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ASYMPTOTICS OF SMALL EIGENVALUES
OF RIEMANN SURFACES

MARC BURGER

Recently there has been a great deal of interest in geometric bounds on
small eigenvalues of the Laplace operator on a Riemann surface [S.W.Y,
D.P.R.S.]. Here we determine the precise asymptotic behaviour of these
small eigenvalues. Let S5 be a compact Riemann surface of genus g > 2
whose first k£ nonzero eigenvalues 0 < A\; < Ay < .-+ < A are small, ie.,
Ak < 6 and Agyy > 1. Then by [S.W.Y.] there exists a constant a = a(g) >
0 such that the closed geodesics 7, -7, of length less than a - § separate
Ss into k + 1 pieces Si,...,Sk+1 and all other closed geodesics of Ss have
length greater than a(g). Let A be the graph whose vertices are the pieces
S;. Suppose vertex S; has mass v; = vol(S;) and the length L;; of an edge
joining S; to S; is the total length of the geodesics contained in S; N S;.
Furthermore, let 0 < A;(A) < --- < Ak(A) be the spectrum of the quadratic
form Y (F(S:) — F(S;))2L,; with respect to the norm Y F(S;)2v;. Then one
has

THEOREM 1.

. A(Ss) 1 .
;1_13) 2 (A) == foralll <j<k.

This convergence is uniform for all surfaces S5 with Ag4+1(Ss) > ¢1 and
fixed genus.

REMARK. The fact that lim sups_,o A;(S5)/A;(A) < 1/ follows easily from
[C.CdV]. This paper also shows the convergence of this ratio in the case that
the lengths [(v;) all have the same behaviour near zero, i.e. I(v;) = d;e for
€ — 0, and fixed d;.

SKETCH OF PROOF. Complete ~; - - -, to a set of geodesics v; - - - y34—3,
giving a decomposition of S into Y-pieces with length I(~;) < Lg, a constant
depending only on g (see [Bu2, §13]). Then using a modified version of an
argument of [B1] we show that ); - (1 + o(v/8)) > 7~ 1);(T), where T is
the graph of the Y-pieces, and the length of an edge corresponding to a small
geodesic is I(). The proof of this also uses the asymptotic of the first nonzero
eigenvalue of Y; U Y; for the Neumann problem, where Y3, Y, are Y-pieces,
Y1 NY; = 4 and I(4) is small. This can be deduced from [C.CdV], because
there is only one small geodesic separating Y; U Y2. To finish the proof we
have then to compare A;(I') with A;(A). To do this we consider A to be the
graph of the connected components of I' after removing the small edges of T'.
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If f is an eigenfunction corresponding to A;(I') we write f = h+ g, where, on
each component, h is constant and g of mean zero: Applying the quadratic
form to h + g we estimate the resulting terms.

If one is interested in lower bounds on ); in terms of A;(A) it is more
convenient to relate A; to a graph associated to a geodesic triangulation of S
as considered in [Bul] and used in [B2, §4]. As in the proof of Theorem 1,
one relates then the spectrum of this graph to A;(A).

THEOREM 2. Let S be a compact Riemann surface of genus g > 2 and
Ilm) € - < U(y) < U r41)--- be the length of the closed geodesics of
length smaller than 2 In2. Then there ezists a universal constant ¢ > 0 s.t. if
() < Uvr4+1)/9% then Aj(S) > c)j(A) for 1 < j < k. And A is the graph
associated to the components of S after removing the geodesics Y1,...,Yy-

REMARKS. (a) It is easy to generalize Theorems 1 and 2 to the case of
geometrically finite surfaces.

(b) In [D.P.R.S.] the inequality of Theorem 2 is stated with a constant
¢(g) depending on the genus of S. But for fixed g there are only finitely many
graph structures which can occur if one forgets the length of the edges, thus a
constant depending on g “destroys” the combinatorial information contained
in A;(A).

(c) If there are no small geodesics or if the small geodesics don’t disconnect
the surface then A1(S) > ¢/¢?, ¢ > 0 being a universal constant.
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