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BI-INVARIANT SCHWARTZ MULTIPLIERS AND LOCAL
SOLVABILITY ON NILPOTENT LIE GROUPS

JOE W. JENKINS

Let X denote a finite-dimensional vector space with a fixed positive defi-
nite inner product, and let 5’(X) denote the Schwartz space on X. We let
M (X) denote the space of continuous endomorphisms of .%°(X) that com-
mute with the action of X on (X). The elements of .#%(X) are given
by convolution by tempered distributions; i.e., for E € £ (X) there is a
Dg € &*(X) such that Ef(z) = (Dg, I f) : DE*f(a:),where f(z) = f(~2)
and I, f(y) = f(y — z). Conversely, if D € #*(X), then one can easﬂy see
that Ep: f — D « f is a mapping of ’(X) into the smooth functions on X
that commutes with translation. Schwartz [S] shows that Ep € 4% (X) if
and only if D, the Fourier transform of D, is given by a smooth function on
X* which has polynomial bounds on all derivatives. In this note we announce
analogues of these results for arbitrary nilpotent Lie groups. Complete proofs
will appear elsewhere.

Let N denote a connected, simply connected nilpotent Lie group, with Lie
algebra n. The exponential mapping, exp: n — N, is a diffeomorphism, and
in terms of the corresponding coordinates left and right translation on N are
polynomial mappings. Thus, if %’(N) denotes the image under composition
with exp of #(n), the right and left action of N on .¥’(N) are continuous
endomorphisms, where .#(N) is topologized so that composition with exp
is an isomorphism from % (n) to #(N). We denote by #*(N) the dual of
& (N), the space of tempered distributions on N.

For f € &Z(N), the Fourier transform of f, f , is defined on n*, the dual of
n, by

= / fexp X)e2m6X) gx.
n

One has that f — f is an isomorphism from .%(N) onto .#(n*). For D €
F*(N), D is defined on #(n*) by (D, f) = (D, f o log), where log denotes
the inverse of exp.

Let Ad* denote the coadjoint representation of N on n*. A tempered
distribution D on n* is said to be Ad*-invariant if (D, f o Ad* z) = (D, f) for
all z € N and f € #(n*). A tempered distribution D on N is said to be
bi-invariant if (D,t,-1f) = (D, f) for all f € 5 (N), where v, f(y) = f(yz)
and I, f(y) = f (z'ly) for all z,y € N. A straightforward computatlon shows
that an element D € %(N) is bi-invariant if and only if D is Ad*-invariant.
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Let .#%(N) denote the space of continuous endomorphisms on .#(N) that
commute with both right and left translations by elements of N. As in the
Euclidean case, one has that for each E € #5(N) there is a Dg € #*(N)
such that Ef = Dg * f, where, as before, Dg * f(z) := (Dg,l,f). f D €
&*(N) we denote by Ep the mapping defined on .¥(N) by Epf =D * f.

Let PBR(n*) denote the space of smooth, Ad*-invariant functions defined
on n* with polynomial bounds on all derivatives. This space is topologized
using the seminorms v;; defined on PBS (n*) by

vij(0) = sup sup [8*0(€)|/(1+||€]I*)*,
|a|<j gEn*

where 0“ denotes the standard differential operator corresponding to the
multi-index @, and some fixed basis of n*. A sequence {E,} C #£¥(N)
converges to 0 if E,f — 0 in #(N) for each f € #(N).

THEOREM A. The mapping #5(N) — PBF(n*): E — Dg is a home-
omorphism and an algebra isomorphism, the products being composition on
MF(N) and pointwise multiplication on PBR (n*).

For £ € n*, let m¢ denote the irreducible unitary representation of IV that
corresponds to the Ad*-orbit of ¢ by the Kirillov theory. For § € PBY (n*),
let Dy be the tempered distribution on N with Fourier transform 6.

THEOREM B. For § € PBR(n*), f € #(N), and £ € n*,
(Do * f) = 0(E)me(f).

As an application of these results, we consider the question of local solv-
ability. Recall that a left invariant differential operator L on N is said to be
locally solvable if there is an open set U C N such that C®(U) C L(C*(U)).

Let o(¢) denote the Ad*-orbit in n* that contains £, and having fixed a
norm on n*, set |o(¢)| = inf{||¢||: & € o(€)}. Suppose that N contains a
discrete, cocompact subgroup I'. Then L?(T'\N) is a direct sum of subspaces
#¢ such that the restriction to /# of right translation is a finite multiple of

m¢. We denote by (I'\N){ the elements of N appearing in this decomposition
that are in general position.

THEOREM C. Let L be a left invariant differential operator on N. Suppose
that for each m¢ € (T\N)y, me(L) has a bounded right inverse A¢ on #, and

that the norm of A¢ i3 bounded by a polynomial in |0(€)|. Then L is locally
solvable.

The proof of Theorem A requires the introduction of somewhat more gen-
eral spaces. Let £ be a subspace of the center of ~, and let A € £*. We
define the unitary character x on H := exp(£) by xa(expX) = *7#XX)
and denote by % (N/H, x,) the space of all smooth functions f defined on
N such that f(zy) = xa(y)f(z) for all £ € N, y € H, and such that
foexp, € F(£), where £ is a complement to £ in ~. The topology
of #(N/H, x,) is defined by requiring that the mapping f — f o exp|4 be a
homeomorphism. Define Py: % (N) — & (N/H, x») by

Paf(expX) = [ J(exp(X +Y)xa(-¥)aY.
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P, is an open surjection and thus its adjoint Py is an isomorphism of
F*(N/H, x,) into F*(N).

Let £+ be the annihilator of £ in ~*. For A € £* (identified as a sub-
space of ~*), there is a natural Schwartz space on £+ + )\, F(£+ + 1),
given by composing elements of .#’(£ 1) with translation by —\. Considering
F(N/H,x,) and #(£+ + )) as subspaces of #*(N) and #*(~*) respec-
tively, the Fourier transform is defined on these spaces and one has that f — f
is an isomorphism of .’(N/H, x») onto # (£~ + )) and of #(£+ + ) onto

& (N/H,x-»). Also one has that for D € #*(N/H, x)\), (P;D)" = R*, D,
where Ry: S (»*) — S (£ + ) is restriction, and D is the element in
F*(£+ — )) defined by (D, f) = (D,f). Thus (P;D)" is supported on
£+ + ) and has no normal derivatives.

For f € #(N/H,x») and D € #*(N/H, x-)), the convolution D * f is
defined by setting D * f(z) = (D,l(f)) for each z € N. Suppose now that
D € #*(N) and f € &’(N). One can use Abelian Fourier analysis to study
the mapping defined on #, the center of », by Y — D * f(exp(X +Y)). If
this mapping is in ¥ (#), then

D f(expX) = / _P(Ds /)(exp X)),

for appropriately normalized Lebesgue measure d\. Furthermore, Py(D*f) =
D, * Py f , where D, is the element of #*(N/H, x—-») whose Fourier trans-
form, DA, agrees with the restriction to £+ + X of D. Thus, convolu-
tion between elements of #*(N) and ¥(N) decomposes into convolutions
between elements of #*(N/H,x-») and *(N/H,x,) in such a way that
smoothness and growth conditions on D, D € 5*(N) are inherited by Dj,
D) € &#*(N/H,x-). One then proceeds by induction on the dimension of
N/H. Of course, this requires maintaining considerable control of the various
seminorm estimates that appear in the decompositions.

The proof of Theorem B follows along the usual induction argument lines
with the Plancherel Theorem being used to reduce the dimension.

For Theorem C, one constructs a f on ~* such that both § and 1/6 are in
PB(~*), and such that 3 ||A(£)]|0(&) < oo, the sum being over (T'\N).
One then uses the fact that (Dy/g * f) * (Dg * g) = f * g and the Dixmier and
Mallivan [DM] factorization to complete the proof.

REMARKS. The fact that Dg € A% (N) was proved by R. Howe in [H], and
indeed, the ideas presented there are the foundation of this work. Theorem B
was proved for the case where 6 is a polynomial by A. Kirillov in [K]. In [CG],
L. Corwin and F. Greenleaf proved Theorem C with the additional assump-
tion that all the representations in general position were induced from a com-
mon, normal subgroup. One-sided Schwartz multipliers have been studied by
L. Corwin in [C].
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