ZERO-CYCLES, SPLITTING OF PROJECTIVE MODULES AND NUMBER OF GENERATORS OF A MODULE

M. PAVAMAN MURTHY

Let A denote (for this entire note) a reduced affine ring of dimension n over an algebraically closed field k. Theorem 1 below is about the existence of certain projective modules of rank n. We use this theorem to extend results in $[\mathbf{MKM}]$ to all dimensions.

I am thankful to Gennady Lyubeznik for providing motivating force and help in preparing this announcement.

Let $F^n K_0(A)$ denote the subgroup of $K_0(A)$ generated by the images of residue fields of all regular maximal ideals of height n. For a projective Amodule P, we denote by (P) its image in $K_0(A)$. Let $I \subset A$ be an ideal such that I/I^2 is generated by n elements. We say that an ideal J is residual to Iif

(i) I + J = A;

(ii) J is a local complete intersection of height n;

(iii) IJ is generated by n elements.

By general position arguments, there always exist such J which are products of regular maximal ideals of height n.

THEOREM 1. Let I be an ideal in A such that I/I^2 is generated by n elements. Then there exists a projective A-module P of rank n and a surjection $P \twoheadrightarrow I$ such that $z = (P) - (A^n) \in F^n K_0(A)$. In fact, for any ideal J residual to I, there exists a P such that (n-1)! z = (A/J).

SKETCH OF PROOF. Using a souped-up version of [MK, Theorem 2] we may successively replace I by an ideal J residual to I. Thus we may assume I is a product of regular maximal ideals M_i . Now using the divisibility of the Picard group of a smooth complete intersection curve $\operatorname{Spec} A/(x_1, \ldots, x_{n-1})$, through the M_i , we find a product of regular maximal ideals N such that $L = N^{(n-1)!} + \sum_{i=1}^{n-1} Ax_i$ is residual to I. We replace I by L and finish the proof with the following lemma.

LEMMA. Let A be a noetherian ring and I an ideal which is a local complete intersection of height r. Suppose I/I^2 is A/I-free and let $x_i \in I$, $1 \leq i \leq r$, generate I/I^2 . Let $J = I^{(r-1)!} + (x_1, \ldots, x_{r-1})$. Then there exists a projective A-module P of rank r and a surjection $P \twoheadrightarrow J$ such that $(P) - (A^r)$ in $K_0(A)$.

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors November 5, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 13C10, 14C25; Secondary 18F30.

For the proof of the lemma, we observe that it suffices to do the case when A is the Kumar-Nori quadric:

$$A = \mathbf{Z}[x_1, ..., x_r, y_1, ..., y_r, z]: \ z(z-1) + \sum x_i y_i = 0$$

and

$$I=(x_1,\ldots,x_r,z).$$

We finish the proof using **[Bo]** and a simple Chern class computation using Riemann-Roch. Using Theorem 1 and the fact that when A is regular, $F^n K_0(A)$ is a torsion-free divisible group **[Sr]**, we get

THEOREM 2. With the notation as in Theorem 1, further assume that A is regular. Then P is unique (depends only on I) up to isomorphism and

$$(P) - (A^n) = -\frac{1}{(n-1)!}S(I),$$

where S(I) is the image in $F^n K_0(A)$ of the zero-dimensional Segre class of V(I) in Spec A.

For a definition of Segre class see [Fu, p. 13].

THEOREM 3. Let $I \subset A$ be a local complete intersection of height n. Suppose $F^n K_0(A)$ has no (n-1)!-torsion. Then (A/I) = 0 in $K_0(A)$ if and only if I is a complete intersection.

PROOF. Easy consequence of Theorem 1 and the Suslin cancellation theorem [Su].

REMARK. $F^n K_0(A)$ is known to be torsion-free in the following cases: char k = 0 [L], A is regular and n = 2 or $n \ge 3$, and A is regular in codimension one [Sr]. Also the torsion subgroup of $F^n K_0(A)$ is p-primary if char k = p > 0[L].

THEOREM 4. Suppose $F^n K_0(A)$ has no (n-1)!-torsion. Let P be a projective A-module of rank n. Then P has a free direct summand of rank one if and only if the nth Chern class $C_n(P)$ of P is zero.

Recall that for a generic section $P \twoheadrightarrow I$, I a local complete intersection of height $n, C_n(P) = (A/I) \in F^n K_0(A)$.

PROOF. Take a generic section $P \twoheadrightarrow I$. Apply Theorem 3 and an argument in $[\mathbf{MK}]$.

Gennady Lyubeznik has pointed out the following application of Theorem 1.

THEOREM 5. Suppose char k = p > 0 and P is a projective A-module of rank n such that $C_n(P)$ is torsion. Then for some r, the rth Frobenius iterate $P^{(r)}$ has a free direct summand of rank one.

Eisenbud-Evans estimates. For a finite A-module M, let $\mu(M)$ (resp. $\nu(M)$) denote the maximum of $\mu_p(M) + \dim A/p$, where p runs through all $p \in \operatorname{supp} M$ (resp. $p \in \operatorname{supp} M$, $\dim A/p < \dim A$). It is well known that M is generated by $\mu(M)$ elements [Fo]. As an application of Theorem 1 we have

316

THEOREM 6. Let M be a finite A-module. Then there exists a projective A-module P of rank $\nu(M)$ and a surjection $P \twoheadrightarrow M$ such that $(P) - (A^{\nu(M)}) \in F^n K_0(A)$.

COROLLARY. $F^n K_0(A) = 0$ if and only if M is generated by $\nu(M)$ elements, for all finite A-modules M.

THEOREM 7. Let A be regular and M a finite A-module. Then either $\mu(M) = \nu(M)$ or there exists a P as in Theorem 6, unique up to isomorphism. Further

$$(P) - (A^{\nu(M)}) = -\frac{1}{(n-1)!}S_0(M),$$

where M is the zero-dimensional Segre class of M (see [Fu]).

COROLLARY. Suppose A is regular. Then M is generated by $\nu(M)$ elements if and only if $\mu(M) = \nu(M)$ or $S_0(M) = 0$.

The proofs of all these results rely heavily upon methods used in [MKM and MK]. We also remark that the lemma of this note can be used to show that $F^n K_0(A)$ is torsion-free if $n \geq 3$ and A is regular in codimension one. Complete proofs will appear elsewhere.

References

[Bo] M. Boratyński, Generating ideals up to radical and systems of parameters of graded rings, J. Algebra 78 (1982), 20–24.

[Fo] O. Forster, Über die Anzahl der Erzeugenden eines Ideals in einem noetherschen Ring, Math Z. 84 (1964), 80-87.

[Fu] W. Fulton, Intersection theory, Springer-Verlag, 1984.

[MK] N. Mohan Kumar, Some theorems on generation of ideals in affine algebras, Comment. Math. Helv. 59 (1984), 243-252.

[MKM] N. Mohan Kumar and M. P. Murthy, Algebraic cycles and vector bundles over affine three-folds, Ann. of Math. (2) 116 (1982), 579-591.

[L] M. Levine, Zero cycles and K-theory, preprint.

[Sr] V. Srinivas, Torsion 0-cycles on affine varieties in characteristic p, preprint.

[Su] A. Suslin, A cancellation theorem for projective modules over algebras, Soviet Math. Dokl. 18, No. 5 (1977), 1281–1284.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637