with normal connection D defined by DxJ{x*Y) = 
J ( x , ( V x Y + X A Y ) ) . 

Namely, on the unit sphere 53(1) = {y = (2/1,2/2,2/3,2/4) € R4 | Y,Vj = !} 
we can define a metrix ( , ), vector product A and tensor field T satisfying the 
conditions of this theorem and for which K attains all values in [^, | ^ ] . This 
leads to the immersion x\ : S3(l) C R4 —• 56(1) C R7 : y —• z = (21 , . . . , Z7), 
where 

zi(v) = g(%? + 52/2 ~ %3 - 52/I + 42/i)> 

22(2/) = -32/2, z3(y) = -g-( î /? + 2/1 - 2/3 - vl - yi)> 

*4(y) = —^=(-102/12/3 - 22/3 ~ IO2/22/4), zs(y) = —7=(22/i2/4 - 2y4 - 22/22/3), 

ze{y) = ^~/f t 2 ^ 3 ~ 2^3 + 22/22/4), z7(y) = ~ ^ ~ / | ( 1 0 ^ 4 + 2y4 - IO2/22/3). 
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In practice X\ was found solving the system of differential equations (1) on 
p. 67 of M. Spivak's volume IV [16]; the rigidity of course follows from the 
fundamental theorem of submanifolds. 

Finally, we mention the formulas of X3 : S3(j^) = {y G R4 | YlVj — 16} C 
R4 -+ 56(1) C R 7 : y *-+ z{y)\ we have 

zi{y) = N/Ï5 • 2" 1 0 • (2/12/3 + 2/22/4) • (2/12/4 - 2/22/3X2/? +y\-y\- vl)i 

3 i<j i<j<k J 

z3(y) = 2-10[y3y4(yi - y\){yl +y\- by\ - 5y2
2) 

+ 2/12/2(2/? - 2/2X2/1 + y\ - hy\ - hy\)\, 

£4(2/) = 2-12{2/22/4(2/| + 3yg - 2/4 - 32/4) + 2/12/3(2/! + 3y| - 2/? - 3|rf) 

+ 2(2/12/3 - 2/22/4)[y?(2/2 + 42/1) - 2/K2/4 + % 2)]} , 

^5(2/1,2/2,2/3,2/4) = £4(2/2, -2/1,2/3,2/4), 

£e(2/) = V6 • 2~12 • [2/12/3(2/1 + 52/2 - 2/3 ~ 52/1) - 2/22/4(2/2 + 5î/i - 2/4 - %4) 

+ 10(2/12/3 - 2/22/4)(2/12/1 " 2/i22/2)], 

£7(2/1,2/2,2/3,2/4) = £e(2/2, -2/1,2/3,2/4). 
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