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EQUIVARIANT MINIMAX AND MINIMAL SURFACES 
IN GEOMETRIC THREE-MANIFOLDS 

JON T. PITTS AND J. H. RUBINSTEIN 

Minimal surfaces in Riemannian three-dimensional manifolds have played 
a major role in recent studies of the geometry and topology of 3-manifolds. In 
particular, stable and least area minimal surfaces have been used extensively 
[SY, MSY, HS]. On the other hand, explicit examples of unstable minimal 
surfaces have rarely been given. For the 3-sphere S3 with the standard metric 
of constant sectional curvature, there is the classical paper of Lawson [LH], 
showing that closed orientable surfaces of every genus occur as (unstable) min­
imal surfaces embedded in 5 3 . More recently, Karcher, Pinkall, and Sterling 
[KPS] have constructed several new examples in S3. 

We have discovered new infinite families of minimal surfaces in S3. More 
generally, we announce a number of new finite and infinite families of embed­
ded minimal surfaces in geometric 3-manifolds, using the minimax procedure 
described below. Geometric structures on 3-manifolds were introduced by 
Thurston [TW]. (See also the excellent survey by Scott [SP1].) There are 
eight geometries: R3 , S3 , S2 x R, Nil, H 2 x R, S L ^ R ) , Solv, and H3 . A 
geometric structure on a 3-manifold S is a representation of E as a quotient 
of one of the above eight spaces divided out by a covering transformation 
group acting isometrically. Equivalently, E is locally isometric to one of these 
spaces, with its natural homogeneous space structure. The first six of these 
geometries give Seifert fiber spaces and we are mainly interested in such ex­
amples. The SO(2)-isometry actions associated with most Seifert fiber spaces 
yield infinite classes of embedded minimal surfaces. Note that interesting ex­
amples can also be obtained in the other two geometries; e.g., in hyperbolic 
geometry H 3 [PR3, §2]. 

The minimax procedure has proved to be a versatile and powerful means of 
constructing unstable minimal surfaces in 3-manifolds. For basic details of this 
technique, see [PJ, SS, P R l , and PR2]. Suppose that G is a finite group of 
isometries acting on a closed oriented Riemannian 3-manifold E. Assume that 
A is a Heegaard surface in E; i.e., the closures of the components of E ~ A 
are handlebodies K and K'. Assume furthermore that A is G-equivariant; 
i.e., gA = A for all g E G. We consider one-parameter smooth families At, 
t € [0,1], sweeping out E and having the following properties: Ao and Ai are 
graphs; At is isotopic to A for all 0 < t < 1; At is G-equivariant for all t; the 
handlebody Kt is chosen so that the orientation on At is induced from that on 
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Kt coming from E; and Kt converges to Ao as t —• 0+ and to Ai as t —• 1—. 
Application of the minimax method to such equivariant sweepouts yields the 
following basic theorem. 

THEOREM. There are sequences of G-equivariant families A\ and param­
eters U such that as i —• oo, AJ. converges (in the F metric for varifolds) 
to a closed, embedded, G-equivariant, minimal surface M in E. M satisfies 
genus(M) < genus(A) and indexe (M) < 1 < indexG(M) + nullityG(M). 

REMARKS. (1) See [PR2] for the definition of the F-metric. Indexe (M) 
and nullityG(M) refer here to the G-equivariant index and nullity of M; i.e., 
the number of negative (respectively zero) eigenvalues of the second variation 
operator on G-equivariant normal vector fields to M, counted with multiplic­
ity. 

(2) We have stated this theorem in the context of sweepouts which depend 
on only one parameter. There is also a version which is valid for sweepouts 
with multiple parameters. 

(3) M is G-equivariant, but may be nonconnected or even nonorientable. 
We define 

genus(M) = Y\ njgenns(Mj) + V ] -~genus(Mfc), 
i * l 

where Mj (respectively Mk) is an orientable (respectively nonorientable) com­
ponent of M with multiplicity rtj (respectively n*), where multiplicity of the 
components is as varifolds. 

(4) M is obtained from A by deformations which may include both com­
pressions of A and projections of some components of the resulting surface 
onto double covers of nonorientable pieces Mfc. A compression A' of A is ob­
tained by taking A' = (AUdN(D)) ~ dN(dD), where D is an embedded disk 
in E with D U À = dD, and N(D) is a small product neighborhood of I>, 
chosen so that N(D) fl A is an annular neighborhood N(dD) of dD. 

1. The 3-sphere. We list infinite classes of new examples. Our princi­
pal results are summarized in Table 1. We consider 14 different families of 
discrete subgroups of SO (4) regarded as symmetry groups of S3 (column 1). 
Each family contains an infinite number of symmetry groups G parameterized 
by one or more positive integers m, fc, r, s. For each such group G, we obtain 
an embedded G-equivariant minimal surface in S3 , whose genus we calculate 
(column 2). Finally, within each family we study the geometry of the mini­
mal surfaces obtained by analyzing limiting behavior of these surfaces as the 
order of the group G increases without bound (column 3). More precisely, 
within each family, we have fixed parameters fc,r, s (if they occur), and have 
constructed a sequence {Mm} of G-(= G(m)-) equivariant minimal surfaces 
in S 3 which converges to the varifold V described in column 3 as m —• oo. 

REMARKS. (1) Using other examples of finite groups acting on S3 , we are 
also able to construct minimal surfaces with the same genus and symmetry 
groups as those of Karcher, Pinkall, and Sterling [KPS], plus a few new 
examples of the same type not considered here. 
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(2) The list of minimal surfaces in Table 1 is not exhaustive. The important 
case of free actions on S3 is handled by the minimax procedure in [PR2]. In 
addition, for a given symmetry group, one can often obtain new surfaces from 
the minimax construction by considering more complicated sweepouts with 
multiple parameters. Finally, H. Karcher and we have recently discovered 
another fairly explicit method by which a number of minimal surfaces in S3 

can also be constructed. 
(3) A helpful way to picture the sweepouts is to pass to the quotient space 

S3/G under the action of the symmetry group G. In most cases, S3/G is 
either S3 or a 3-dimensional lens space, and the surface At/G is either a 2-
sphere or a Heegaard torus, respectively. It is then easy to identity possible 
compressions and classify them. The genus is then conveniently computed by 
the Hurwitz formula for branched coverings of surfaces. 

(4) Examples 11-14, where V is a Clifford torus counted with multiplicity 
two, exhibit several remarkable properties. One can think of V as being the 
limit of minimal surfaces which are almost two copies of the torus separated 
slightly and joined by an appropriate number of small tubes. In the limit, the 
tubes disappear altogether through compression. In all previous examples 
(say, our examples 1-10, or Lawson's surfaces £m>fc as m —• oo), the limit 
surface V has a singular set (typically singular arcs) along which compression 
occurs. To our knowledge, this is the first example where both compression 
has occurred and the limit varifold is a regular surface. 

One notes furthermore that these examples contradict the conjecture of 
Lawson that a minimal surface should divide S3 into two regions of equal 
volume. A minimal surface contradicting this conjecture was constructed in 
[KPS]. Our examples exhibit a much stronger property; namely, it is clear 
that as m becomes arbitrarily large, the volume of one of the regions becomes 
arbitrarily small. This is also true in examples 4, 5, 7, and 9. 

Our proof of the existence of the surfaces in examples 11-14 depends on 
being able to construct explicitly appropriate sweepouts of S3 for which the 
maximum area is strictly less than twice the area of the Clifford torus. This 
construction depends fundamentally on a new result which we call the catenoid 
estimate. It appears that this estimate will have many applications. 

(5) Surfaces in example 1 of Table 1 have the same symmetry group and 
genus as the surfaces £m>fc of Lawson [LH]. Presumably they are the same 
surfaces, although this does not seem to follow readily from the basic con­
struction. It seems that it may be possible to recover Lawson's examples, 
however, by using more elaborate sweepouts. 

(6) In examples 1, 2, and 10 of Table 1, we do not yet know that the 
limit varifolds V are balanced; i.e., V may meet a singular circle in half-sheets 
and thus may not be an immersion. In contrast, one readily verifies that a 
sequence £m,fc of Lawson surfaces converges as m —• oo to a balanced varifold 
V which is the union of k + 1 totally geodesic 2-spheres intersecting in a 
common geodesic circle. We expect that V is always balanced. 

2. Other geometries. Here we give four methods for constructing mini­
mal surfaces on manifolds with other geometries. 
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FIRST CONSTRUCTION. Let E be a (2, 3, 7) Seifert fiber space; i.e., E 
has three exceptional fibers of multiplicity two, three, and seven. (See Orlik 
[OP] for details on terminology.) Then E has either the H2 x R or SL(2, R) 
geometry, depending on whether or not the Euler class of an appropriate S1 

bundle cover is zero. One takes as a symmetry group G a finite cyclic subgroup 
of the SO(2) action along the Seifert fibers. 

(a) G = Z7m. The minimal surface M has genus 6m -f 1. As m —• oo, 
the limit varifold V is twice a varifold W which can be viewed conveniently 
by constructing its induced cover W in the universal cover of E, which is 
either H2 x R or SL(2,R). To obtain W, one forms the tesselation of H2 

by hyperbolic equilateral triangles with all angles 27r/7, and multiplies the 
1-skeleton T of this triangulation by R (in the H 2 x R case) or pulls back 
T to SL(2,R) under the natural projection S L ^ R ) - • H2 (in the SL(2,R) 
case). 

(b) G = Z3m. One proceeds as in (a), except that the tesselation of H2 is 
by regular hyperbolic heptagons with all angles 27r/3. 

(c) G = Z2m- One proceeds as in (a), except that the tesselation is semireg-
ular, using heptagons and triangles. Furthermore, the convergence of the 
minimal surfaces to V is with multiplicity one; i.e., V = W. 

SECOND CONSTRUCTION. In this case G acts freely, so we can use a 
nonequivariant sweepout in the quotient manifold E/G. Assume E has an 
H2 x R structure and is a (p,g,r) Seifert fiber space, where p,q,r > 4. Let 
G be a free Zm_i action embedded in the natural SO(2) action on E. As 
E/G has Heegaard genus two, there is a genus two embedded minimal surface 
in E/G which one obtains from the minimax procedure [PR2]. This lifts to 
a genus m surface in E. As m —• oo, these surfaces converge to an SO(2)-
invariant immersed minimal torus V in E. 

In the orbifold E/SO(2), V/SO(2) is a figure 8 geodesic of shortest length, 
as described by Scott [SP2], In the universal cover H2 x R of E, the induced 
cover V is T x R, where T is the 1-skeleton of the dual tesselation on H2 to the 
tesselation by the hyperbolic quadrilateral with angles 7r/p, 27r/r, n/q, 27r/r, 
in that order. This explicit tesselation has p-gons, g-gons, and 2r-gons. One 
notes that the choice of which of p, q, r occurs with the factor 2 is determined 
by which of the three figure 8 geodesies is shortest. 

If p, g, r are small (< 3), the situation is similar but more complicated (see 
Scott [SP2]). 

THIRD CONSTRUCTION. Triply periodic minimal surfaces in R3 can be 
constructed which converge to the following varifolds V. In all cases V is the 
1-skeleton T of a tesselation on R2 multiplied by R. Here E is the 3-torus, 
and G = Zr x Zs where r = 3, s = 3p, or r = 4, s = 2p, or r = 6, s = 2p or 
3p, and p is relatively prime to 6. These are the possibilities: 

(a) T is the equilateral triangle tesselation. 
(b) T is the square tesselation (and M is analogous to Scherk's periodic 

surface). 
(c) T is the semiregular tiling by hexagons and equilateral triangles. 
(d) r is the tiling by hexagon with multiplicity two. 
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FOURTH CONSTRUCTION. In S2 x S1 , minimal surfaces can be found 
which converge to varifolds V of the form T x S1 , where T is the 1-skeleton of 
a tesselation of S2. Finally, Nil geometry has various Sx -bundles over the 2-
torus. Once again examples can be constructed which converge to 5 * -bundles 
over the 1-skeleton of tesselations of the 2-torus, as in the third construction 
above. 
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