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BOUNDED GEODESICS 
FOR THE ATIYAH-HITCHIN METRIC 

MACIEJ P. WOJTKOWSKI 

ABSTRACT. The Atiyah-Hitchin metric has bounded geodesies which 
describe bound states of a monopole pair. 

Introduction. The dynamics of two nonrelativistic BPS monopoles was 
described by Manton [1] as the geodesic flow on the space of collective coor­
dinates of the monopoles M$ with a special metric found explicitly by Atiyah 
and Hitchin [2]. Gibbons and Manton [3] studied the asymptotic metric 
(the Taub-Nut metric) and using its additional symmetry they integrated the 
equations of geodesies. They found in particular quasiperiodic solutions which 
describe bound states of a pair of monopoles. It is thus natural to treat the 
Atiyah-Hitchin metric as a small perturbation of the Taub-Nut metric and to 
apply the KAM theory to establish the existence of quasiperiodic geodesies. 
In the present note we sketch an implementation of this idea. The detailed 
exposition will appear elsewhere. 

1. Analytic description of the Atiyah-Hitchin metric on M$. The 
Atiyah-Hitchin metric on the four-dimensional manifold M° admits SO(3) 
as a symmetry group and the orbits of the action are nondegenerate, i.e., 
3-dimensional with only one exception. Hence we can identify the tangent 
space to the orbit with the Lie algebra so(3) and write the metric in the form 

(1) ds2 = f2d2rj + a2a\ + b2a\ + c2<rf, 

where r\ is a transversal coordinate, and <7i, O<I and 03 are the standard one-
forms in so(3)*. 

a, 6, c and ƒ are functions of r/ which can be described in the following way. 

a2 = 4K(K - E)(E - Kkf2)/E, 

(2) b2 = 4K(K - E)E/{E - Kk'2), 

c2 = AKE(E - Kk,2)/(K - £ ) , 

where 

K(k) = T (1 - k2 sin2 (j>)-^2 d<t>, E{k) = f {I- k2 sin2 <f>)1/2 d<\> 
Jo Jo 

are complete elliptic integrals and k' = v^l — &2 is the conjugate modulus. 
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In the formulas (2) k is assumed to be a function of r\ which can be chosen 
arbitrarily for the price of changing the function ƒ appropriately. Gibbons 
and Manton [3] suggested the use of r\ = 2if(fc), 7r < r\ < +oo, which leads to 

(3) f2 = {K- E)E/K{E - Kk'2). 

2. The reduced hamiltonian system. The SO(3) symmetry of the 
Atiyah-Hitchin metric (1) allows the reduction of the geodesic equations to 
the Euler type equations 

dM1 / 1 1 \ dM2 / 1 1 \ 

d^_dH_ dp _ dH 
dt " dp ' <ft ~ dry ' 

where 
1 / p ^ A ^ A ^ M | \ 
2 V/2 o2 ^ c2 / 

Geometrically the reduction means that the geodesic flow factors onto the 
system (4). In particular the metric (1) has bounded geodesies if and only if 
the system (4) has solutions bounded in 77. 

M2 = M2 + M | + M$ and H are first integrals of the system. Without 
loss of generality we can set M2 = 1. Then the system can be put into an 
explicitly hamiltonian form by letting 

Mi = y 1 - M% cos 0, M% = y l — M | sin </>, 

which leads to the system 

dr\ _dH d4> _ dH dp _ dH dM3 _ dH 
( ' dt~ dp' dt~ dM 3 ' dt~ dri' dt d(j> 

where 

- \ 
p2 (1 - M2) cos2 d> (1 - M2) sin2 <* M 2 j 

, /2 a2 62 c2 J 

Transforming H further, we get H = HQ + Hi, where 

1 \p2 1 / 1 1 \ „ l i r». M$] 

^ i =Ka-e) ( i-M | ) c o s 2^ 
The hamiltonian Ho does not depend on </> so it defines an integrable hamil­

tonian system, the other integral being M3. Moreover there are bounded 
quasiperiodic motions in the system. Indeed 

Ho = ^ + V(V,M3), F(„ ,M 3 ) = ± ( ^ + p ) ( l - M f ) + ^ i 
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and for a fixed value of M3, V has a global minimum Vo{M^), at least for 
small values of M3. To see this note that 1/a2 + 1/62 is decreasing to zero 
and 1/c2 is increasing to some positive value as r\ —* +00. The manifold 
{Ho = const, M3 = const} for values of Ho close to Vo{Mz) is compact 
and hence by the Liouville-Arnold Theorem it must be the torus carrying a 
quasiperiodic motion. 

3. KAM theory. We want to treat the hamiltonian system (5) as a 
perturbation of the integrable system with the hamiltonian HQ. TO apply the 
KAM theory we have to find the action-angle variables for HQ and to estimate 
the perturbation. 

Expanding K in the conjugate modulus k' we have 

K = - ln(*74)(l + 0(k'2)) + 0{k'2) as k' - 0. 

Hence 

(6) k'2 = 0(e-") as r? — +00. 

Also 
E = 1 + ln(fc74)0(A;/2) + 0(k'2) as k' -> 0 

so that 

(7) E = 1 -h Oirje-11) as rj-+ +00. 

Applying (6) and (7) to the formulas (2) and (3), we get 

ï ( ? + p) = 2 ^ ) + 0 < , " V ' ) ' 

(8) 2 c 8 f 

± = -±^ + 0(r,e-»), and 

We introduce the integrable hamiltonian 

*»=te+5^+ï(^(x-4'l)-;)-
By (8) #01 = H0 - #00 = Ofae"^) and also #1 = O ^ - ^ " ^ ) . 

We will find the action variables / , J for the hamiltonain .Hbo m the region 
of the phase space where the motion is bounded. Let Hoo = 5P2w/(w — 2) + 
W(r/, M3) and let 170 (M3) be the value of r\ at which W attains its minimum, 
i.e., (dW/drf)(rjo,M3) = 0. We will use e = 1/rjo as a small parameter. We 
have 

e - e 2 = i M | . 

We choose the basic cycles for the torus {Ms = const, Hoo = const} to be 
71 = {M3 = const, p = const, 77 = const, 0 < <\> < 2TT} and 72 = {^3 = const, 
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<t> = const, Hoo = const} and then 

I = 7T l pdrf + M3d</> = M3, 
2 7 r A i 

= 2 T T / pdri + M3d<i>=— I pdrj. 

To evaluate the last integral we make for a fixed Ms the change of variables 
tf = (1 + fj)/e, p = ep. We have 

Hoo = \e-e2 + ±e2 

(ïêîH(1+ i r£s) 
and J = (l/2ir)fl2pdfj. 

By straightforward integration 

where 

Finally 

J = ( l - c ) - 1 / 2 ^ 1 + 0 ( e ) j 

- f t e H (>•,•?*)• 
««.'^-^-i.'p^p+O^). 

Switching back to M3 = ƒ, we get 

00 8 32(J + 1)2 -fO(/6). 

For small / where the perturbation #01 + Hi is small the hamiltonian Hoo 
is degenerate in the sense that the hessian det(d2H/d(I, J)2) is also small, so 
that the standard KAM theory does not work in our case. The appropriate 
version of the KAM theory was actually developed by Arnold [4] and we can 
conclude that for suflBciently small io> for most initial conditions in the domain 
0 < J < Jo (in the sense of Lebesgue measure) the motion is quasiperiodic 
and close for all —00 < t < +00 to the motion 

ƒ = 0, J = 0, fa = 
dHpp 

~5T' <t>j = dJ 

with appropriate initial conditions. </>i and <f>j are the angle variables conju­
gate to I and J respectively. 

Conclusion. The Atiyah-Hitchin metric has many bounded geodesies. 
Their union in the phase space has positive Lebesgue measure. 
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